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We study the Josephson effect through a magnetic molecule with anisotropic properties. Perform-
ing calculations in the tunneling regime, we show that the exchange coupling between the electron
spin on the molecule and the molecular spin can trigger a transition from the π state to the 0 state,
and we study how the spin anisotropy affects this transition. We show that the behavior of the
critical current as a function of an external magnetic field can give access to valuable information
about the spin anisotropy of the molecule.
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I. INTRODUCTION

The Josephson effect1,2 is a striking manifestation of
many body physics and macroscopic quantum coherence
in condensed matter systems. While early investigations
concerned mainly bulk superconducting junctions sep-
arated by an insulating barrier, in the last decades it
has become a very active field of study in the context
of mesoscopic physics. Indeed the insulating barrier can
be replaced by a conductor or a nanodevice which can
be as small as a quantum dot or a single molecule. In
this sense the study of the Josephson current can pro-
vide a novel way to investigate the electronic properties
of the nano-object which is sandwiched between the su-
perconducting electrodes. More than a decade ago, it
was predicted using Krein theorem,3–5 that when a singly
occupied quantum dot in the Coulomb blockade regime
is inserted between the superconductors, the Josephson
current phase relation acquires a π shift, i.e. the critical
current has the opposite sign from that of a tunnel junc-
tion. A phase diagram of the π–0 phase transition was
derived later on for contacts with arbitrary transparency
using a combination of Hubbard-Stratonovich and sad-
dle point approximation.6 Experimentally (for nanoscale
devices) it was measured in superconductor–nanotube–
superconductor systems.7 This picture gets more com-
plicated when the Kondo temperature is lower than the
superconducting gap: a 0-junction state is restored,8,9

albeit with a different current phase relationship.

In recent years theoretical and experimental studies
have addressed transport geometries where a molecule —
artificial or otherwise — is inserted between two
electrodes.10–15 This goes one step beyond the study of
transport through quantum dots because the molecule
has internal degrees of freedom (such as vibrations and
possibly spin). On the one hand, such degrees of free-
dom have an effect on the electronic current, on the other
hand, the current itself can be considered as a probe of

the inherent mechanisms of the molecule.

A subfield of molecular electronics is called molecular
spintronics: it focuses on molecules which have an in-
trinsic spin,16,17 and it is expected that electron transfer
through the molecule can trigger changes in the molecule
spin because of the existence of an exchange coupling
with the electron spin. Such molecules (such as a buck-
minsterfullerene doped with a magnetic atom) may have
an isotropic spin, or otherwise the spin may have a pre-
ferred direction due to the crystalline structure of the
molecule (this is the case of Mn12 acetate). Recently,
there have been some efforts to describe/measure trans-
port through molecular spintronics devices with normal
metal or ferromagnetic leads,18–21 with an emphasis on
master equations approach on the theoretical side. Nev-
ertheless, efforts in the field of molecular spintronics with
superconducting electrodes are still at their beginning
stage.

A recent theoretical work focused on the Josephson
current through an isotropic magnetic molecule, via per-
turbative calculations in the tunneling Hamiltonian as
well as numerical renormalization group calculations.22
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FIG. 1: (Color online) A magnetic molecule (e.g., M@C80,
Mn12, . . .) connecting two superconductors via tunnel barriers
tL and tR. The exchange coupling between the molecular spin
and the electronic spin can strongly modify the Josephson
current.
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It allowed to draw a complete phase diagram of the π–
0 phase transition. An equivalent study of supercur-
rent through molecules which have an anisotropic spin,
which magnetization can tunnel, and which are subject
to a (weak) external magnetic field is still lacking. This
is precisely the focus of the present work. One of the
challenge of this work is that we have to deal with a
large number of parameters: the exchange coupling J
between the dot electron spin and the molecule spin, the
anisotropy constant D, and the coefficient B2 for quan-
tum tunneling of magnetization of the molecule, the de-
pendence on external magnetic field B as well as the dot
level ǫd which can be adjusted by a gate voltage. Note
that it is now experimentally possible to manipulate the
anisotropy parameters of magnetic molcules.23,24 One of
our goals is to determine to what extent the measure-
ment of the critical current can provide information of
the sign or magnitude of such parameters. For simplic-
ity, we focus on the regime where the superconducting
gap is much larger than the Kondo temperature, which
allows to focus on weak coupling (small tunneling Hamil-
tonian) calculations. Also, we restrict the analysis on the
simplest case of a molecule spin S = 1 to demonstrate
the effect, where the two main contributions due to spin
anisotropy (easy axis anisotropy, and quantum tunneling
of magnetization) are present.
The outline of the paper is as follows. In Sec. II, we in-

