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We calculate the contribution of superconducting fluctuations to the mesoscopic persistent current
of an ensemble of rings, each made of a superconducting layer in contact with a normal one, in the
Cooper limit. The superconducting transition temperature of the bilayer decays very quickly with
the increase of the relative width of the normal layer. In contrast, when the Thouless energy is larger
than the temperature then the suppression of the persistent current with the increase of this relative
width is much slower than that of the transition temperature. This effect is similar to that predicted
for magnetic impurities, although the proximity effect considered here results in pair-weakening as
opposed to pair-breaking.

I. INTRODUCTION

The average persistent current1,2 of a large number of
mesoscopic metallic rings can be used to deduce the sign
and the magnitude of electron-electron interactions in the
metal forming the rings. The size of the average current
is expected to increase with the strength of the interac-
tions, and its sign reflects the nature of the interactions:
the magnetic response at low flux is paramagnetic (dia-
magnetic) when the electronic interactions are repulsive
(attractive).3,4 For a large ensemble of rings, the current
is expected to be periodic in the magnetic flux, with the
period corresponding to one half of the flux quantum,
h/2e. The theoretical analysis of Refs. 3 and 4 was
motivated in part by early measurements of the average
persistent current in an array of 106 copper rings,5 whose
sign and magnitude could not be accounted for by nonin-
teracting electrons alone and therefore should be affected
by electronic interactions. These experiments confirmed
the above periodicity, also suggesting that the average
magnetic response is induced by interactions.3,4 Similar
results were later observed on an array of 105 GaAs rings6

and on an array of 105 silver rings.7 In contrast, measure-
ments on single rings8–11 showed the h/e periodicity. In
an array of 30 gold rings12 both the h/2e and the h/e
harmonics were observed. In this paper the authors were
unable to say whether the h/2e signal was the second har-
monic of the typical contribution or the first harmonic of
an average contribution. Overall, the sign of the h/2e
harmonic measured on metallic rings seems to indicate
that the low-flux response is diamagnetic,7,12 implying
attractive interactions. Recently, Bleszynski-Jayich et

al.13 found that the average current in aluminum rings,
subject to high magnetic fields, is negligible, but typi-
cal mesoscopic fluctuations remain almost unaffected.14

It seems that these experiments can be explained within
the framework of noninteracting electrons.15

Interestingly enough, it turned out that the bona fide

values of the attractive interactions required to explain

the persistent-current data of the copper5 ensemble for
example, would have implied that this metal is supercon-
ducting at measurable temperatures, of the order of 1mK.
In fact, early experiments on the magnetic response16

and on the thermal conductivity17 of proximity-effect
systems, whose normal parts were copper and silver,
also indicated a minute attractive interaction in these
metals.18 However, these early measurements allowed
a broad range for the magnitude of this interaction,
and therefore did not open a discussion of the reasons
for the absence of superconductivity in experiments on
these metals. The latter puzzle became obvious only af-
ter the measurements of the persistent current on cop-
per, which requires a transition temperature of 1mk.
Superconductivity has not been detected also in gold
and silver, and this fact has remained unexplained for
many years. A possible explanation for this apparent
puzzle19 was offered in Refs. 20 and 21, which ar-
gued (for the first time) that the existence of (seem-
ingly unavoidable22) tiny amounts of magnetic impuri-
ties may detrimentally affect superconductivity in such
metals, reducing their transition temperatures to unde-
tectable, even zero, values, while leaving the persistent
current almost unharmed. This stems from the disparity
of the energy scales determining the renormalized elec-
tronic interaction pertaining to each phenomenon. The
interaction-induced persistent current is proportional to
the renormalized interaction on the scale of the Thouless
energy, Ec = ~D/L2 (where D is the diffusion coefficient
and L is the circumference of the ring). Superconductiv-
ity is lost, however, when the spin-flip rate of the mag-
netic impurities, ~/τs (in units of energy), becomes com-
parable to the bare transition temperature of the material
(in the absence of any pair-breaking or pair-weakening
agents), T S

c0. In other words, the actual superconducting
transition temperature T S

c is determined by the renor-

malized interaction, on the scale of max[T S
c0, ~/τs]. It

follows that a concentration of magnetic impurities such
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that

kBT
S
c0 . ~/τs . Ec , (1)

will hardly affect the magnitude of the persistent current,
concomitantly suppressing the superconducting transi-
tion temperature (below we often use units in which
~ = kB = 1). Indeed, detailed analysis21 of the persistent
current data reported in Refs. 5 and 7 led to the conclu-
sion that T S

c0 of copper (gold) is in the mK (a fraction of
mK) range.
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FIG. 1: (color online) Proximity-effect ring in which the width
of the strong (weak) superconductor is dS (dN ), threaded by
a magnetic flux Φ (measured in units of the flux quantum).

