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The pressure dependence of the magnetic penetration depth λ in polycrystalline samples of
YBa2Cu3Ox with different oxygen concentrations x = 6.45, 6.6, 6.8, and 6.98 was studied by muon
spin rotation (µSR). The pressure dependence of the superfluid density ρs ∝ 1/λ2 as a function of
the superconducting transition temperature Tc is found to deviate from the usual Uemura line. The
ratio (∂Tc/∂P )/(∂ρs/∂P ) is factor of ≃ 2 smaller than that of the Uemura relation. In underdoped
samples, the zero temperature superconducting gap ∆0 and the BCS ratio ∆0/kBTc both increase
with increasing external hydrostatic pressure, implying an increase of the coupling strength with
pressure. The relation between the pressure effect and the oxygen isotope effect on λ is also dis-
cussed. In order to analyze reliably the µSR spectra of samples with strong magnetic moments in
a pressure cell, a special model was developed and applied.

PACS numbers:

I. INTRODUCTION

The compound YBa2Cu3Ox was the first high tem-
perature superconductor1 (HTS) with a superconducting
transition temperature Tc above the boiling point of liq-
uid nitrogen, and is one of the most studied HTSs.2 Its
superconducting properties are well characterized, even
though some of them are still being heavily discussed.
Detailed muon spin rotation (µSR) studies of the mag-
netic penetration depth λ and the superfluid density
ρs ∝ 1/λ2 were performed on poly- and single crystals of
YBa2Cu3Ox at ambient pressure.3–10 However, the key
question concerning the pairing mechanism responsible
for high temperature superconductivity is still not re-
solved, and is subject of intense debates. Although it is
widely believed that magnetic fluctuations play a domi-
nant role in the pairing mechanism,11 oxygen isotope ef-
fect (OIE) studies indicate that lattice degrees of freedom
are essential for the occurence of superdonductivity.12–20

By means of isotope substitution one can probe the in-
fluence of lattice degrees of freedom on superconductiv-
ity without changing the lattice parameters.21 There are
no other easily accessible methods which allow to solely
modify the exchange integral J , in order to investigate
its influence on the superconducting state.22 However,
the application of hydrostatic pressure changes the in-
teratomic distances in the lattice which in turn modifies
both the lattice dynamics23 and the exchange coupling J
between the Cu spins in cuprates.24,25 Therefore, a de-
tailed study of the pressure effect (PE) on the supercon-
ducting properties, e.g., the superfluid density ρs ∝ 1/λ2,
the gap magnitude ∆0, and the BCS ratio ∆0/kBTc, may
provide important information for testing microscopic
theories of the high-temperature superconductivity.26,27

Up to now, the PE on the superconducting transi-
tion temperature Tc was studied by resistivity and Hall
effect experiments.28–31 Several phenomenological28,32,33

and microscopic models were proposed based on a
Hubbard34,35 or a general BCS approach in order to ex-
plain the PE on Tc.

36 The role of nonadiabatic effects
is discussed in Ref. 37. These models suggest two ba-
sic sources for the PE on Tc: (i) A charge transfer from
the charge reservoir to the superconducting CuO2 plane,
which was confirmed by Hall effect experiments,30,31 and
(ii) an increase of Tc due to a pressure dependent pairing
interaction.

The magnetic penetration depth λ is a fundamen-
tal parameter of a superconductor. It is a measure of
the superfluid density according to the relation 1/λ2 ∝
ns/m

∗, where ns is the superconducting carrier dan-
sity and m∗ is the corresponding effective mass.5 From
the temperature or field dependence of λ one can de-
termine the symmetry of the superconducting gap, its
magnitude and the BCS ratio. The pressure dependence
of λ was previously studied in fine powdered grains of
YBa2Cu3Ox

38 and YBa2Cu4O8
39–41 by means of mag-

netization experiments. The µSR technique is powerful
and direct method to determine λ in the bulk of a type-
II superconductor.42,43 However, due to several technical
difficulties only a small amount of µSR studies of the
penetration depth under pressure were performed so far.
The main technical problems are: (i) The low fraction of
muons stopping in the sample inside the pressure cell and
(ii) the strong diamagnetism of a superconductor which
substantially influences the µSR response of the pressure
cell.

Here, we report on pressure dependent magnetic pen-
etration depth studies in polycrystalline samples of
YBa2Cu3Ox (x = 6.45, 6.6, 6.8, and 6.98) by means of
µSR. We found that the pressure-dependent superfluid
density ρs ∝ 1/λ2 vs Tc does not follow the Uemura
relation.6 The ratio αp = (∂Tc/∂P )/(∂ρs/∂P ) is a fac-
tor ≃ 2 smaller than that of the Uemura relation, but is
quite close to that found in oxygen isotope effect (OIE)
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studies,16,17 suggesting a strong influence of pressure on
the lattice degrees of freedom. Interestingly, a small pres-
sure dependence of the superluid density was also found
in the overdoped sample (x = 6.98). The superconduct-
ing gap ∆0 and the BCS ratio ∆0/kBTc both increase
upon increasing the hydrostatic pressure in the under-
doped samples, hence implying an increase of the cou-
pling strength with pressure. Finally, a method of data
analysis for tranverse-field µSR measurements of mag-
netic/diamagnetic samples loaded in a pressure cell is
presented and applied here. This method leads to a sub-
stantial reduction of systematic errors in the data analy-
sis.
The paper is organized as follows: In Sec. II we give

some experimental details. In Sec. III we describe the
method of µSR data analysis and present the experimen-
tal results, followed by a discussion in Sec. IV. The con-
clusions are given in Sec. V. In the Appendix we describe
the method used in this work in order to analyze µSR
spectra obtained for a magnetic/superconducting sample
loaded in a pressure cell.