troduce the model for the magnetic molecule connected
to two superconducting leads and we compute the ex-
pression of the Josephson current through this molecule.
In Sec. III, we study the effect of the anisotropic param-
eters and of the adjustable experimental parameters on
the sign of the critical current. Finally, we conclude in
Sec. IV.

II. MODEL

A. Hamiltonian

The total Hamiltonian of the system [see Fig. (1)] con-

sists of the three terms Ĥ = Ĥd+ Ĥs+ Ĥt. The first one
is the Hamiltonian of the molecule

Ĥd = Ĥm + ǫd
∑

σ

d̂†σ d̂σ + Ud̂†↑d̂↑d̂
†
↓d̂↓, (1)

with ǫd is the electronic level of the molecule implied in
the transport, and U is Coulomb interaction strength.

The d̂†σ and d̂σ are electronic creation and annihilation
operators on the electronic level in the molecule. Since U
is typically much larger than the other energies in the sys-
tem, we consider the limit of infinite Coulomb interaction
U → ∞, thus only one electron is allowed to occupy the
dot. With this assumption, the Hamiltonian Ĥm which
characterizes the magnetic properties of the dot reads

Ĥm = −DŜ2
z +B(Ŝz + ŝz)−

B2

2
(Ŝ2

+ + Ŝ2
−) + J Ŝŝ, (2)
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FIG. 2: (Color online) Spin states for S = 1 spin, and
coupling between these states due to the different terms of the
Hamiltonian. B2 induces tunneling between |1〉m and | − 1〉m
states (green line); J and B induce |1〉m ↔ |0〉m and |0〉m ↔
| − 1〉m tunnelings (blue line).

where Sz is the molecular spin and sz the spin of the
electron on the molecule (if present). J is the exchange
coupling between molecular and electronic spin, D > 0
is the easy-axis anisotropy constant, B2 is the coefficient
of quantum tunneling of magnetization (QTM) and B
is the external magnetic field. Fig. 2 shows how these
terms couple the states of the molecule in the case of a
spin S = 1. In order to avoid a too large number of pa-
rameters, we have made some simplifying assumptions
when writing this Hamiltonian: the anisotropy terms
are not affected by the charge of the dot level (this
should be the case for systems like M@C80, but not for
molecules like Mn12),

25 the magnetic field is taken par-
allel to the spin anisotropy,26 and higher order terms
(−B2n/2)(Ŝ

2n
+ + Ŝ2n

− ) are neglected (they are usually
small).
The second term corresponds to the superconducting

parts, described by the BCS Hamiltonian

Ĥs =
∑

ℓ,k,σ

ǫk ĉ
†
ℓ,k,σ ĉℓ,k,σ −

∑

ℓ,k

∆ℓ,k

[

ĉ†ℓ,k,↑ĉ
†
ℓ,−k,↓ +H.c.

]

,

(3)
where ǫk = ~

2k2/2m − EF is the dispersion relation

for free electrons, ĉ†ℓ,k,σ and ĉℓ,k,σ are electronic cre-
ation and annihilation operators in the superconductors,
ℓ enumerates left (ℓ = L) and right (ℓ = R) leads,
∆L(R),k = ∆e±iϕ/2, with ∆ the superconducting gap
and ϕ the superconducting phase difference along the
junction.
The last term is the tunnel Hamiltonian between the

leads and the molecule

Ĥt =
∑

ℓ,k,σ

[

tℓ,kd̂
†
σ ĉℓ,k,σ +H.c.

