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Hysteretic I-V (current-voltage) curves are studied in narrow Al nanowires. The nanowires have a
cross section as small as 50 nm2. We focus on the retrapping current in a down-sweep of the current,
at which a nanowire re-enters the superconducting state from a normal state. The retrapping current
is found to be significantly smaller than the switching current at which the nanowire switches into the
normal state from a superconducting state during a current up-sweep. For wires of different lengths,
we analyze the heat removal due to various processes, including electron and phonon processes. For
a short wire 1.5µm in length, electronic thermal conduction is effective; for longer wires 10µm
in length, phonon conduction becomes important. We demonstrate that the measured retrapping
current as a function of temperature can be quantitatively accounted for by the self-heating occurring
in the normal portions of the nanowires to better than 20 % accuracy. For the phonon processes,
the extracted thermal conduction parameters support the notion of a reduced phase-space below 3-
dimensions, consistent with the phonon thermal wavelength having exceeded the lateral dimensions
at temperatures below ∼ 1.3K. Nevertheless, surprisingly the best fit was achieved with a functional
form corresponding to 3-dimensional phonons, albeit requiring parameters far exceeding known
values in the literature.

PACS numbers: Valid PACS appear here

Understanding the dynamics of ultra narrow super-
conducting (SC) nanowire wires is an active area of
investigation1–15. A significant area of focus is the so-
called 1-dimensional (1D) limit, delineated by the condi-
tion, (w, h) < ξ, where w is the width and h the height
of the nanowire, and ξ the superconducting coherence
length. Investigations of the behavior under current-
biasing not only elucidate the conditions and limitations
for the current carrying capabilities, as well as the pro-
cess of recovery back into the superconducting (SC) state
after driven normal by an excessive current, but also po-
tentially lay the foundation and pave the way for the de-
velopment of novel devices, such as a current-Josephson
effect devices16, or qubits17.

In this work, we report on measurements carried out in
ultra narrow Al nanowires with a cross section as small as
50 nm2. The three nanowires studied have a widths and
heights ranging between 7 - 10 nm, and lengths of 1.5 µm
(wire S1) or 10 µm (wires S2, S4). These nanowires are
exceedingly uniform in their cross section, as indicated by
their ability to carry sizable current before being driven
normal, where the current density is nearly identical to
co-evaporated 2d films. In a previous work, the behavior
of the switching current Is during an up-sweep of the cur-
rent was investigated8. There, it was found that heat de-
posited by phase-slips– transient temporal-spatial events
during which the superconducting phase fluctuates and
changes by 2π over a distance of order ξ, while the core
region goes normal–leads to a thermal runaway, driving
the entire nanowire into a normal state from the SC state.

Here we focus on the down-sweep retrapping current.
The retrapping current Ir is found to be significantly
smaller than the up-sweep switching current Is, and can
be a much as a factor of 20 smaller. The history de-
pendent current-voltage (IV) relation exemplified by the

disparate behaviors in the up- and down-sweep is ubiqui-
tous, despite the fact that based on the criteria normally
applied to SNS (superconductor-normal metal- supercon-
ductor) bridges, the nanowires should be in the heav-
ily over-damped regime in its dynamics6,7,18. In MoGe
nanowires of widths ∼ 10nm, Tinkham et al.6 performed
a heat flow analysis, and ascribed the retrapping behav-
ior to self-heating. Our work bears similarity to that
work, but our SC nanowires are in a different regime,
where kF l ∼ 60 � 1, rather than being close to 1 in
their case. Here kF is the Fermi wave-number, and l
is the mean-free-path. Moreover, their nanowires were
suspended freely, while ours are deposited onto a nar-
row, 8 nm-wide InP ridge (Fig. 1(a)), and are thus in
thermal contact with an underlying substrate. Further-
more, our analysis differs from theirs in the form of the
heat flow equations. Based on our analysis, we rule out
under-damping as the cause of the hysteresis, in agree-
ment with recent results in submicron SNS bridges18.