II. EXPERIMENTAL DETAILS

High quality polycrystalline YBa2Cu3Ox samples with
x = 6.98, 6.8, 6.6, and 6.45 were prepared from the
starting oxides and carbonate Y2O3, CuO and BaCO3

as described elsewhere.44 Transverse field (TF) µSR ex-
periments were performed at the µE1 and πM3 beam
lines of the Paul Scherrer Institute (Villigen, Switzer-
land). The samples were cooled in TF down to 3K, and
µSR spectra were taken with increasing temperature in
applied fields Bapp = 0.1 and 0.5 T. Typical statistics
for a µSR spectrum were 5 − 6 × 106 positron events in
the forward and the backward histograms.42,43 A CuBe
piston-cylinder pressure cell was used with Daphne oil
as a pressure transmitting medium. The maximum pres-
sure achieved was 1.4 GPa at 3 K. The pressure was
measured by tracking the superconducting transition of
a very small indium plate used as a manometer (cali-
bration constant for In: ∂Tc/∂P = −0.364 K/GPa). In
order to avoid charge transfer effects due to chain reorder-
ing in pressurized YBa2Cu3Ox, the samples were cooled
down below 100 K for the µSR measurements within less
than 1 hour after application of the pressure. This time
is much shorter than the time constant τ = 27.7 h (at
room temperature) for the pressure activated chain re-
ordering process.45 Below 100 K τ is much longer than
the typical measurement time of a sample (< 24 h).45

High energy muons (pµ ≃ 100 MeV/c) were implanted
in the sample. Forward and backward positron detectors
with respect to the initial muon polarization were used
for the measurements of the µSR asymmetry time spec-
trum A(t) (see Fig. 8).42 Cylindrically pressed samples
were loaded into the cylindrical CuBe pressure cell. The
sample dimensions (diameter 5 mm, height 15 mm) were
chosen to maximize the filling factor of the pressure cell.
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FIG. 1: (Color online) µSR asymmetry signal A(t) of
YBa2Cu3O6.98 measured at T = 4.5 K and 95 K in an ap-
plied field Bapp = 0.1 T (empty and full circles, respectively).
The fast relaxation of the µSR signal (empty circles) is due to
the formation of a vortex lattice in the superconducting state.
The solid lines are fits of the data to Eq. (1). For a better
visualization the spectra and the fits are shown in a rotating
reference frame of 0.08 T.

The fraction of the muons stopping in the sample was
approximately 40%.

III. RESULTS AND ANALYSIS DETAILS

For type-II superconductors in the vortex state in an
applied field of Bapp ≪ Bc2 (Bc2 is the upper criti-
cal field) the square root of the second moment of the
muon depolarization rate σ is inversely proportional to
the square of the magnetic penetration depth: σ ∝ 1/λ2

(Refs. 4,46,47) and therefore directly related to the su-
perfluid density: ρs ∝ 1/λ2 ∝ σ. For a polycrystalline
sample of a highly anisotropic and uniaxial superconduc-
tor the dominant contribution to the muon depolariza-
tion originates from the in-plane magnetic penetration
depth λab = λeff/1.31, where λeff is an effective (aver-
aged) magnetic penetration depth.48,49

As was pointed above a substantial fraction of the
µSR asymmetry signal originates from muons stopping in
the CuBe material surrounding the sample. The sample
in the superconducting state induces an inhomogeneous
field in its vicinity (see Appendix). This leads to an ad-
ditional depolarization of the µSR signal arising from the
muons stopping in the pressure cell. Therefore, the µSR
asymmetry time spectra are characterized by two compo-
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nents and may be described by the following expression:

A(t) =A1 · exp

(

−
1

2
(σ2 + σ2

n)t
2

)

cos(γµB1t+ φ)+ (1)

A2 · exp

(

−
1

2
σ2
pct

2

)
∫

P (B′) cos(γµB
′t+ φ)dB′.

Here, A1 and A2 are the initial asymmetries of the two
components of the µSR signal (A1: sample, A2: pres-
sure cell), γµ is the gyromagnetic ratio of the muon
(γµ = 2π × 135.5342 MHz/T), and φ is the initial phase
of the muon spin polarization. B1 is the field in the
center of the sample (or approximately the mean field
in the sample). The parameter σ denotes the muon de-
polarization in the sample due to the field distribution
created by the vortex lattice, while σn = 0.10(2) µs−1

is a temperature, doping, and pressure independent de-
polarization rate due to the nuclear moments present
in the sample. The temperature independent quantity
σpc = 0.27 µs−1 describes the muon-spin depolarization
due to the nuclear moments in CuBe. The total asymme-
try is A1 + A2 = 0.275 at 0.1 T and 0.265 at 0.5 T with
A1/(A1 + A2) ≃ 0.4 (≃ 40% of the muon ensemble are
stopping inside the sample). P (B′) represents the mag-
netic field distribution probed by the muons stopping in
the pressure cell as described in detail in the Appendix.
Figure 1 exhibits µSR asymmetry time spectra of