]

, (4)

where tℓ,k are the tunneling amplitudes. By perform-

ing a gauge transformations for t̃L,k = tL,ke
iϕ/4, t̃R,k =

tR,ke
−iϕ/4 and simultaneously for ˜̂cL,k,σ = ˜̂cL,k,σe

−iϕ/4,
˜̂cR,k,σ = ˜̂cR,k,σe

iϕ/4, one can “move” the dependence on
ϕ from ∆ℓ,k to tℓ,k and ĉℓ,k,σ in Eqs. (3) and (4).3 We also
perform a Bogoliubov transformation2 to diagonalize the
BCS Hamiltonian, which takes the following form

Ĥs =
∑

ℓ,k,σ

Ekγ̂
†
ℓ,k,σ γ̂ℓ,k,σ (5)
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and the tunneling Hamiltonian reads

Ĥt =
∑

ℓ,k,σ

[

t̃ℓ,kd̂
†
σ

(

ukγ̂ℓ,k,σ + σ vkγ̂
†
ℓ,k,−σ

)

+H.c.
]

. (6)

where γ̂†
ℓ,k,σ and γ̂ℓ,k,σ are the quasi-particle creation and

annihilation operators, uk =
√

(1 + ǫk/Ek)/2 and vk =
√

(1− ǫk/Ek)/2 are the electron and hole coefficients,

and Ek =
√

ǫ2k +∆2 is the energy dispersion. In the
following calculations we will consider for simplicity the
case of symmetric contacts, thus tL,k = tR,k = tk.

B. Specific Hamiltonian for the S = 1 case

In the following, we will for simplicity restrict our cal-
culations to the case of a molecular spin with S = 1,
which is the smallest value where easy-axis anisotropy
(parameter D) and QTM (parameter B2) are non-trivial.
As the electron occupation of the level is restricted to 0
or 1, let us write explicitly the molecule Hamiltonian in
each case [see Eqs. (1) and (2)].
For the empty electronic level, we have Hd = Hm,0,

and we use the basis {|0〉e|1〉m, |0〉e|0〉m, |0〉e| − 1〉m},
where |0〉e represents the empty electronic state and
|Sz〉m the states of the molecule with spin projections
Sz = 1, 0,−1. The matrix elements of Hm are

Hm,0 =





B −D 0 −B2

0 0 0
−B2 0 −B −D



. (7)

The eigenvalues are noted E0,i (i = 1, 2, 3), and the cor-
responding eigenvectors are bi. Below we will use the
matrix bij = [b1, b2, b3], which consists of columns
of eigenvectors (first index enumerates columns, the sec-

ond — rows), and the inverse matrix b̃ij = (bij)
−1.

When the electronic level is occupied by one electron,
we have Hd,1 = Hm,1 + ǫd, and we use the uncoupled
spin basis |s〉e|Sz〉m (with s =↑, ↓ and Sz = +1, 0,−1).
The matrix representation of Hm,1 can then be decom-
posed as two independent 3 × 3 submatrices:27 Hm,1 =
diag{H+

m,1,H−
m,1}, with

H+
m,1 =





3B/2 + J/2−D 0 −B2

0 −B/2 J/
√
2

−B2 J/
√
2 −B/2− J/2−D





(8)
in the basis {|↑〉e|1〉m, |↓〉e|0〉m, |↑〉e| − 1〉m} and

H−
m,1 =





B/2− J/2−D J/
√
2 −B2

J/
√
2 B/2 0

−B2 0 −3B/2 + J/2−D





(9)
in the basis {| ↓〉e|1〉m, | ↑〉e|0〉m, | ↓〉e| − 1〉m}. These
matrices have eigenvalues E+

1,i, E
−
1,i and corresponding

eigenvectors a
+
i , a

−
i . As previously we define matrices

a±ij = [a±1 , a
±
2 , a

±
3 ], and inverse matrices ã±ij = (a±ij)

−1.