To lay the framework for understanding the behavior
of nanowires, the Josephson junction can serve as a start-
ing point. There, the free energy landscape under current
bias is described by the tilted washboard potential, shown
in Fig. 2(a)19. This same scenario is also applicable to
1D SC nanowires11,12. Josephson junctions are classified
within a Resistively and Capacitively Shunted Junction
(RCSJ) model as either under- or over-damped, depend-

ing on whether the quality factor, Q =
√

2eIcC/h̄R, is
greater or less than 1. Here, Ic is the critical Josephson
current, C is the junction capacitance, and R the junction
normal state resistance. When under-damped Joseph-
son junction is driven over the free-energy barrier out of
its meta-stable minimum, the SC phase keeps running
downhill as there is insufficient damping to retrap the
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FIG. 1: (a) Schematic of the Al superconducting nanowire
device on a narrow InP ridge template. The ends of the
nanowire are connected to large, electrical measurement pads.
The pads can either be in the superconducting state, or driven
normal by a magnetic field. (b) Top view of the nanowire ge-
ometry, and the layout used in the heat flow model discussed
in the text.

phase in a lower energy local minimum. A consequence
is that a hysteretic current-voltage (IV) relation, where
the up-sweep and down-sweep branches do not overlap.
In contrast, in an over-damped junction, the phase moves
diffusively between adjacent minima, and hysteresis is of-
ten not present21–23.

The estimated Q for our nanowiresis in the range of
∼ 0.01, far below unity, and the nanowires are ostensi-
bly in the severely over-damped limit. This estimate is
relevant when the nanowire device is in the S-NW-S con-
figuration, where S refers to each of the two large metal-
lic measurement pads when in the SC state, and NW
denotes the nanowire. It also provides a reasonable es-
timate in the N-NW-N configuration, when the pads are
driven normal, but the ambient temperature is below the
nanowire SC transition temperature Tc. In this case, the
nanowire itself breaks up into alternating SC and normal
segments, whether during an upsweep or a downsweep of
the current. In the former case, the nanowire is overall
in the SC state, but during a phase-slip, the phase-slip
normal core acts as the normal region. In the latter, the
central portion of the nanowire is normal due to heating,

FIG. 2: (a) Tilted-washboard free energy landscape for a
Josephson junction under current bias. A phase slip occur-
ring between adjacent minima is indicated. A similar scenario
occurs in a 1D superconducting nanowire. (b) Hysteretic IV
curves for nanowire S2 at several temperatures. Arrows in-
dicate direction of current sweeps. The upsweep switching
current Is is significantly larger than the down-sweep retrap-
ping current Ir.

while the regions closer to the pads are in the SC state
(Fig. 1(b)).

Nevertheless, despite the over-damping, hysteretic IV
curves are ubiquitous, as can be seen for wire S2 in Fig.
2(a). In fact, the ratio of Ir to Is can be as small as
∼ 1/20. For example, in nanowire S2 at T ∼ 0.3K, Ir ∼
0.19µA, while Is ∼ 4µA. These observations motivated
us to investigate the retrapping current systematically,
as a function of the temperature and wire length, and to
perform a detailed heat analysis to establish self-heating
as a cause of the substantially reduced Ir below the value
of the upsweep Is.

Our devices were fabricated using a template method.
The template is a narrow, 8nm wide InP ridge, formed
by differential etching on the cleaved (110) crystallo-
graphic plane of a molecular-beam-epitaxy (MBE) grown
InGaAs-InP crystal, where the growth direction is (001).
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The geometry of our devices is depicted in Fig. 1(a).
The details of the fabrication procedure is described in
a previous work20. The nanowire resides on the narrow
InP ridge and is thus thermally connected to the large
semiconductor substrate through the narrow ridge. The
nanowire is electrically connected to large metallic mea-
surement pads on its ends. Therefore, for heat removal,
thermal conduction both in the lateral direction along
the nanowire, and vertically through the InP ridge via
phonon processes must be considered. The IV measure-
ments were carried out in a shielded copper can to min-
imize unwanted environmental interference, such as ex-
ternal noise (e.g. from nearby radio stations) conducted
down the electrical cables, or Johnson-Nyquist noise from
resistors within the electrical measurement circuitry. In
particular, Therma coaxial cables with the ability to re-
move high frequency noise is employed where possible, as
well as low-temperature RF filters. The devices are also
enclosed in metal cans with all openings plugged with
conductive tape or metal mesh.