YBa2Cu3O6.98 above (T = 95 K) and below (T = 4.5 K)
the superconducting transition temperature Tc = 89.6 K
obtained in an applied field of 0.1 T. For a better visu-
alization the spectra and the fits are shown in a rotating
reference frame of 0.08 T. Above Tc only a weak depo-
larization of the muon spin polarization is visible,5 while
below Tc the strong relaxation of the µSR signal reflects
the formation of the vortex lattice in the superconduct-
ing state.3,5,7,43,46 Figures 2a, b, and c show the Fourier
transforms (FT) of the µSR time spectra shown in Fig.
1. In Fig. 2d the FT spectra of YBa2Cu3O6.6 below
and above Tc = 60 K are also shown. The narrow sig-
nal around Bapp = 0.1 T in Fig. 2b originates from the
pressure cell, while the broad signal with a first moment
significantly lower than Bapp arises from the supercon-
ducting sample. It can be seen that the signal of the
pressure cell is also modified below Tc due to the dia-
magnetic response of the superconducting sample. The
solid lines are the FTs of the fits to the data using Eq. (1)
(see also Appendix). The good agreement between the
fits and the data demonstrates that the model used here
describes the data rather well. The fit of the data for
YBa2Cu3O6.98 measured at T = 5 K, Bapp = 0.1 T
and zero pressure with Eq. (1) yields σ = 4.75(15) µs−1.
In order to test the results obtained with Eq. (1), we
performed measurement of the very same YBa2Cu3O6.98

sample at Bapp = 0.1 T and T = 5 K using the low back-
ground spectrometer without pressure cell (GPS, πM3
beamline at PSI, Switzerland). This measurements was
analyzed with an equation50 similar to Eq. (1) resulting
in σ = 4.60(7) µs−1 which is in good agreement with the
result obtained above.
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FIG. 2: (Color online) Fourier transform (FT) amplitude as
a function of field for the spectra shown in Fig. 1 [panels (a),
(b), and (c)]. Panel (b) is the expanded [along y−axis] view of
panel (a) to show the signal from the sample. Panel (c) is the
expanded [along x−axis] view of panel (a) to show the signal
of the pressure cell. Panel (d) shows the FT of the sample
with x = 6.6 below and above Tc = 60 K. The solid lines are
the FTs of the fitted curves shown in Fig. 1. The FT spectra
are slightly broadened due to a FT apodization of 4 µs−1.

The whole temperature dependence of the µSR asym-
metry time spectra was fitted globally with the common
parameters Bapp, A1, A2, and σn. Solely the parameters
B1 and σ were considered as temperature dependent free
parameters. As shown in the Appendix the field in the
sample is macroscopically inhomogeneous due to the in-
homogeneity of demagnetization effects. B1 is the field
at the point x = y = z = 0 (i.e., the center of the sam-
ple). In addition, the parameters describing the muon
stopping distribution x0,i and σi were kept the same for
each temperature scan (see Eqs. (A.3) and (A.4) in the
Appendix).

The temperature dependence of the depolarization
rates σ for x = 6.98, 6.8, 6.6, and 6.45 at Bapp = 0.1
and 0.5 T obtained with Eq. (1) are shown in Figs. 3
and 4, respectively. The black empty points correspond
to the data measured at zero pressure, while the full red
points correspond to the data measured at 1.1 GPa (for



4

TABLE I: Summary of the results obtained from the temper-
ature dependence of σ at 0.1 and 0.5 T in YBa2Cu3Ox using
Eq. (2). Note that for the sample with x = 6.45 a precise
analysis of σ was not possible due to the occurrence of spin-
glass magnetism below T ≃15 K. Hence, the errors of these
values of σ(0) are rather large.

x P Bapp Tc σ(0) ∆0 Γu

(GPa) (T) (K) (µs−1) kBTc (K)

6.98 0 0.1 89.6(4) 4.76(7) 3.87(12) 15(5)
6.98 1.4 0.1 89.5(4) 4.97(7) 3.60(7) 15(5)
6.98 0 0.5 90.0(2) 4.56(7) 2.95(10) 15(5)
6.98 1.4 0.5 89.9(1) 4.72(7) 2.82(7) 15(5)

6.8 0 0.1 77.1(3) 2.07(5) 3.02(12) 0
6.8 1.1 0.1 83.2(5) 2.33(5) 3.48(15) 0
6.8 0 0.5 76.4(3) 1.91(5) 2.59(9) 0
6.8 1.1 0.5 82.3(5) 2.19(5) 2.80(8) 0

6.6 0 0.1 58.9(6) 1.79(5) 3.02(12) 0
6.6 1.1 0.1 62.6(5) 1.95(5) 3.27(12) 0
6.6 0 0.5 57.3(6) 1.58(5) 2.92(12) 0
6.6 1.1 0.5 62.3(6) 1.77(5) 2.89(11) 0