C. Josephson current

The Josephson current through the molecule can be
calculated using perturbation theory in the tunneling
Hamiltonian Ĥt;

3 the first non-vanishing term is given
by

I =
2e

~

∂

∂ϕ

〈

gs
∣

∣Ĥt(Egs − Ĥ0)
−1Ĥt(Egs − Ĥ0)

−1

× Ĥt(Egs − Ĥ0)
−1Ĥt

∣

∣gs
〉

, (10)

where Ĥ0 = Ĥd + Ĥs. The ground state |gs〉 is the
occupied state with lowest energy, thus it has energy

Egs = min{E±
1,i}, and |gs〉 = |aζi 〉, where i = 1, 2, 3 spec-

ifies the state number and ζ = ± is the block index.
Note that the dot-lead coupling induce energy shifts for
the occupied states of the dot, starting at order 2 in Ĥt.
However we don’t need to compute these shifts, as they
will be identical for the two single occupied states, and
they can be included in the value of ǫd (see Ref. 28 for a
multilevel case where these shifts have to be computed).
As was shown in Ref. 3, in the absence of coupling

to a molecular spin, the perturbative approach allows to
understand the π state due to large Coulomb interac-
tion on the dot: the order of the electrons of a Cooper
pair is necessarily reversed during tunneling through the
dot, which gives opposite sign for the current due to the
singlet nature of the Cooper pair. Here, the exchange
coupling between the electron spin and a molecular spin
means that the occupied state of the dot is a linear com-
bination of states involving in general both | ↑〉 and | ↓〉
states of the electron spin. This creates the possibility
of spin-flip processes: a spin-up electron tunneling in the
dot can tunnel out as a spin down electron for example.
With such a spin-flip, it is now possible for a Cooper
pair to tunnel through the dot without reversing the or-
der of electrons, thus contributing to positive current. In
the presence of exchange coupling with a molecular spin,
one can thus expect that, among all the lowest order
processes contributing to the Josephson current, some of
them will contribute to negative current, and some oth-
ers to positive current. The global sign of the current
will thus depend on the relative weight of the different
processes, which are a function of the parameters of the
molecule Hamiltonian.
Expressing in Eq. (10) the action of the tunneling

Hamiltonian on the eigenstates introduced in the pre-
vious section, a lengthy but straightforward calculation
gives eventually

I = −4e

~
sinϕ

∑

k,k′

t2
L,kt

2
R,k′ukvkuk′vk′

×
∑

j

{

Aζ∗
j,k′B

ζ
j,k +Bζ∗

j,k′A
ζ
j,k

Ek + Ek′ + Eζ
1,j − Egs

+
Aζ̄∗

j,k′A
ζ̄
j,k +Bζ̄∗

j,k′B
ζ̄
j,k

Ek + Ek′ + E ζ̄
1,j − Egs

}

. (11)
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FIG. 3: The dependence of the normalized critical current ic
as a function of the exchange coupling J for an isotropic mag-
netic molecule (D = B2 = 0) and dot level ǫd/∆ = −5 in the
absence of magnetic field (B = 0).

Here

A±
j,k =±

(ãgs,1b11 + ãgs,3b31)(b̃11a
±
1j + b̃13a

±
3j)

Ek + E0,1 − Egs − ǫd

±
(ãgs,1b13 + ãgs,3b33)(b̃31a

±
1j + b̃33a

±
3j)

Ek + E0,3 − Egs − ǫd
, (12)

B±
j,k =∓

ãgs,2a
±
2j

Ek + E0,2 − Egs − ǫd
, (13)

where A±∗
j,k ≡ (A±

j,k)
∗ and ζ̄ = −ζ. Eqs. (11)–(13) rep-

resent the main results of this article. Because we have
performed a lowest order tunneling calculation, we get a
simple I = Ic sinϕ dependence of the current. However,
the study of value of the critical current Ic (in addition
to its sign) will give us precious information on the sys-
tem. At zero temperature the sums over k and k′ should
be taken over the energy region ǫk, ǫk′ > 0. Both sum-
mations over k can be replaced by the integration over
energy ǫ:

∑

k →
∫

dǫρ(ǫ), where ρ(ǫ) is a density of
states.