In Fig. 3(a)-(c), we present the measured Ir for
the three nanowires S1 (10nm × 10nm × 1.5µm), S2
(9.3nm × 9.3nm × 10µm), and S4 (7nm × 7nm × 10µm),
respectively, as a function of temperature. Immediately
apparent is the substantial difference in the magnitude
of the retrapping current Ir for the short S1, when com-
pared to the longer S2 and S4. For S1, Ir = 0.99µA at
T = 0.3K, while it is 0.19µA and 0.117µA, respectively
for S2 and S4. Thus, the value of Ir in S1 is roughly 5 - 8
times that in S2 or S4. The results for S2 and S4 do not
depend on whether measurements were carried out in the
S-NW-S or the N-NW-N configuration. In contrast, for
S1, due to the larger current level and associated exces-
sive heating, it was necessary to drive the measurement
pads into a normal state, into the N-NW-N configura-
tion. By driving these pads into the normal state using
a small magnetic field B = 0.1T , the now normal pads
can act as good thermal anchors, keeping the tempera-
tures of the ends at the ambient temperature To. For
the longer S2 and S4, the smaller current level means
that a much lower amount of heat needs to be carried
out through wire ends; thus improved thermal anchoring
was not needed. For S1, on the other hand, keeping the
pads SC (S-NW-S configuration) reduced Ir to ∼ 0.55µA
from ∼ 1µA as heat removal becomes more difficult due
to poor thermal conduction capability of the SC pads.
At the same time, instabilities arise in the temperature
profile along the nanowire, leading to very noisy data be-
low 0.8K with Ir fluctuating as much as 0.1µA between
adjacent data points.

The 0.1T magnetic field affects the nanowires and
the large, 2-dimensional electrical pads differently. The
nanowires are able to remain SC at low current levels
with an overall behavior close to their zero magnetic
field behavior, while the pads are driven into the nor-
mal state. This difference occurs because the nanowires
and the pads behave as type II superconductors, simi-
lar to most thin film superconductors. In the pads, the

upper critical field Hc2 is set by the condition of hav-
ing roughly on flux quantum (h/2e) fit in the area A of
a square with sides ξ the (superconducting) coherence
length, i.e. A ∼ ξ2. In the nanowires, since the width w
is much smaller than ξ, the area A is now given by ξw,
resulting in an enhanced Hc2 above its value for the pads
by a factor ξ/w. Typically, for the nanowires Hc2 ranges
from 0.5T to 2T between 20mK and 1.4K, while for the
pads it is below 0.05T at all temperatures.

The configuration with normal electrical pads is rele-
vant for our data in Fig. 3. In the analysis which fol-
lows, we will focus on this configuration. The retrapping
process returns a nanowire into the SC state during a
down-sweep of the current, I, at an ambient lattice tem-
perature, To, below the zero current critical temperature,
Tc(I = 0). At large I, most of the nanowire remains nor-
mal due to self-heating, which raises the local temper-
ature above the switching temperature at that current,
Ts(I).