6.45 0 0.1 45.4(3) 1.17(7) 3.0(5) 0
6.45 1.1 0.1 49.5(5) 1.22(7) 3.0(5) 0
6.45 0 0.5 45.1(2) 1.00(7) 2.5(2) 0
6.45 1.1 0.5 48.7(2) 1.14(7) 2.5(2) 0

x = 6.45, 6.6, and 6.8) and 1.4 GPa (for x = 6.98).
The values of Tc and σ(0) are in good agreement with
previous results.5,6,8,9 It is known that the order param-
eter in YBa2Cu3O6.98 has predominantly the form of

∆ = ∆0(p̂2x − p̂2y) [p̂i = pi/|~p| denotes component of the
unit momentum vector in the reciprocal space along the
i-th axis].11,51,52 This implies a linear temperature de-
pendence of the superfluid density ρs down to very low
temperatures due to quasiparticle excitations at the gap-
less line nodes in the p̂x = ±|p̂y| directions on the Fermi
surface.43 However, in Fig. 3 we clearly see that σ(T )
tends to saturate at low temperatures for YBa2Cu3O6.98

for both applied magnetic fields. Such a behavior was of-
ten observed in µSR studies of polycrystalline samples3,7

and was explained as originating from a strong scatter-
ing of electrons on impurities.53–57 This scattering can
strongly influence the temperature dependence of ρs, but
it has a minor effect on the superconducting transition
temperature Tc. In previous theoretical works it was sug-
gested that such a behavior indicates scattering in the
unitary limit.55,56 Thus, the temperature dependence of
the superfluid density ρs was analyzed with the“dirty d-
wave model” of the BCS theory in the unitary limit of
carrier scattering as described in Ref. 53:

ρs ∝
1

λ2ab
=

4πe2Nf (v
ab
f )2

c2

∫ 2π

0

dφ

2π

∞
∑

n=0

|∆(φ)|2

(ǫ̃2n + |∆(φ)|2)3/2
.

(2)

Here, λab is the in-plane magnetic penetration depth,
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FIG. 3: (Color online) (a) Temperature dependence of σ of
YBa2Cu3Ox measured at Bapp = 0.1 T at zero and applied
hydrostatic pressures for x = 6.45 (♦: P = 0 GPa; �: P = 1.1
GPa), x = 6.6 (▽: P = 0 GPa; H: P = 1.1 GPa), x = 6.8
(△: P = 0 GPa; N: P = 1.1 GPa), and x = 6.98 (◦: P =
0 GPa; •: P = 1.4 GPa). The data were analyzed with
Eq. (1). The solid curves are fits to the data with Eq. (2).
(b) Diamagnetic shift of the field ∆B = B1 − Bapp in the
corresponding samples. B1 is the mean field in the centrer of
the sample (see text and Appendix).

∆(φ) = ∆0 cos(2φ) · g(t) (t = T/Tc) is the 2D-gap-
function, and ǫ̃n = Z(ǫn)ǫn are impurity renormalized
Matsubara frequencies: ǫn = (2n+1)πT . ∆0 is the max-
imum of the gap function on the Fermi surface and g(t)
represents the temperature dependence of the gap with
g(0) = 1. The parameters Nf and vf are the density of
states at the Fermi level and the Fermi velocity, respec-
tively. The constant e and c represent the electron charge
and the speed of light. The coefficients Z(ǫn) are:

53

Z(ǫn) = 1 + Γu
Dn(ǫn)Z(ǫn)

cot2(δ0) + [Dn(ǫn)ǫnZ(ǫn)]2
, (3)

with

Dn(ǫn) =

〈

1
√

Z(ǫn)2ǫ2n + |∆(pf )|2

〉

pf

, (4)

and δ0 = π/2 in the unitary limit. The angular brackets
〈...〉pf

denote averaging over the Fermi surface. In order
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FIG. 4: (Color online) Temperature dependence of σ of
YBa2Cu3Ox measured at Bapp = 0.5 T. The meaning of the
symbols and the solid lines are the same as in Fig. 3(a).

to find Z(ǫn) and g(t), Eq. (3) is solved together with
the following equation:53

1

2πT

{

ln

(

T

Tc

)

+ ψ

(

1

2
+

Γu

2πT

)

− ψ

(

1

2
+

Γu

2πTc

)}

=

(5)
∞
∑

n=0

[

〈

|e(pf )|
2

(Z(ǫn)2ǫ2n + |∆(pf )|2)3/2

〉

pf

−
1

ǫn + Γu

]

.

Here, ψ(x) is the digamma function. Note that the im-
purity scattering influences mainly ǫn while the temper-
ature dependence of the gap g(t) changes only slightly
for a reasonable scattering rate Γu. In the clean limit
(i.e., Γu = 0 and Z(ǫn) = 1, ∀n) the normalized func-
tion g(t) is very close to the analytical approximations
derived from BCS theory.58

Fits of Eq. (2) to σ(T ) ∝ 1/λab(T )
2 measured at var-

ious hydrostatic pressures are presented in Figs. 3 and
4. The corresponding values for ∆0, Tc, σ0, and Γu ob-
tained from the analysis are summarized in Table I. The
data for zero and applied pressure and the same doping
x were analyzed simultaneously with the common pa-
rameter Γu which characterizes the relaxation rate of the
Cooper pairs on impurities. As shown in Table I the data
for the underdoped samples (x = 6.45, 6.6, and 6.8) are
well described by the clean limit d-wave model, while for
the overdoped sample (x = 6.98) Γu = 15(5) K. Here, we
note that all the studied samples originate from the same
batch and have an identical thermal history, except of the
last process of the oxygen reduction. Therefore, we can-
not explain why only the sample with x = 6.98 exhibits
a saturation of σ in the low temperature limit and why
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FIG. 5: (Color online) Tc vs. σ(0) (Uemura plot) at zero and
applied pressure for YBa2Cu3Ox with x = 6.45, 6.6, 6.8, and
6.98. The solid line is the Uemura line while the dashed line
is a guide to the eye. The dotted lines represent the pressure
effect on Tc and σ(0).