This theoretical picture can be tested, for instance, by
investigating rings made of known low-superconducting-
transition-temperature materials, in which a controlled
concentration of pair breakers have been added.13 It has
also been noted that the magnetic flux itself acts as a pair
breaker, causing a periodic decrease of the transition tem-
perature but a lesser decrease in the persistent current.23

It is interesting to check whether there exist other situa-
tions where the superconducting transition temperature
is lowered by some pair-breaking or pair-weakening mech-
anism, but the (superconducting fluctuation-induced)
persistent current remains large far above this transi-
tion temperature. In the present paper we consider this
question for superconducting-normal (SN) bilayers, e.g.
made of Al and Cu.19 Bilayers made of Al and Ag might
even be better, as they avoid magnetic impurities. The
‘normal’ metal could also be a weaker superconductor,
with a lower transition temperature. The proximity ef-
fect is known to cause a decrease of the transition tem-
perature of the bilayer with the relative thickness of the
S layer,24,25 and it is interesting to find out what hap-
pens to the persistent current, which is induced by super-
conducting fluctuations. This possibility is in particular
intriguing: unlike the magnetic impurities, the proximity
effect is not a bona fide pair-breaker, since time-reversal
invariance is not broken by it. The proximity effect just
leads to pair-weakening, by ‘diluting’ the superconduct-
ing fraction.26

Here we present a calculation of the disorder-averaged
persistent current averaged over an ensemble of bilayer

rings, each having the geometry depicted in Fig. 1. These
rings consist of two adjacent metallic rings, with differ-
ent transition temperatures. The area inside the rings is
penetrated by a magnetic flux Φ, which is measured in
units of the flux quantum hc/e. Below we use the sub-
script S for quantities characterizing the layer with the
higher transition temperature, and the subscript N for
the quantities belonging to the other one, which may or
may not be a superconductor. For simplicity, we con-
fine our calculation to bilayers in the Cooper limit:24

this limit is reached when the width of each of the lay-
ers, dS or dN , is much smaller than the respective co-
herence length.27 Our aim is to explore the possibility
to deduce the scale of the renormalized electronic in-
teraction by analyzing concomitantly the superconduct-
ing transition temperature and the (superconducting)
fluctuation-induced average persistent current. In other
words, we examine the persistent current as a function
of the N−slab relative thickness, and find parameter
regimes where it is affected much less than the transi-
tion temperature.
Since pair breakers, notably magnetic impurities, seem

to be ubiquitous in several of the metals used in the
persistent-current measurements, it is interesting to in-
vestigate their effect in a proximity-effect configuration.
For instance, it is plausible that in Al/Cu rings, the cop-
per (the N−slab in our notations) may well include a
tiny amount of magnetic impurities. We therefore in-
clude scattering off such impurities in our expressions.
The transition temperature of an SN proximity bilayer

in the the Cooper limit is known24,25 to be determined
by the effective (dimensionless) electronic coupling, λNS ,
which is the weighted sum of the effective couplings of the
separate slabs, λS (which is positive, since the S−slab is
superconducting) and λN (which may take both signs):

λNS = pNλN + pSλS , (2)

with

pN(S) = dN(S)ÑN(S)/Ñeff , (3)

where ÑN(S) denotes the density of states at the Fermi
energy per unit length of the normal (superconducting)
layer, and

Ñeff = ÑNdN + ÑSdS . (4)

The mean-field transition temperature, TNS
c0 , of the bi-

layer (without magnetic impurities) is then given by24,25

1

λNS

= Ψ
(1
2
+

ωD

2πTNS
c0

)
−Ψ

(1
2

)
, (5)

where Ψ is the digamma function whose asymptotic ex-
pansion, valid for large arguments, is given by

lim
z→∞

Ψ(z) → ln z . (6)
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The Debye frequency ωD in Eq. (5) (assumed to be iden-
tical for both slabs) marks the upper cutoff on the effec-
tive interactions. The above results hold only for a dirty
superconductor, where ωDτ ≪ 1, and τ is the mean free
time associated with the scattering from (non-magnetic)
impurities, so that the whole calculation is done in the
diffusive limit. The result (5) is obtained assuming that
the two layers are in a good electrical contact. (The effect
of a barrier between the two layers has been considered
by McMillan.28) In the limit ωD ≫ TNS

c0 one may use Eq.
(6) to obtain

ln
TNS
c0

T S
c0

= −
(
1−

λN
λS

) pN
λNpN + λSpS

, (7)

where T S
c0 is the bulk transition temperature of the clean

S−slab. When the N− slab is also superconducting
(i.e. λN > 0), TNS

c0 remains finite for all pN (al-
though quite small for large pN and small λN ). How-
ever, when λN ≤ 0, the transition temperature of the
bilayer TNS

c0 approaches zero at a quantum critical point,
pN = 1/(1− λN/λS). The approach is exponential, with
zero slope (see Fig. 2). In practice, TNS

c0 becomes very
small for pN & 1/2. In some sense, this inequality re-
places the left hand side of Eq. (1). As we show below,
the persistent current remains rather large even in this
regime.
The effect of genuine pair-breaking mechanisms on the

transition temperature was considered a long time ago.
The seminal paper of Abrikosov and Gorkov29 found that
the transition temperature T S

c0 is reduced by magnetic
impurities to T S

c ,

ln
T S
c

T S
c0

= Ψ
(1
2

)
−Ψ

(1
2
+
sT S

c0

T S
c

)
, (8)

where s = 1/(2πT S
c0τs). This expression is shown in

the inset in Fig. 2. Unlike TNS
c0 , T S

c approaches zero
at s = exp[Ψ(1/2)] = 1/(4γE) ≈ 0.140365 (namely at
~/τs ∼ 0.9T S

c0), with a finite slope. Here, γE is the Eu-
ler constant. This difference in slope between the two
mechanisms probably reflects the difference between pair-
weakening and pair-breaking.26