During a current downsweep, the temperature is posi-
tion dependent along the nanowire. In the N-NW-N con-
figuration, each of its ends is connected to a large, normal
metal electrical measurement pads, anchored at To. Be-
cause To < Tc(I = 0), and is in fact below Ts(I = Ir),
the end regions are in the SC state, aside from a short
proximity region, lprox ∼ 100nm in length, immediately
adjacent to each normal pad (Figs. 1(b)). Here, the
Ts(I) is the upsweep switching temperature at current I,
On the other hand, as long as I exceeded Ir, the center
of the nanowire is above Ts(I) and is thus in the normal
state. When I is reduced down to Ir, a blockage prevent-
ing the central region to be cooled is suddenly removed,
allowing the cooling to propagate all the way to the cen-
ter. This blockage removal is described in detail in what
follows.

The upsweep switching temperature for a given cur-
rent Ts(I) expresses the same relation as the switch cur-
rent as a function of temperature Is(T ), but viewed in
reverse. For our nanowires, these were reported in Ref.
88. It is worthwhile to point out that the value of Is at
a given temperature is not unique, but depends on the
upsweep ramp rate of the current. Conversely, Ts(I) is
also dependent on the ramp rate. This is due to the fact
that the switching is caused by phase-slip events7–9, and
thus the relative rates of the phase-slip generation to cur-
rent upsweep matters. The slower the upsweep current
ramp rate, the longer waiting time is available for phase-
slip events to take place within a given interval in cur-
rent. This increases the probability for switching within
that interval and reduces the magnitude of the current
at which switching takes place. But because the rate of
phase-slip generation is exponentially dependent on the
current, the dependence of Is on ramp rate is weak, and
is approximately logarithmic.

To estimate Ir, it is necessary to determine the posi-
tion dependent temperature, T (x). Both the electronic
and phonon thermal conduction mechanisms need to be
considered. The temperature range of interest is very low



4

FIG. 3: Solid squares–Data for the retrapping current
Iras a function of temperature for nanowires (a) S1
(10nm× 10nm× 1.5µm), (b) S2 (9.3nm× 9.3nm× 10µm),
and (c) S4 (7nm× 7nm× 10µm). For S1 in (a), the solid
curve is a fit based on the heat flow model describe in the
main text, where only the electronic thermal conduction is
considered. The Wiedermann-Franz constant deduced from
the fitting is Lo = 3.65 ± 0.15 × 10−8WΩ/K2. Vertical bars
indicate certainty of the fitting curve, due to a combination
of the uncertain in the parameters, including uncertain in the
superconducting transition temperature Tc(I) of ±2%. For
S2 and S4 in it is necessary to include both electronic and
phonon conduction. Various rate limiting phonon processes
were considered, including electron phonon relaxation and
Kapitza boundary resistance phonon conduction (see text).
The uncertain of the phonon parameters is ±10%.

compared to the lattice DeBye temperature ΘD ∼ 300K
and the temperature dependence of the phonon ther-
mal conductivity takes a power-law form, reflecting the
phonon density of states. At these low temperatures,
0.2K < T < 1.3K, the value of the phonon conductiv-
ity is considerably smaller than the electronic thermal
conductivity. The only exception is in the SC regions
when T (x) < 0.35K. Thus, in the absence of a very
large temperature rise phonons can only carry away a
relatively small amount of heat. Whereas electronic con-
duction requires the heat to exit the ends of the nanowire,
the phonon conduction goes through the short InP tem-
plate ridge (in height), on which the nanowire resides.
The nanowire length is microns (µms) while the ridge is
only 30nm in height. If the wire is long, the electronic
mechanism will become much less effective, and phonon
conduction must be included as well.

For the short wire S1, electronic conduction over-
whelmingly dominates. For the long wire S2, both elec-
tronic and phonon thermal conduction must take place
side by side. Phonon conduction through the InP ridge
takes place via several steps: (a) electron-phonon energy
relaxation within the aluminum nanowire, (b) conduction
through the aluminum-InP boundary, and (c) conduction
through the 8 nm wide, 30 nm tall InP ridge. Below the
ridge, the energy is dissipated in the very highly con-
ductive GaAs bulk material. Thus the base of the InP
ridge can safely be assumed to be held at the ambient
temperature, To.