TABLE II: Values of αp = (∂Tc/∂P )/(∂σ/∂P ) for the un-
derdoped YBa2Cu3Ox samples investigated in this work (x =
6.45, 6.6, and 6.8).

x αp (K/µs−1) αp (K/µs−1)
0.1 T 0.5 T

6.45 – 25(18)
6.6 23(11) 26(6)
6.8 23(7) 21(6)

it has such a high scattering rate Γu = 15(5) K. Con-
sequently, we cannot exclude the possibility of a modifi-
cation of the order parameter in overdoped YBa2Cu3Ox

where the pseudogap state gradually vanishes. Such a be-
havior was also observed previously in optimally doped or
overdoped polycrystalline samples of YBa2Cu3Ox.

3,5,7,8

However, in single crystal YBa2Cu3Ox close to optimum
doping a linear temperature dependence of 1/λ2 at low
temperatures was also reported.10,43 For the sample with
x = 6.45 only the data above 15 K were analyzed, since
below 15 K the occurrence of field induced spin-glass
magnetic order hinders a precise determination of σ.

IV. DISCUSSION

The main subject of the present study is the pres-
sure effect on the superconducting gap ∆0 and the su-
perfluid density ρs ∝ σ. The Uemura relation6, imply-
ing the linear relation between Tc and ρs for underdoped



6

0 20 40 60 80
0

50

100

150

200

250

300

350

x=6.98

x=6.8
x=6.6

 0 GPa, 0.1 T

 1.1 GPa, 0.1 T

 0 GPa, 0.5 T

 1.1 GPa, 0.5 T

 

∆ 0/k
B
 (

K
)

 

T
C
  (K)

∆
0
/k

B
T

C
 = 3.0

FIG. 6: (Color online) Relation between ∆0 and Tc for
YBa2Cu3Ox with x = 6.6, 6.8, and 6.98. The solid line corre-
sponds to ∆0/kBTc = 3 (weak-coupling BSC superconductor:
∆0/kBTc = 1.76). Both ∆0 and ∆0/kBTc increase with in-
creasing pressure.

1.5 2.0 2.5
100

150

200

250

300

σ(0) (µs
-1
)

 0 GPa, 0.1 T

 1.1 GPa, 0.1 T

 0 GPa, 0.5 T

 1.1 GPa, 0.5 T

 

 

∆ 0/k
B
   

(K
)

FIG. 7: (Color online) The gap ∆0 as a function of σ(0) for
the underdoped samples of YBa2Cu3Ox with x = 6.6 and 6.8.
The linear relation between σ(0) and ∆0 is better fulfilled
under hydrostatic pressure than the Uemura relation Tc vs
σ(0) and ∆0/kBTc vs. Tc (see Figs. 5 and 6). The line is a
guide to the eye.

cuprate superconductors, was established soon after the
discovery of HTS1 and is one of the important crite-
ria which a microscopic theory of HTS should explain.
The Uemura relation for the data summarized in Ta-
ble I is shown in Fig. 5. As indicated by the dotted
lines the slope αp = (∂Tc/∂P )/(∂σ/∂P ) is systemati-

cally smaller than that suggested by the Uemura line
with αU = ∂Tc/∂σ ≃ 40 K/µs−1. The values of αp

for the underdoped samples investiganted in this work
are summarized in Table II. Note that due to mag-
netism below ∼ 15 K the error of σ(0) for the sam-
ple with x = 6.45 is rather large. The weighted mean
value of αp ≃ 23(4) K/µs−1 is a factor of ≃ 2 smaller
than αU ≃ 40 (Kµs−1). Such a substantial deviation
from the Uemura line (with a lower value of αp) was
also observed by pressure experiments in YBa2Cu4O8 us-
ing a magnetization technique.39 This is in contrast to
pressure effect results obtained for the organic supercon-
ductor κ-(BEDT-TTF)2Cu(NCS)2 which follow the Ue-
mura relation.59 Interestingly, a slope with a factor two
smaller than that of the Uemura line was also found by
OIE studies of cuprate superconductors.16 This suggests
a strong influence of pressure on the lattice dynamics.
It is known that the pressure dependence of the super-
conducting transition temperature is determined by two
mechanisms: (i) The pressure induced charge transfer to
CuO2 planes ∆nh and (ii) the pairing interaction Veff
which depends on pressure.28,32–37,60

For the underdoped samples the former mechanism
dominates (85-90%) the pressure effect on Tc.