In a complete analogy with Eq. (8), a small amount of
pair-breaking impurities in the N−slab lowers the tran-
sition temperature of the sandwich from TNS

c0 to TNS
c ,

given by25

1

λNS

= Ψ
(1
2
+

ωD

2πTNS
c

)
−Ψ

(1
2
+

pN
2πTNS

c τs

)
, (9)

generalizing Eq. (5).
The rest of this paper describes the calculation of the

average persistent current, pertaining to a large ensemble
of bilayers. Section II outlines the derivation of the ef-
fective Ginzburg-Landau theory for this case, with some
technical details given in Appendix A. Some quantitative
results are presented in Sec. III. Since the fluctuations
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FIG. 2: (color online) The transition temperature of a
proximity-effect sandwich in the Cooper limit [Eq. (7)] as
a function of the weighed width of the normal layer for
λN = 0, 0.05, and −0.05 (solid, dashed, and dotted curve,
respectively). In all curves λS = 0.17. The inset depicts the
Abrikosov-Gorkov expression, Eq. (8), for the reduction of
the transition temperature by pair breakers.

are calculated within the high-temperature Gaussian ap-
proximation, which is valid only above the Ginzburg crit-
ical regime, Sec. IV presents a critical discussion of this
regime. That section also contains our conclusions.

II. THE PERSISTENT CURRENT OF A

PROXIMITY-EFFECT SANDWICH

Here we present a microscopic derivation of the free en-
ergy which determines the superconducting fluctuations.
The Hamiltonian of the bilayer is similar to that used in
Refs. 20 and 21,

H =

∫
drH(r) , (10)

with

H(r) =
∑

σσ′

ψ†
σ(r)H

(0)
σσ′ (r)ψσ′ (r)

− V (r)ψ†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r) , (11)

where ψ†
σ(r) creates an electron with spin σ at r. The

interaction V (r) depends on the spatial coordinate x (see
Fig. 1),

V (x) = λS/NS , −dS ≤ x ≤ 0

V (x) = λN/NN , 0 ≤ x ≤ dN . (12)

(Note that here the N ’s are the densities of states per

unit volume of the two layers.) The single-particle part
of the Hamiltonian (11) reads

H
(0)
σσ′ (r) = δσ,σ′H0(r) + uσσ′(r) , (13)

where

H0 = [−i∇+ (e/c)A(r)]2/(2m)− µ , (14)
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and µ is the chemical potential. With the choice A =
B× r/2, the vector potential A points along the circum-
ference of the ring in the anticlockwise direction. The
disorder potential is u(r) ≡ u1 + u2σ · S, yielding scat-
tering off nonmagnetic impurities (scaled by u1) as well
as off magnetic impurities (scaled by u2, S denotes the
magnetic impurity spins. The impurities are modeled by
point-like scatterers30).
The quantum partition function Z is31

Z =

∫
D{ψ(r, τ), ψ(r, τ)} exp[−S] , (15)

where the action S is

S =

∫
dr

∫ β

0

dτ
(∑

σ

ψσ(r, τ)
∂

∂τ
ψσ(r, τ) +H(r, τ)

)
,

(16)

and β = 1/T . Here, the annihilation and creation field
operators in the Hamiltonian (11) (ψ and ψ†) are re-
placed by the spinor Grassmann variables ψ(r, τ) and
ψ(r, τ), respectively.
Since the calculation of the partition function is rather

technical, we present it in Appendix A. We first
perform this analysis in the absence of the magnetic
flux. A Hubbard-Stratonovich transformation replaces
the Grassmann variables ψ and ψ by complex bosonic
variables ∆(r, τ) and ∆∗(r, τ) (which are now functions
of the imaginary time τ), and the action is expanded in
powers of these variables. The Gaussian approximation
uses only the quadratic terms in this expansion. In the
Cooper limit, the Fourier transformed bosonic variables
take only two values as a function of x, namely ∆S(q, ν)
for −dS < x < 0 and ∆N (q, ν) for 0 < x < dN , where
q is a two-dimensional vector perpendicular to x̂. The
quadratic action then becomes

S2 = βÑeff

∑

q

∑

ν

(
aN |∆N (q, ν)|2 + aS |∆S(q, ν)|

2

− c
[
∆∗

N (q, ν)∆S(q, ν) + c.c.
])

, (17)

where Ñeff is given in Eq. (4), and

aN(S) =
pN(S)

λN(S)

− p2N(S)γ , c = pSpNγ . (18)

Here, pN(S) are given in Eqs. (3). The function γ(q, ν, T )

is given by

γ(q, ν, T ) = πT
∑

ω

γ̄(q, ν, ω) , (19)

where

γ̄(q, ν, ω) =
(
|ω|+

|ν|

2
+
pN
τs

+
1

2
Deffq

2
)−1

, (20)

ω = πT (2m + 1) and ν = 2πT ℓ (with integer m and
ℓ) are the fermionic and bosonic Matsubara frequencies

and Deff is the effective diffusion coefficient of the double
layer,

Deff = pNDN + pSDS . (21)

Since the sum over ω in Eq. (19) is cut-off by the Debye
frequency ωD one finds

γ(q, ν, T ) = −Ψ
(1
2
+

|ν|+Deffq
2 + 2pN/τs

4πT

)

+Ψ
(1
2
+

|ν|+Deffq
2 + 2pN/τs + 2ωD

4πT

)
. (22)

The bilinear form in Eq. (17) is diagonalized by the
transformation (for convenience, we omit the explicit no-
tations of q, ν, and T in part of the expressions below)

∆N = u−∆− + u+∆+ , ∆S = u+∆− − u−∆+ , (23)

where

u± =
(1
2
±
aN − aS

4κ

)1/2

, κ =

√(aN − aS
2

)2

+ c2 .