One additional mechanism of heat removal takes place
through the liquid He3, which surrounded the nanowires
in the set of measurement on S1 and S2. However, this
channel appears less important. Additional data for wire
S4 obtained in the dilution refrigerator, in which the sam-
ples are in vacuum and thus there is no liquid surrounding
the nanowire, yielded a retrapping current which can be
accounted for in a similar manner as S2, using electronic
and InP ridge thermal conduction only. Note both wires
S2 and S4 are 10µm in length.

We divide a nanowire into two symmetric halves of
length L/2 each, where L is the total wire length, and
consider the right half, where 0 ≤ x ≤ L/2, and T (x =
L/2) = To, as shown in Fig. 1(b). When slowly down-
sweeping the current I, we assume that the nanowire is
in the SC state at a position x, if T (x) < Ts(I), but is in
a normal state if T (x) > Ts(I).

We begin by considering the short wire S1 (1.5µm in
length) and only include electronic conduction. Phonon
conduction alone will remove ∼ 3% of the heat generated
by heating, and will be neglected. The diffusion equa-
tions must account for three regions: (a) the central re-
gion for 0 ≤ x ≤ xb, which is normal for I > Ir and has a
resistance per unit length ofRN/L ∼ 0.33−0.82kΩ/µm28

and thus self-heats; (b) the SC segment for xb ≤ x ≤
L/2 − lprox, which nearly does not self heat, but must
conduct the heat generated by the central normal seg-
ment, and (c) the short proximity region adjacent to the
normal metal pads for L/2 − lprox ≤ x ≤ L/2 which is
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FIG. 4: Plot of the thermal heat capacity ratio, κSC/κN , be-
tween the normal and superconducting states, as a function
of reduced temperature, T/Tc. The line indicates the approx-
imation used in the calculations.

approximated as a normal region. More precisely, the SC
region close to the SC-normal boundary xb heats slightly
due to occasional phase slips as its temperature is just
below Ts(I) ≥ 1.1K; the proximity region generates self-
heating, and in addition must conduct through it the
heat of the central normal region as well. For the normal
metal regions, the steady state heat diffusion equation is
given by:

I2RN
L

= − d

dx
(κNAnw

dT

dx
), (1)

where κN = LoLT/(RNAnw) is the electronic
Wiedemann-Franz electronic thermal conductivity, Lo is
Lorenz number determined from fitting, and Anw = w×h
the nanowire cross sectional area. In the SC region, it is
replaced by:

0 ≈ − d

dx
(κSCAnw

dT

dx
). (2)

The equations in the three regions are supplemented by
boundary conditions at the junctions. The junction be-
tween the center normal region and the SC region takes
place at x = xb, and between the SC and short prox-
imity regions, at x = L/2 − lprox. The temperature is
continuous across each junction, and the heat flow is
identical immediately to the left and right. Lastly, we
have T (x = L/2) = To. Note that the forms of these
equations differ from those used in Ref. 6. There, the
variation of the thermal conductivity κN or κSC with
position, through their dependence on temperature T,
was not accounted for6.

At a given temperature below Tc(I), the electronic
thermal conductivity of the SC segment at a position x,
with a temperature T (x), is related to the corresponding

normal metal W-F thermal conductivity at that temper-
ature, by the ratio r ≡ κSc/κN :18

r =
3

π2

∫ ∞
1.76Tc(I)/T (x)

x2

cosh2(x/2)
dx. (3)

This integral evaluated numerically is shown in Fig.
4. For the purpose of determining the position depen-
dent temperature at a given I, this ratio is approxi-
mated by a linear form as indicated in the figure for
0.2 < T (x)/Tc(I) < 1:

r ≈ 1.125[T (x)/Tc(I) − 0.2]. (4)