28,32,36

Therefore, one can separate the pressure effect on σ
also in two components ∆σ = ∆σch + ∆σV . The first
term ∆σch ≃ (1/αU )(∂Tc/∂P )P follows the Uemura line
and is mainly due to the charge transfer to the plane.
The second term ∆σV ≃ (1/αp − 1/αU)(∂Tc/∂P )P de-
scribes the increase of the superfluid density solely due
to a change of the pairing interaction. This increase
of the superfluid density is equivalent to a decrease of
the effective mass of the superconducting carriers, since
∆σV /σ = ∆λ−2

V /λ−2 = −∆m∗

V /m
∗.39 Therefore, the

pressure-induced change of the effective carrier mass can
be written as:

d ln(m∗

V )/dP = −d ln(λ−2
V )/dP ≡ −(∆σV /σ)/∆P (6)

≃ (αU/αp − 1)(∂Tc/∂P )/Tc

≃ 3/Tc GPa−1.

Here, Tc and σ are taken at zero pressure and the value
of (∂Tc/∂P ) ≃ 4 K/GPa was used. This value is prac-
tically doping independent in underdoped YBa2Cu3Ox

for 6.45 ≤ x ≤ 6.8.32 The quantity ∆λ−2
V describes the

change of the superfluid density solely due to a modi-
fication of the pairing interaction Veff by pressure. It
is remarkable to observe the qualitative agreement be-
tween d ln(λ−2

V )/dP and that found in OIE studies for
d lnλ/d lnMO at different carrier dopings (d lnMO is the
relative change of oxygen mass).16 Indeed, Eq. (6) pre-
dicts that the pressure effect on m∗V strongly increases
with decreasing Tc.
Another interesting result is the quite small pressure

dependence of σ in the overdoped sample with x = 6.98,
which is approximately a factor of ≃ 2 weaker than that
reported from magnetization measurements.38 In Fig. 6
the gap magnitudes ∆0 for the samples with x = 6.6, 6.8,
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and 6.98 are plotted as a function of Tc. For the under-
doped samples (x = 6.6 and 6.8) both ∆0 and ∆0/kBTc
increase upon increasing applied pressure. This suggests
an increase of the coupling strength with increasing pres-
sure. This behavior is different from that found for the
OIE on ∆0, where a proportionality between ∆0 and Tc
was found, implying a constant ratio of ∆0/kBTc.

18 In
the overdoped sample (x = 6.98), Eq. (2) suggests a
small reduction of the coupling strength with increasing
pressure. However, as was mentioned above, the absence
of a linear temperature dependence of σ at low temper-
atures for the sample with x = 6.98 might also indicate
that the superconducting order parameter is not of purely
d-wave character.51,52 This, on the other hand, may in-
fluence the result for ∆0 and its pressure dependence.

In Fig. 7 for the underdoped samples (x = 6.6 and 6.8)
∆0 is plotted vs. σ(0), showing a linear correlation be-
tween the two quantities. Note, that this correlation does
not change with the application of hydrostatic pressure.
This is in contrast to what is observed for the Uemura
relation Tc vs. σ(0) and ∆0/kBTc vs. Tc (see Figs. 5 and
6).

V. CONCLUSIONS

The pressure dependence of the magnetic penetration
depth λ of polycrystalline YBa2Cu3Ox (x = 6.45, 6.6,
6.8, and 6.98) was studied by µSR. The pressure de-
pendence of the superfluid density ρs ∝ σ ∝ 1/λ2 as
a function of the superconducting transition Tc temper-
ature does not follow the well-known Uemura relation.6

The ratio αp = (∂Tc/∂P )/(∂σ/∂P ) ≃ 23(4) K/µs−1 is a
factor of ≃ 2 smaller than that of the Uemura relation
observed for underdoped samples. However, the value of
αp is quite close to that found in OIE studies,16 indicat-
ing a strong influence of pressure on the lattice degrees
of freedom. We conclude that the contribution of car-
rier doping to the pressure dependence of λ is similar to
the OIE on λ. A weak pressure dependence of the su-
perfluid density ρs was found in the overdoped sample
(x = 6.98). The superconducting gap ∆0 and the BCS
ratio ∆0/kBTc both increase with increasing applied hy-
drostatic pressure in the underdoped samples, implying
an increase of the coupling strength with pressure. Al-
though the Uemura relation does not hold and the BCS
ratio is increasing with pressure in underdoped samples,
the relation between ∆0 and the µSR relaxation rate σ
is invariant under pressure. Finally, a model to analyze
TF µSR spectra of magnetic/diamagnetic samples loaded
into a pressure cell was developed and successfully used
in this paper (see Appendix), resulting in a substantial
reduction of the systematic errors in the data analysis.
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Appendix: Field distribution in a pressure cell

loaded with a sample with a non-zero magnetization

Samples with a strong magnetization placed in a pres-
sure cell with an applied magnetic field induce a mag-
netic field in the space around the sample. Typical ex-
amples of such samples are superconductors (strong dia-
magnets), superparamagnets, and ferro- or ferrimagnets.
Thus, muons stopping in a pressure cell (PC) contain-
ing the sample will undergo precession in the vector sum
of the applied field and the field induced by the sample.
This spatially inhomogeneous field leads to an additional
depolarization of the muon spin polarization which de-
pends on the applied field and the induced field together
with the spatial stopping distribution of the muons.
Consider the most simplest case of a sample with the