(24)

One then finds

S2 =βÑeff

∑

q

∑

ν

(
a−(q, ν, T )|∆−(q, ν)|

2

+ a+(q, ν, T )|∆+(q, ν)|
2
)
, (25)

with

a± = (aN + aS)/2± κ . (26)

Within this Ginzburg-Landau-like model, the phase
transition occurs when the first coefficient a±(q, ν, T )
vanishes as the temperature T is lowered. Since a+ −
a− = 2κ > 0, this transition happens when a−(0, 0, T ) =
0 (while a+ remains positive). Equations (18) and (19)
imply that

a+a− = aNaS − c2 =
pNpSλNS

λNλS

(
λ−1
NS − γ(q, ν, T )

)
.

(27)

Therefore, at zero flux the transition occurs at TNS
c

which obeys the equation λ−1
NS = γ(0, 0, TNS

c ). Using
Eq. (22), this reproduces Eq. (9).
Finally, we incorporate the magnetic flux into the ex-

pressions for the action and for the partition function.
To lowest order (neglecting the effect of the field on the
order parameter) it suffices to replace q by32

q → q+ (2e/c)A . (28)

This follows directly from Eq. (14), remembering that
the momentum q relates to a bosonic Cooper pair. For



5

the circular geometry at hand, the component of q along
the ring circumference, q‖, becomes

q‖ =
2π

L
(n+ 2Φ) , (29)

with integer n. The transition is then shifted, with23

1

λNS

= γ
(
q‖ = 4πΦ/L, 0, TNS

c (Φ)
)
, (30)

and the persistent current is given by

I =
e

2πc

∂T lnZ

∂Φ
. (31)

Within this Gaussian approximation, the fluctuations
contribution to the partition function can be obtained
straightforwardly. One finds

Zfl =
∏

q

∏

ν

1

a+(q, ν, T )a−(q, ν, T )

∼
∏

q

∏

ν

1

λ−1
NS − γ(q, ν, T )

, (32)

where (flux- and temperature-independent) multiplica-
tive factors have been omitted. Interestingly, this ex-
pression for the partition function has exactly the same
form as that found for the ‘superconducting’ ring in Ref.
21. The only modification is that now λ−1

S is replaced

by λ−1
NS . The following calculations thus use the same

calculational techniques employed in that reference.

III. RESULTS

Since the important contribution to the persistent cur-
rent comes from the zero transverse mode (perpendicular
to the x−direction),15,20,21 we replace the sum over q by
a one-dimensional summation over the discrete values of
q‖, Eq. (29). Assuming that the Debye frequency ωD is

the largest energy in the problem (provided it is smaller
than 1/τ), the denominator in Eq. (32) becomes21

λ−1
NS − γ(q, ν, T ) ≈ ln

[ T

TNS
c0

]
+Ψ[F̃ (n, ℓ)]−Ψ

[1
2

]
,

(33)

F̃ (n, ℓ) =
1 + |ℓ|

2
+
πEc

T
(n+ 2Φ)2 +

pN
2πTτs

, (34)

and therefore the persistent current is21

I = −2eEc

∑

n,ℓ

(n+ 2Φ)Ψ′(F̃ )

ln(T/TNS
c0 ) + Ψ(F̃ )−Ψ(1/2)

. (35)

(We remind the reader that Ec = Deff/L
2 is the Thou-

less energy). As shown in Ref. 21, this expression for

the persistent current can also be written as a Poisson
summation,

I =− 4eT

∞∑

m=1

sin(4πmΦ)

×
∑

ℓ

∞∑

j=1

[
exp(2πixℓjzero)− exp(2πixℓjpole)

]
, (36)

where

xℓjpole/zero = im

√
T

2πEc

[
1 + |ℓ|+

pN
πTτs

− 2F j
pole/zero

]1/2
,

(37)

with F j
pole = −j and with F j

zero being the solution of

Ψ(F j
zero) = ln[TNS

c0 /(4γET )].
We now present several plots of the persistent current

based on Eq. (36). Figure 3 shows the first harmonic
of the current (divided by its value at pN = 0) as a
function of pN , for TN

c0 = 1/τs = 0. To avoid critical
fluctuations (see below), we restrict ourselves to a rela-
tively high temperature, T = 4T S

c0. The same figure also
shows the transition temperature for the bilayer, divided
by T S

c0. Clearly, the relative persistent current decreases
much more slowly than the relative transition tempera-
ture. This slower decrease is similar to that found in Refs.
20 and 21, resulting from the effects of pair breakers. As
an example, for the parameters used in Fig. 3, the tran-
sition temperature at pN = 0.7 is very small, TNS

c0 (pN =
0.7) ≃ 10−6T S

c0 while the first harmonic of the current is
given by I(pN = 0.7) = 0.16I(pN = 0) = 0.13Ec.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

p
N

 

 
T

c0
NS/T

c0
S

I/I(p
N

=0) − Eq. (36)

I/I(p
N

=0) − Eq. (41)

FIG. 3: (color online) The transition temperature of the bi-
layer TNS

c0 , normalized by TS
c0 (blue solid line) and the first

harmonic of the current, divided by its value at pN = 0, from
Eq. (36) (red dashed line). The green dash-dotted line shows
the approximation (41) for the current. The parameters used
for all graphs are TS

c0 = 1.27K (equivalent to λS = 0.17),
ωD = 400K, TN

c0 = 0 (i.e. λN = 0) and 1/τs = 0. The current
is plotted for T = 4TS

c0 and Ec = 10TS
c0.