Our formulas of course contain the known result for the
case where there is no molecular spin and no magnetic
field (B = B2 = J = D = 0):29 we obtain π-junction
with negative critical current

I(0)c = −4e

~

∑

k,k′

t2
L,kt

2
R,k′ukvkuk′vk′

(Ek + Ek′ )(Ek − ǫd)(Ek′ − ǫd)

= −4e

~

ΓLΓR∆
2

4π2

∞
∫

0

dǫ1dǫ2
E1E2(E1 + E2)(E1 − ǫd)(E2 − ǫd)

,

(14)

where we assume constant density of states ρ(ǫ) = ρ0 =
2m/π~2, tunneling rates ΓL(R) = πρ0t

2
L(R)

, and E1(2) =
√

∆2 + ǫ21(2).

In the next section we analyze the dependence of the

dimensionless critical current ic = Ic/|I(0)c | on the mag-
netic molecule parameters J , D, B2, dot energy ǫd, and
external magnetic field B. Positive ic > 0 corresponds to
the 0-junction phase, negative ic < 0 to the π-junction
phase.

III. RESULTS AND DISCUSSION

For reference, we start by analyzing Eq. (11) as a
function of exchange coupling J , when no anisotropy
is present (D = B2 = 0) and without magnetic field
(B = 0). As shown in Fig. 3(a), the current is sup-
pressed both by negative and positive J . For negative J
(ferromagnetic coupling) the system always remains in
the π state (ic < 0). For positive J (antiferromagnetic
coupling) a π–0 transition occurs for J/∆ ∼ 10 (the pre-
cise value is slowly varying with ǫd). This behavior can
be understood by looking at the formula for the current22

I = −4e

~
sinϕ

∑

k,k′

t2L,kt
2
R,k′ukvkuk′vk′

× 1

3EkEk′

{

4

3J/2 + Ek + Ek′

− 1

Ek + Ek′

}

, (15)

where Ek = Ek + J − ǫd. The first term depicts the
transfer of a Cooper pair involving a change of the total
coupled spin (electronic and molecule) during the inter-
mediate state [e.g., see Fig. 4(a)], while the second term
corresponds to a Cooper pair without change of total spin
during the intermediate state [e.g., see Fig. 4(b)]. For
large positive J , the first term becomes smaller than the
second one, and the sign of the current changes, which
explains the π–0 transition.
Note that there is no change of ground state associated

with this transition occurring for large positive J , hence
the critical current shows a smooth change from negative
to positive value, passing continuously through arbitrary
small values. This is to be contrasted with 0–π transition
which are due to the crossing of energy levels leading to
a change of ground state,6,31,32 where an abrupt change
of the critical current can be observed (see, e.g., Figs. 4
and 6 in Ref. 28).
We will now consider the effect of the anisotropy (D