shape of a round cylinder of heightH and radius R placed
into a cylindrical pressure cell with the same internal ra-
dius R (Fig. 8a). Typical pressure cell radii used for µSR
studies are R = 2.5 - 4 mm. In standard transverse field
(TF) µSR experiments the pressure cell is placed with the
cylinder axis oriented vertically while the magnetic field
is applied perpendicular to the cylinder axis of the pres-
sure cell and the muon beam direction (see Fig. 8). Let
us introduce a cartesian coordinate system with the y-
axis along the sample cylinder axis, and the z-axis along
the direction of the applied field. Thus, the x-axis is
along the initial muon beam direction which is perpen-
dicular to the forward and backward detector planes (see
Fig. 8). The origin of the coordinate system is located in
the center of the sample.
In an applied magnetic field H (along the z-direction)

the sample has a magnetization M. This magnetization
is the source of an induced fieldH

′(r). Let us assume that
H

′ is much weaker that the applied field H which is the
case for superconductors in a magnetic field of µ0H ≫
Bc1 (Bc1 is the first critical field). Thus, one can neglect
the spatial variation of the magnetization due to the ad-
ditional induced field: M = M(H + H ′(r)) ≃ M(H).
Typically half (or even more) of all the muons are stop-
ping in the PC outside of the sample volume. The muons
stopping in the macroscopically inhomogeneous field of
the PC contribute to an additional relaxation of the µSR
signal. In order to describe the total µSR time spectrum
(sample and PC) one has to model the field distribu-



8

FIG. 8: (Color online) (a) Schematic sketch of the µSR pres-
sure instrument GPD at the Paul Scherrer Institute: Cylin-
drical sample (blue); pressure cell (yellow); muon stopping
distribution (red ellipse), and forward and backward positron
detectors (black). (b) Illustration of the surface current on
a slice of a homogeneously magnetized cylindrical sample.
The magnetic field induced by this slice is equivalent to the
magnetic field of the surface currents. (c) Cross section of
the cylindrical sample and the surface current distribution in
xz−plane. (d) Magnetic field map of the surface currents as
illustrated in panels (b) and (c).

tion H
′(r). For an applied field H ≫ H ′(r) one can ne-

glect the influence of H ′

x(r) and H
′

y(r) on the µSR time
spectrum, since only the z-component H ′

z(r) contributes
significantly to the muon depolarization. The induced
magnetic field H

′(r) created by a cylindrical sample can
be calculated as follows:61

H
′(r) =

1

4π

∫

V

[

3(M · (r− r
′))(r− r

′)

|r− r′|5
−

M

|r− r′|3

]

dr′

(A.1)
Here, the integral is taken over the sample volume V.
For a sample with a constant magnetization the three-
dimensional integral can be replaced by surface integrals.
Let us take one slice of width dz out of the sample cylin-
der and divide it into many small squares dA = dxdy (see
Fig. 8b). The field created by the elementary cell of vol-
ume dV = dxdydz with magnetization M is equivalent
to the field created by the current Iz = Mdz circulating
within this square slice as shown in Fig. 8a. It is obvious
that integration of this field over the whole slice volume
will leave only a current Iz flowing over the perimeter of
the slice. The total field of the cylinder is the integral of
the fields created by these slices with constant current Iz
(see Figs. 8b and c).

According to the law of Bio-Savart the field in a point
r created by the elementary currents Idℓ at the surface

FIG. 9: (Color online) (a) Contour plot of the field distribu-
tion H ′

z(y, z) in the yz−plane for a cylindrical sample with
R = 2.5 mm and H = 15 mm (the geometry of the sample
used in the experiment). (b) Contour plot of the muon stop-
ping distribution in the yz−plane. The gray area on the top
of the sample corresponds to the empty pressure cell space
where no muons stop (this space is filled with a low-density
pressure transmission medium). The dashed line indicates
the sample space. (c) Magnetic field profile of H ′

z along the
y−axis and (d) magnetic field profile of H ′

z along the z−axis.

of the cylinder (with coordinates rs) is:
61

H
′(r) =

∮

S

I

4π

[dℓs × (r− rs)]

|r− rs|3
. (A.2)

The integration is taken over the surface S of the sam-
ple and dℓs is the elementary length on the surface with
its direction along the current (the subscript s denotes
quantities related to the surfaces of the sample.
The spacial magnetic field distribution around the

ferro/paramagnetic sample calculated with Eq. (A.2) in
x-z plane is shown in Fig. 8d. The total field in the
pressure cell is the vector sum of this field and the homo-
geneous external field. It is obvious from the figure that
the field along the z-axis is higher(lower) than the exter-
nal field in a ferromagnet(diamagnet). Along the x-axis,
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on the other hand, the field is lower(higher) than the ex-
ternal field in a ferromagnet(diamagnet). The maximal
(minimal) induced field in the PC are just on the border
of the sample/pressure cell along z (x) direction. Note
that demagnetization effects are naturally accounted for
by using Eq. (A.2). Since the sample is not elliptical
this leads to field inhomogenieties within the volume of
the sample (see Fig. 9). As an example Fig. 9 shows the
magnetic field distribution in the yz−plane for a cylin-
drical sample with H = 15 mm and radius R = 2.5
mm, together with fields along z− and y−axes calcu-
lated with Eq. (A.2). Due to demagnetization effects the
magnetic field profiles within the sample has peaks at
the top and bottom edges of the sample where the de-
magnetizing fields are minimal (Fig. 9c). On the other
hand, the field profile within the sample close to the cen-
ter is quite homogeneous, since a cylinder with infinite
height H is equivalent to an ellipsoid in which the field
is homogeneous.
In order to calculate the probability field distribution

of a sample in a PC with a substantial first moment a
model for the muon stopping distribution is required.
This distribution may be well approximated by a three-
dimensional Gaussian:62