At a fixed pN , the persistent current decreases with
increasing temperature. Figure 4 shows the current (in
units of the Thouless energy Ec) as a function of the
temperature for a specific choice of the parameters and
for three values of pN . Each of these plots shows the
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current only above the transition temperature TNS
c0 . As

anticipated in the Introduction, the persistent current
increases with increasing Ec. This can be seen from Eqs.
(36) and (37), in which the decay of I is determined by

the ratio T/Ec. Using the relation ÑeffT
S
c0 ≡ g/[Ec/T

S
c0],

where g is the dimensionless conductance, the parameters
used in Fig. 4 are equivalent to g = 1000.

0 5 10 15
0

1

2

3

T/E
c

I/E
c

 

 
p

N
=0.45

p
N

=0.5

p
N

=0.7

FIG. 4: (color online) The first harmonic of the current, in
units of the Thouless energy Ec, versus T/Ec, for TS

c0 =
1.27K, Ec = 0.015K, ωD = 400K, TN

c0 = 1/τs = 0 and

ÑeffT
S
c0 = 105. The current is plotted for pN = 0.45, 0.5,

and 0.7 and for T > TNS
c0 (pN).

Finally, we discuss the effects of a positive transition
temperature TN

c0 and a finite amount of magnetic impu-
rities in the normal slab. Figure 5 shows the first har-
monic of the persistent current versus the temperature
for TN

c0 = 1mK, which is the estimated minimal value for

the pure transition temperature of copper derived in Ref.
21, with and without magnetic impurities. We see that
at high temperatures the current is not very sensitive to
the pair breaking. As might be expected, the weak su-
perconductivity of the N layer causes an increase in the
persistent current.

Interestingly, both Fig. 4 and Fig. 5 exhibit
fluctuation-induced persistent currents which are much
larger than the Thouless energy Ec, at temperatures
above the superconducting transition temperature of the
S material. This persistent current increases, and its de-
cay with temperature becomes slower, as Ec increases.

The above plots were based on Eq. (36), which sums
over many values of ℓ and j. For example, Figs. 4 and
5 used j, ℓ ≤ 104. We next describe approximate ex-
pressions, which are valid at high temperatures, when
T ≫ TNS

c0 . We restrict this discussion to the case
1/τs = 0. Defining the small parameter

w = −1/ ln[TNS
c0 /(4γET )] , (38)

and noting that Ψ(w−j) ≈ −1/w, we find F j
zero ≈ −j+w,

and therefore

xℓjzero ≈ xℓjpole − imw

√
T

2πEc

[
1 + 2j + |ℓ|

] . (39)

Inserting this approximation into Eq. (36), the Poisson
summation form of the current becomes

I ≈ −4eT

∞∑

m=1

sin(4πmΦ)
∑

ℓ

∞∑

j=0

exp[−m
√
2πT [1 + 2j + |ℓ|]/Ec

[
exp

(
mw

√
2πT/Ec/[1 + 2j + |ℓ|]

)
− 1

]

≈ −4eTw

∞∑

m=1

sin(4πmΦ)
∑

ℓ

∞∑

j=0

m
√
2πT/Ec/[1 + 2j + |ℓ|] exp[−m

√
2πT (1 + 2j + |ℓ|)/Ec] , (40)

where the last approximation applies only for
mw

√
2πT/Ec ≪ 1. At intermediate temperatures,

when both this condition and w ≪ 1 are obeyed, the
current decays as I ≈ wI1, where I1 is independent of
TNS
c0 . Substituting Eq. (7) for TNS

c0 in the expression for
w, we finally end up with

I

I0
≈

ln[4γET/T
S
c0]

ln[4γET/T
S
c0] +

p
N
(1−λ

N
/λ

S
)

p
N
λ
N
+p

S
λ
S

, (41)

where I0 is the persistent current (for the same flux) at
pN = 0. As seen in Fig. 3, this approximation is quite
good.
Unlike the case of the magnetic impurities, in which the

persistent current remains non-zero even when the tran-
sition temperature vanishes, in the case of the bilayer

the persistent current vanishes when TNS
c0 = 0. When

λN = 0, the transition temperature approaches zero as
pN increases towards the quantum critical point, which
occurs at pN = 1. When λN < 0, this critical point oc-
curs at a threshold p×N < 1, and the fluctuation-induced
persistent current vanishes above this threshold. How-
ever, as pN approaches this critical threshold, the current
decreases linearly with pN [as seen from Eq. (41)]. Since
the transition temperature decays exponentially towards
that point, we again find that the persistent current re-
mains significant even when the transition temperature
is negligibly small!
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FIG. 5: (color online) Same as Fig. 4, but with TN
c0 = 0.001K

(i.e. λN = 0.077). The current is plotted for pN = 0.7 (blue
dashed) and pN = 0.8 (red dash-dotted). Thick (thin) lines
represent 1/τs = 0 (1/τs = Ec). The graphs are plotted for
T > TNS

c .

IV. DISCUSSION

The calculations above were carried out within the
Gaussian approximation. This approximation usually
breaks down close to the phase transition, where higher
powers of the order parameters must be taken into ac-
count in the expansion of the action S. This happens be-
low the so-called Ginzburg temperature, TGi. Therefore,
one should not trust the above results for temperatures
in the range TNS

c < T < TGi. In this range, we need to
supplement Eq. (17) by the quartic terms, which should
be derived by continuing the expansion of Eq. (A2) in
powers of the ∆’s. In principle, this expansion has the
form

S4 =
1

2
βÑeff

∑

{q
i
}

∑

ν
i

Bαβγδ

×∆α(q1, ν1)∆β(q2, ν2)∆γ(q3, ν3)∆δ(q4, ν4) , (42)

where α, β, γ, δ take the values S or N , and the sums are
restricted by

∑
i qi =

∑
i νi = 0.