We next describe how the cooling blockage can be re-
moved, and determine the condition for this to occur. To
do so, we consider the SC region and fix the current at I.
The SC-normal boundary occurs at xb, which is deter-
mined by equating the temperature at xb, T (xb), to the
switching temperature at that current Ts(I). Momentar-
ily treating xb as a variable, T (xb) attains its maximum
value at a critical value xb = xc; in the simplest approxi-
mation xc is independent of I as will be seen below. For a
large current I, the normal region is large and the actual
xb exceeds xc (Fig. 5). As I is reduced down to Ir, the
normal region shrinks and xb becomes equal to xc. Here,
T (xb = xc) takes on the maximum possible value at Ir,
since xb = xc, and is equal to Ts(Ir). Further reducing
I to just below Ir, Ts(I < Ir) will slightly increase from
Ts(Ir), while at every x, T (x) will slightly decrease due
to reduced heating. The decreased maximum tempera-
ture at xc, T (x = xc), can no longer reach the increased
Ts(I < Ir). The boundary will become unstable, and
will propagate toward the center at x = 0. Starting from
the inital boundary at xb = xc, more and more of the
normal region will fall below Ts(I) and become super-
conducting, as the shrinking normal region generates less
and less heat, until the entire wire is cooled. The three
cases are depicted in Fig. 5.

The value for xc can be deduced from the steady-state
heat diffusion equation in the SC state, Eq. 2. Neglecting
the short proximity region adjacent to the pad, xc = L/4
(0.5(L/2)); accounting for the proximity region of length
lprox modifies this to xc ≈ (L/2 − lprox)/2. For illustra-
tive purposes, let us determine xc in the absence of the
proximity region. Focusing on the SC region at its border
with the normal segment, x = xb, twice integrating the
diffusion equation and matching the boundary conditions
yields for the left-hand-side (LHS):

LHS = (I2RN
x

L
)(L/2 − x), (5)

which is maximal for x = L/4 for fixed I. At x = xb
the factor I2RN

xb

L represents the heating power gener-
ated by the normal region where 0 ≤ x ≤ xb. Equating
the LHS to a twice-integrated right-hand-side and solv-
ing for T (xb) thus yields the highest temperature at the
normal-SC border when xb = xc = L/4, where the LHS
is maximal.
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FIG. 5: The temperature profile versus position x at ambi-
ent temperature To, with a corresponding retrap current Ir.
Three different current levels are depicted: I > Ir, I = Ir,
and I < Ir. The critical value of the SC-Normal boundary, is
given approximately by xc = 0.5(L/2− lprox). The proximity
region lies to the right of x = (L/2− lprox), ending at the
electrical pad at L/2. The SC segment lies immediately to
the left. For I ≥ Ir, the position of the SC-Normal boundary,
xb, is given by the intersection of T(x) and the corresponding
switching current Ts(I). The horizontal dotted line depicts
Ts(Ir), while the short light solid lines correspond to I < Ir
and I > Ir with [Ts(I > Ir)] < [Ts(Ir)] < [Ts(I < Ir)]. For
I > Ir, xb > xc. For I = Ir, xb = xc. For I < Ir, indicated
by the light solid curve joined onto the light dotted curve, the
dotted ”normal” region is unstable; the region immediately
to the left of xc actually falls below Ts(I < Ir) and will go
superconducting, leading to a propagation of the SC-Normal
boundary toward the center at x = 0.

Using the approximate form of the thermal conductiv-
ity ratio r between the SC and normal states given by
Eq. 4, the diffusion equation can readily be solved an-
alytically. The solution yielded the position dependent
temperature profile shown in Fig. 6(a). The kink at
the SC-proximity boundary is an artifact of our model,
where the proximity region is approximated as a nor-
mal region. A more accurate model would require solv-
ing the Usadel equation, which is expected to yield a
rounding and smoothing of the kink. See Ref. 24 for
an example of the rounded voltage profile in the proxim-
ity region. The fit to the Ir as a function of tempera-
ture T is presented in Fig. 3(a), using a Lorenz number
Lo = 3.65×10−8WΩ/K2, somewhat higher that the the-
oretical value of 2.45× 10−8WΩ/K2. Viewed in another
way, forcing Lo to take the theoretical value, our model
would predict a low temperature Ir ∼ 0.8µA, rather than
the 1µA we observed. Reconciling this discrepancy may
require the development of more sophisticated analysis
using the Usadel equation, while incorporating heating
and a position dependent temperature at the same time.
Despite the discrepancies, the overall behavior and mag-