Ps(x1, x2, x3) =
A

(2π)3/2

3
∏

i=1

1

σi
exp

(

−
(xi − x0,i)

2

2σ2
i

)

,

(A.3)
where the subscripts i = 1, 2, 3 correspond to x, y, or
z, respectively. The quantities x0,i determine the mean
value of the muon stopping distribution, σi are corre-
sponding standard deviations, and A is the normalization
factor. The quantities x0,1, x0,2, and x0,3 can be deter-
mined quite accurately before starting the experiment
by tuning the momentum of the muon beam and vertical
positioning of the sample. For a sample with nearly the
same density as the pressure cell x0,1 ≃ x0,2 ≃ x0,3 ≃ 0.
Simulations of the stopping distribution with the SRIM
software62 yield σ1 = 0.875 mm for copper (the basic
component of the CuBe pressure cell) and the minimal
ratio of σ3/σ1 = 3.36. A maximal ratio of σ3/σ1 ≃ 4 is
estimated for the muon beam collimated by a 4× 10 mm
collimator (this uncertainty is related with the degree of
muon beam focusing). The parameter σ2 is in fact the
standard deviation of the function representing the con-
volution of a Gaussian with σ = σ3 over the collimator
profile function along the y-axis. These parameters de-
fine the fraction of muons stopping in the PC and the
sample for a given sample geometry. For a known Ps(r)
one can calculate the magnetic field probability distribu-
tion P (B) in the pressure cell by solving the integral:

P (B) =

∫

x2+z2>R2

Ps(r)δ(B − µ0[H +H ′

z(r)])dr. (A.4)

Here, δ(x) is the delta function. The integration is taken
over the volume of the pressure cell. Note that this is not
simply the probability field distribution in the pressure

cell, but it is weighted with the muon stopping probabil-
ity distribution Ps(x, y, z). Fits of P (B) to the experi-
mental µSR data are shown in Fig 2. The correspond-
ing temperature dependent parameters for Bapp = 0.1 T
are shown in Fig. 3. The analysis leads to the follow-
ing temperature independent parameters for the muon
stopping distribution: x0,1 = 0 mm, x0,2 = 1.7 mm,
x0,3 = 0.03 mm, σ1 = 0.875 mm (this parameter was
fixed), σ2 = 3.1 mm, and σ3 = 3.0 mm. These results are
in good agreement with the simulated62 and partly mea-
sured spatial muon stopping distributions. The function
P (B) describes the experimentally measured µSR signal
rather well.
Below we summarize the influence of a magnetized

sample in a pressure cell on the µSR spectrum. As obvi-
ous from Fig. 2 the main influence of the sample is the
broadening of the field distribution in the pressure cell
with a characteristic shape P (B). This broadening is di-
rectly proportional to the magnetization of the sample
µ0M or to Bapp − B1 ≃ (1 − N)µ0M (N is the demag-
netization factor which is approximately constant in the
central part of the sample). In addition, the mean value
of P (B) for a superconductor (ferromagnet) decreases
(increases) proportionally to Bapp −B1.
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Rossel, B. Pümpin, H. Keller, W. Kündig, T. Krekels, and
G. Van Tendeloo, J. Less-Common Met. 164, 31 (1990).

30 I.D. Parker and R.H. Friend, J. Phys. C 21, L345 (1988).
31 C. Murayama, Y. Iye, T. Enomoto, N. Mori, Y. Yamada,

T. Matsumoto, Y. Kubo, Y. Shimakawa, and T. Manako,
Physica C 183, 277 (1991).

32 R.P. Gupta and M. Gupta, Phys. Rev. B 51, 11760 (1995).
33 J.J. Neumeier and H.A. Zimmermann, Phys. Rev. B 47,

8385 (1993).
34 G.G.N. Angilella, R. Pucci, and F. Siringo, Phys. Rev. B

54, 15471 (1996).
35 E.V. L. de Mello and C. Acha, Phys. Rev. B 56, 466 (1997);

Physica (Amsterdam) 265B, 142 (1999).
36 X.J. Chen, H.Q. Lin, and C.D. Gong, Phys. Rev. Lett. 85,

2180 (2000).
37 S. Sarkar, Phys. Rev. B 57, 11661 (1998).
38 D. Di Castro, R. Khasanov, A. Shengelaya, K. Conder,

D.-J. Jang, M.-S. Park, S.-I. Lee, and H. Keller, J. Phys.:
Condens. Matter 21, 275701 (2009).

39 R. Khasanov, J. Karpinski, and H. Keller, J. Phys.: Con-
dens. Matter 17, 2453 (2005).

40 R. Khasanov, T. Schneider, R. Brütsch, D. Gavillet, J.
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