The calculation of the coefficients Bαβγδ goes beyond

the scope of the present paper.31 Usually, these coeffi-
cients are assumed to be independent of the momenta
qi and frequencies νi, since such dependencies are less
relevant near the phase transition in the renormalization
group sense. Furthermore, Eq. (18) shows that the in-
teraction terms in Eq. (17), |∆S |

2/λS and |∆N |2/λN ,
are equal to their bulk values multiplied by pS and pN ,
respectively. This indicates a renormalization of ∆S and

∆N by the factors p
1/2
S and by p

1/2
N ’ respectively. In

analogy, we conjecture that the various coefficients in
Eq. (42) are also given by their bulk values, multiplied
by the same renormalization factors. We next replace
these order parameters by ∆±, from Eq. (23). For sim-
plicity, we restrict the following discussion to the special

case λN = 0. This should suffice to demonstrate our
arguments. In this special case one has λNS = pSλS ,

a− = aS = p2S [λ
−1
NS − γ], u+ = 1 and u− = 0. Also,

a+ = aN = ∞, and therefore we can ignore all the fluc-
tuations associated with ∆+. Finally, the quartic action
becomes

S4 =
1

2
βÑeffB−

∑

{q
i
}

∑

ν
i

4∏

i=1

∆−(qi, νi) , (43)

where again
∑

i qi =
∑

i νi = 0 and we set B− = p2SB0,
with B0 = 7ζ(3)/(8π2T 2) having the bulk value of the
quartic term.33 Keeping only the first term in Eq. (25),
we find the usual structure of the effective Ginzburg-
Landau action, except for the renormalization of the co-
efficients. As we discuss below, the dependence of a− on
q and on ν is very different from the simple form used in
standard Ginzburg-Landau theories.

The literature contains many ways to estimate the
Ginzburg region. Since here we calculate the persistent
current, we define that region as the range where the
Gaussian calculation presented in the previous section
must be modified by inclusion of the quartic terms. Ex-
panding the partition function Z to leading order in B−,
the free energy becomes

F = −T lnZfl + 3ÑeffB−

[∑

ν

∑

q

〈|∆−(q, ν)|
2〉
]2
, (44)

where 〈. . .〉 denotes averaging with the Gaussian action,

〈|∆−(q, ν)|
2〉 = 1/[βÑeffa−(q, ν, T )] . (45)

The correction to the persistent current due to the quar-
tic term thus becomes

δI =
3eB−T

πÑeff

[∑

ν

∑

q

1

a−

][∑

ν

∑

q

T∂a−/∂Φ

a2−

]
. (46)

The above Gaussian results can be used only if this addi-
tional contribution is smaller than that calculated above,
Eq. (35).

At |Φ| = 0, the denominators in the sums in Eqs. (35)
and (46) vanish for n = ℓ = 0, at the critical temperature
TNS
c0 (Φ) which satisfies Eq. (30). Moving slightly away

from this temperature, i.e. at small T −TNS
c0 (Φ), each of

these sums is dominated by its first term, with n = ℓ = 0.
Most of the discussions in the literature proceed by con-
sidering only these ‘zero-dimensional classical’ terms.33

Following this ‘tradition’, i.e. keeping only these leading
terms in all three sums, and comparing I with δI, we find
that for Φ ≈ 0 the latter can be neglected if
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1

λNS

−
1

λS
+Ψ

[1
2
+ spN

T S
c0

T

]
−Ψ

[1
2

]
+ ln

[ T
T S
c0

]
>

√
21ζ(3)

4π2T Ñeffp
2
S

, (47)

where s was defined after Eq. (8). The left hand side
is the denominator for n = ℓ = 0, which vanishes at
the mean field transition temperature. Apart from mul-
tiplicative factors of order unity, one obtains a similar
‘zero-dimensional classical’ condition using other defini-
tions of the Ginzburg region.33,34 Close to the transition
at TNS

c0 one usually replaces T by TNS
c0 in the denomi-

nator of the right hand side. Equation (47) then agrees
with the usual Ginzburg criterion in d dimensions, which

would give (TGi − Tc) ∼ ln(TGi/Tc) ∼ T
−2/(4−d)
c , with

d = 0,33 except for the additional factor 1/p2S. How-
ever, this substitution is problematic when TNS

c0 is very
small, as in our case. Therefore we prefer to keep T
also on the right hand side, and then solve Eq. (47)
as an equality. For pN < 0.5 and for the parameters
used above, the resulting TGi turns out to be quite close
to TNS

c0 , and therefore the ‘zero-dimensional classical’
Ginzburg region is very narrow. Therefore, Fig. 6 shows
these two temperatures only for pN > 0.65. As seen
in this figure, the Ginzburg temperature does not de-
cay as fast as the transition temperature at large values

of pN . For example, for the value of ÑeffT
S
c0 used in

the figure, we have TGi(pN = 0.8) = 9 ∗ 10−7T S
c0, while

TNS
c0 (pN = 0.8) = 6∗10−11T S

c0. In any case, the ‘classical’
Ginzburg region is quite narrow. Had we stopped here
(as done in much of the literature), we would conclude
that our Gaussian results for the persistent current can
be used for practically all temperatures (above TNS

c ) and
relative widths of the bilayer.