and B2) and of the magnetic field B on the critical cur-
rent, specially near the π–0 transition. We assume that
the superconducting gap is independent of the magnetic
field. Fig. 5(a) shows the effect of D and B2 on the tran-
sition; the surface shows the values of the parameter for
which the current is zero. Above the surface the system
is in the π-junction phase (ic < 0), while under the sur-
face the system is in the zero phase (ic > 0). One can see
that both D and B2 move the π–0 transition to higher
values of J . This is confirmed by Figs. 5(b) and 5(c)
which correspond to cuts of the 3D plot for fixed values
of B2 and D respectively. On these panels, the differ-
ent curves correspond to different values of the magnetic
field B: we see that increasing the magnetic field tends
to push the system towards the 0-junction phase (note
that the results are insensitive to the sign of B). On the
3D plot Fig. 5(a) the effect of the magnetic field B is thus
to shift the zero current surface as shown with magenta
arrows, and also to somewhat smear the sharp behavior
in B2 as shown with blue arrows.
Up to now, we have studied the phase diagram of the
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FIG. 4: (Color online) Illustration of two typical tunnel-
ing processes leading to the transfer of a Cooper pair. The
presence of strong Coulomb interaction prohibits the double
occupation on the dot and the electrons are transferred one
by one. Because of the exchange coupling J between the elec-
tron spin and the molecular spin, the state of the occupied
dot (black circle on the figure) is characterized by the total
spin, S − 1/2 and S + 1/2. These two levels are separated
by an energy 3J/2. The process where the intermediate state
of the occupied dot (a, above) is different from the initial
one, and the process where the intermediate state is the same
as the initial one (b, below) contribute with different signs
to the Josephson current. The competition between these
two processes leads to the existence of the π–0 transition, see
Eq. (15).

system as a function of the exchange coupling J and of
the anisotropy parameters D and B2. However, for a
given molecule, these parameters have usually a fixed
value. We will now study the behavior of the critical
current when the experimentally adjustable quantities,
the external magnetic field B and the dot level ǫd, are
varied. The goal is to understand how the values of the
exchange coupling and of the anisotropy parameters will
modify the behavior of the current as a function of B
and ǫd. This could be an original way to obtain informa-
tions on the exchange coupling and on the spin anisotropy
in the molecule, by measuring the critical current of the
tunnel junction and varying B and ǫd.

The different panels of Fig. 6 show the behavior of the
critical current as a function of B and for various values
of the dot level ǫd, the exchange coupling J and of the
anisotropy parameter D (for simplicity, we have taken
B2 = 0). Each column is for a given value of J : deep
in π-junction regime J/∆ = −20 (left), in the interme-
diate regime J/∆ = 11 (middle) and deep in 0-junction
regime J/∆ = 20 (right). The top panel of each column
is for D = 0, while the two bottom panels of each col-
umn are for non-zero values of D as indicated. The richer
behavior is obtained when the exchange coupling has a
value which allows to observe the π–0 transition, here in
the second column for J/∆ = 11. Without anisotropy
[Fig. 6(d)], we see that by sweeping the magnetic field
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FIG. 5: (Color online) (a) π and 0-junction regions as a
function of the J , D and B2. The surface divides 3D space
(J,D,B2) to the top region in a π-junction regime and to
the bottom one with 0-junction regime; at the surface current
is zero. Magnetic field is zero B = 0, its increasing leads
to “shift” and “smear” of the surface as shown by magenta
and blue arrows. (b) π–0 transition diagram in (J,D) space
at B2 = 0. Different curves correspond to the different B’s:
B/∆ = 0.0 (solid), 0.5 (dashed), and 1.0 (dotted). (c) π–0
transition diagram in (J,B2) space at different B and D = 0.
The nonzero D and B2 increases the critical Jc (see Fig. 3)
and magnetic field mainly decreases Jc.

we can observe the π–0 transition. In the presence of
small anisotropy [Fig. 6(e)], we observe a non-monotonic
behavior as a function of B, with the modulus of the crit-
ical current |ic| decreasing as a function of B for small B,
but increasing for large B. Finally, for larger anisotropy
[Fig. 6(f)], |ic| is everywhere increasing as a function of
B. Note that, between panel Fig. 6(d) (D = 0) and panel
Fig. 6(f) (D/∆ = 4), the order of the curves as a function
of ǫd has been reversed. When J is much larger than the
superconducting gap (right column, with J/∆ = 20), the
system is deep in the 0-junction phase, but the anisotropy
has a visible impact on the curves: comparing Fig. 6(g)
(for D/∆ = 0) with Figs. 6(h) and 6(i) (for D/∆ = 7
and 14), we see that when D is large enough, the slope of
the critical current is the opposite of the one for small D.
This is a consequence of the π–0 transition which happens
for larger D. Finally, for negative J [Figs. 6(a)–6(c) with
J/∆ = −20], the anisotropy does not bring any qualita-
tive change to the behavior of the current as a function
of the magnetic field, and |ic| always decrease with B.
From the different curves shown on Fig. 6, we can de-