0.65 0.75 0.85 0.95 1
0

2

4

6
x 10

−5

p
N

 

 

T
Gi

/T
c0
S

T
c0
NS/T

c0
S

FIG. 6: (color online) TGi/T
S
c0 and TNS

c0 /TS
c0 versus pN , for

ÑeffT
S
c0 = 105. Note the factor of 10−5 on the y-axis.

As one moves away from the critical region, each of
the sums in Eqs. (35) and (46) must be supplemented
with other terms, involving both non-zero wave vectors
(n 6= 0) and non-zero Matsubara frequencies (ℓ 6= 0).
In fact, we find that as n increases we need to include
more values of ℓ to obtain convergence, and that even

the Gaussian approximation, on which most of our re-
sults are based, requires the summation over many clas-
sical and quantum fluctuations. For some reason, most of
the literature ignores the ‘quantum’ fluctuations coming
from non-zero ℓ’s, and keeps only the ‘one-dimensional’
terms with n 6= 0.33,35 As discussed above, and in Ref.
21, the persistent current is affected by both types of
fluctuations. The sum in Eq. (35) always converges,
becoming of order 1/ ln[T/T S

c0] for T
S
c0 ≪ T ≪ Ec. Sim-

ilarly, the last sum in Eq. (46) also converges, becom-
ing of order 1/(ln[T/T S

c0])
2. In contrast, the first sum

in Eq. (46) does not converge, and thus it depends on
the cutoffs imposed on the wave vectors n and on the
frequencies ℓ. This problem arises since our calculation
necessitates the replacement of the ‘usual’ Green func-
tion 1/(T − Tc + ν +Dq2) by 1/[λ−1 − γ(q, ν, T )], with
a logarithmic dependence at large T , ν and q [see e.g.
Eq. (33)]. Since this sum depends on the cutoffs, the
resulting Ginzburg criterion will also depend on these
cutoffs.36 In our case, the dirty diffusive limit imposes
the cutoffs |ν|, Deffq

2 ≪ 1/τ+, where τ+ is the elas-
tic mean free time.21 Replacing the sum

∑
ν,q(1/a−) by

some cutoff dependent constant still shows that |δI/I|
decreases with increasing T . The details of this cutoff
dependent criterion go beyond the scope of the present
paper.
Our calculation was done for an ensemble of proximity-

rings in the same plane. Qualitatively, we expect simi-
lar behavior for two rings which are deposited on top of
each other, which may be easier to realize experimentally.
However, the explicit calculation for the latter case still
needs to be carried out. It is also interesting to calculate
the persistent current when the bilayer is connected to
leads. This also remains for future calculations.
In conclusion, we have demonstrated that the effect

of pair weakening due to the proximity between a su-
perconducting ring and a normal (or a weakly supercon-
ducting) ring is similar to, but not identical with, that of
pair breaking: the persistent current decays slowly with
the relative width of the normal layer, and persists even
when the superconducting transition temperature (which
decays faster) is very small. Since this relative width can
be controlled, it would be interesting to check our quan-
titative predictions experimentally.
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Appendix A: The partition function

Applying the Hubbard-Stratonovich transformation to
Eq. (15), and integrating the fermionic part of the action,
the partition function is cast into the form31

Z =

∫
D{∆(r, τ),∆∗(r, τ)}e−S , (A1)

with the action

S =

∫
dr

∫ β

0

dτ
|∆(r, τ)|2

V (x)
−

1

2
Tr

{
ln
(
βG−1

)}
. (A2)

Here β is the inverse temperature and G−1 is the inverse
Green function at equal positions and imaginary times,

G−1 =

[
G−1

p iσy∆

(−iσy)∆∗ G−1
h

]
, (A3)

with

G−1
p =

[
−∂τ −H

(0)
↑↑ −H

(0)
↑↓

−H
(0)
↓↑ −∂τ −H

(0)
↓↓

]
(A4)

being the particle inverse Green function, and

G−1
h =

[
−∂τ +H

(0)
↑↑ H

(0)
↓↑

H
(0)
↑↓ −∂τ +H

(0)
↓↓

]
(A5)

being the inverse Green function of the holes. The factor
β was introduced into the last term in Eq. (A2) to keep
the argument of the log dimensionless (it does not affect
any of the following discussion).
The integration over the bosonic fields in Eq. (A1)

is carried out using a stationary-phase analysis31 of the
action S. At temperatures above the transition temper-
ature, this amounts to expanding the second term on the
right-hand side of Eq. (A2) to second order in ∆ (the
first-order contribution to the expansion being zero)

Tr{ln(βG−1)} = Tr
{
lnβ

[
G−1

p 0

0 G−1
h

]}

+

∫
drdr′

Ω2

∫ β

0

dτdτ ′

β2
K(r, r′, τ − τ ′)∆(r′, τ ′)∆∗(r, τ) ,

(A6)

where Ω denotes the volume of the system (we added the
factors of volume and β to keep S dimensionless). The
first term on the right-hand side of Eq. (A6) will give the

partition function of noninteracting electrons; the second
one represents the contribution of the superconducting
fluctuations to that function. Its calculation requires the
correlation

K(r, r′, τ − τ ′) ≡ −〈Tr
{
Gp(r, r

′, τ − τ ′)σy

×Gh(r
′, r, τ ′ − τ)σy

}
〉 , (A7)

where 〈. . .〉 indicates averaging over the impurity config-
urations (see Ref. 30 for details). Upon averaging, the
spatial dependence of K becomes a function of x, x′, and
ρ− ρ

′, where ρ ⊥ x̂, see Fig. 1. Hence,

Tr{ln(βG−1)}
∣∣∣
2nd

=

∫
dxdx′

d2

∑

ν

∑

q

∆x′(q, ν)Kxx′(q, ν)∆∗
x(q, ν) , (A8)

where

Kxx′(q, ν) =
∑

p
1
,p

2

∑

ω

〈Tr
{
G(x, x′,p1 + q,p2 + q, ω + ν)

× σyG
t(x′, x,−p1,−p2,−ω)σy

}
〉 , (A9)

and both Green functions are the particle one,21 i.e., G =
Gp. [In Eq. (A8), d = dN + dS is the total width of the
sandwich.] We use the notations ω ≡ ωn = πT (2n+1) for
the fermionic Matsubara frequencies, and ν ≡ νℓ = πT 2ℓ
for the bosonic frequencies. Note that q, p1 and p2 are
two-dimensional vectors normal to x.
Inserting these results into the expression for the ac-

tion [see Eq. (A2)], the Gaussian fluctuation-induced
partition function, Zfl,2, takes the form

Zfl,2 =

∫
D{∆x(q, ν),∆

∗
x′ (q, ν)}e−S

2 , (A10)

with

S2 =
∑

q

∑

ν

∫
dxdx′∆∗

x(q, ν)
(
β
δ(x − x′)

Ṽ (x)

−
1

d2
Kxx′(q, ν)

)
∆x′(q, ν) , (A11)

(here Ṽ is the attractive interaction. in units of energy
× length). In the Cooper limit, the bosonic variable ∆
takes only two values as a function of x, ∆N (q, ν) for
0 ≤ x ≤ dN , and ∆S(q, ν) for −dS ≤ x ≤ 0. Therefore
the action becomes

S2 =
∑

q

∑

ν

∆†(q, ν)S̃(q, ν)∆(q, ν) , (A12)

where

S̃(q, ν) = β

[
dN ÑNλ

−1
N 0

0 dSÑSλ
−1
S

]

−
1

d2

[
d2NKNN (q, ν) dSdNKNS(q, ν)
dNdSKSN (q, ν) d2SKSS(q, ν)

]
, (A13)
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ÑN(S) denotes the density of states of the normal (su-

perconducting) layer per unit length, and ∆†(q, ν) =
{∆∗

N (q, ν),∆∗
S(q, ν)}.

The functions Kxx′(q, ν), Eq. (A9), are calculated by
extending the method employed in Refs. 24 and 25 to
include the dependence on ν and on the two-dimensional
wave vector q. The calculation is valid in the dirty limit
[in which (D/2πT )1/2 is much larger than the mean-free
path of the relevant metal, where D is the diffusion coef-
ficient]. For simplicity, we omit the vector potential from
this calculation; its effect is incorporated into the result
at the end of Sec. II.
We follow the derivation given in Ref. 24, and begin

by presenting the response function K in the form

1

d2
Kxx′(q, ν) =

∑

ω

Hxx′(q, ν, ω) . (A14)

Had the normal part of the bilayer filled the entire space,

then Hxx′ = H
(N)
xx′ , where

H
(N)
xx′ (q, ν, ω) =

∫
dqxe

iqx(x−x′)

×
ÑN

|2ω|+ |ν|+ 2/τs +DN (q2 + q2x)
. (A15)

We have allowed for scattering off magnetic impurities in
this metal, whose effect is presented by the spin-flip rate
1/τs. (The effect of scattering off nonmagnetic impurities
is contained in the diffusion coefficient.) As seen from Eq.

(A15), the function H
(N)
xx′ obeys a diffusion equation

(
|2ω|+ |ν|+ 2/τs +DNq2

−DN

∂2

∂x′2

)
H

(N)
xx′ (q, ν, ω) = 2πÑNδ(x− x′) . (A16)

Quite similarly, when the S metal fills the entire space
one finds

(
|2ω|+ |ν|+DSq

2

−DS

∂2

∂x′2

)
H

(S)
xx′ (q, ν, ω) = 2πÑSδ(x − x′) . (A17)

Here it was assumed that the S metal is not doped with
magnetic impurities. It follows that in order to find Hxx′

of the double layer, one has to solve the set of equations

(
|2ω|+ |ν|+ 2/τs +DNq2 −DN

∂2

∂x′2

)
Hxx′(q, ν, ω) = 2πÑNδ(x− x′) , x′ > 0 ,

(
|2ω|+ |ν|+DSq

2 −DS

∂2

∂x′2

)
Hxx′(q, ν, ω) = 2πÑSδ(x− x′) , x′ < 0 , (A18)

with the appropriate boundary conditions. Such a
scheme has been undertaken in Refs. 24 and 25, lead-
ing to the result

HNN (q, ν, ω) =
πÑ 2

N

dN ÑN + dSÑS

γ̄(q, ν, ω) ,

HNS(q, ν, ω) = HSN (q, ν, ω) =
πÑN ÑS

dN ÑN + dSÑS

γ̄(q, ν, ω) ,

HSS(q, ν, ω) =
πÑ 2

S

dN ÑN + dSÑS

γ̄(q, ν, ω) , (A19)

where γ̄(q, ν, ω) was defined in Eq. (20).
Inserting Eqs. (A14) and (A19) into Eq. (A13) brings

the action S, Eq. (A12), into the form (17).
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