duce that when J is positive (anti-ferromagnetic coupling
case), the anisotropy has a visible impact on the behav-
ior of the critical current as a function of B, as it can
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FIG. 6: (Color online) Critical current as a function of the magnetic field B for different values of the exchange coupling J and
the anisotropy parameter D (B2 = 0). The different curves in a single plot are for various dot levels ǫd: ǫd/∆ = −12.5 (solid
cyan line), −10.0 (dashed green line), −7.5 (dotted red line), and −5 (dashed-dotted magenta line); all currents are normalized
by the critical current obtained for ǫd/∆ = −5 with B = J = D = B2 = 0 [see Eq. (14)]. Left column: J/∆ = −20; the system
is deep in the π-junction regime, and the anisotropy parameter D does not change the curves qualitatively. Middle column:
J/∆ = 11; the system is near π–0 transition, and the value of D has a great impact on the behavior of the curves: it can
produce non-monotonic behavior as a function of B [panel (e)], or reverse the slope of the curves compared to D = 0 [panel
(f)]. Right column: J/∆ = 20; the system is in the 0-junction regime and D has still an visible impact, as it can change the
slopes of the curves [panel (h)]. This is due to the presence of a (large) critical value Dc above which the system is again in
the π-junction phase (not shown).

produce a non-monotonic behavior close to the π–0 tran-
sition, and reverse the slope of |ic| as a function of B
when J is much larger than the critical value. On the
other hand, for negative J (ferromagnetic coupling), the
anisotropy has not a qualitative effect on the critical cur-
rent, and it merely reduces the value of |ic|.

IV. CONCLUSION

We have computed the Josephson current through a
magnetic molecule in the tunneling regime, studying the
effect of the exchange coupling with the molecular spin,
and the spin anisotropy of the molecule. Performing a
perturbative calculation starting from an Hamiltonian
model, we have shown that an anti-ferromagnetic cou-
pling between the electron spin and the molecular spin
can induce a π–0 transition. We have described how the
spin anisotropy D and the quantum tunneling of magne-
tization term B2 affect the transition.
We have shown that by studying the behavior of the

critical current as a function of the magnetic field and the

level position (which are both experimentally tunable pa-
rameters), it is possible to get informations on the value
of the spin anisotropy D, even outside the range of the
π–0 transition.

This work could be extended in several directions. The
calculations could be performed for a larger molecular
spin (albeit at the cost of heavier expressions). One could
also use anisotropy parameters which depend on the
charge state of the molecule (and thus on the occupation
of the dot in our model), which could describe more faith-
fully molecular magnets like Mn12.

25 One could also con-
sider the case of an external magnetic field aligned along
an arbitrary direction (and not along the anisotropy axis
of the molecule), in order to describe experiments where
it is not possible to control the anisotropy orientation.
Such a magnetic field should have a strong impact on
the current, as it will mix efficiently all the molecular
states.26

Finally, new possibilities could open up if one consider
explicitly the Josephson current between type II super-
conductors. In this case, it could be possible to con-
trol the value of the superconducting gap ∆ with the
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applied magnetic field. Going to very small ∆ would
give large values of J/∆, D/∆, etc., and a very large
parameter range of the system, including the π–0 transi-
tion for J > 0, could be explored. In the same manner,
it is possible to enhance the critical temperature Tc and
the second critical field Hc2 by decreasing the thickness
of the superconductor.30 This could allow to use large
values of the magnetic field.
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