FIG. 6: Temperature profile versus position x for different
ambient temperatures. The temperature is stepped by 0.1 K
between successive curves–(a) nanowire S1, (b) nanowire S2,
and (c) nanowire S4. The kink at x = 0.79(L/2) in (a) is an
artifact of modeling the proximity region as a normal metal,
with a sharp boundary with the SC region to its left.

nitude (within 20 % accuracy) are captured in our sim-
plified model.

For the 10µm wires S2 and S4, electronic thermal con-
duction alone is not sufficient to support the measured Ir,
despite its smaller value (by a factor of 5 - 8 at 0.3K). It
is necessary to include phonon conduction. We assume a
power-law temperature dependence in the heat exchange
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rate. At every position, the heat-removal linear power
density is set proportional to T γ − T γo , where γ may be
varied to reflect the limiting process in the phonon con-
duction discussed above. The steady-state heat diffusion
equation takes the forms:

I2RN
L

− β(T γ − T γo ) = − d

dx
(κNAnw

dT

dx
), (6)

and

−β(T γ − T γo ) ≈ − d

dx
(κSCAnw

dT

dx
), (7)

for the normal and SC segments, respectively. For the
longer wires S2 and S4, the smaller Ir values allow the
short proximity region adjacent to the normal-metal pads
to be neglected.

This form for the heat-removal power-density-per-
unit-length assumes that phonon conduction along the
wire direction is weak–a reasonable assumption since
the thermal conductivity is small, and since the wire
is much longer than the height of the InP ridge (i.e.
10 µm � 30 nm). It also assumes that the environment
to which the energy is dissipated is well-anchored at
the ambient temperature. For instance, if the electron-
phonon relaxation is the limiting step, it is reasonable to
assume that the combination of Kapitza and InP ridge
phonon conduction is sufficiently large that the phonon
temperature within the nanowire is maintained at To. On
the other hand, if Kapitza boundary resistance limits the
rate of heat removal via the phonons, then it is reason-
able to assume the phonons within the InP ridge are at
To.

Several choices are possible for γ. For electron-phonon
energy relaxation via 3-dimensional (3D) phonons, γ = 5,
while for Kapitza boundary resistance, γ = 4. However,
the small lateral dimensions (width and/or height) in ei-
ther the nanowire or InP ridge should render the phonons
reduced below 3D, down to 1D and 2D, respectively. This
occurs because the thermal phonon wavelength λph/2,
exceeds the lateral dimension(s) for T ≤ 1.3K (more
precisely, λph/2 > (w, h)). Note that the width of the
InP ridge is wInP = 8nm while the width/height of the
nanowire w or h ∼ 10nm. By examining the fitted coeffi-
cient in front of the power-law term, one seeks to exclude
various possibilities. This coefficient β naturally depends
on the limiting mechanism. For example, in the case
of electron-3D phonon relaxation, β = Σe−3D−phAnw,
where Σe−3D−ph is the 3D energy relaxation rate con-
stant and Anw the nanowire cross sectional area. For
Kapitza boundary resistance limited thermal conduc-
tion with 3D InP phonons, β = σK,3D−phwInP , where
σK,3D−phT

3 is the Kapitza boundary conductance at
temperature T.

From the quantitative analysis presented below, it will
be shown that in the most likely scenario, thermal con-
duction is limited by the Kapitza boundary resistance be-
tween the Al nanowire and the InP ridge. Thus, it turned

out not necessary to consider the inclusion of more-than-
one power law terms, each with a different exponent γ.
At the same time, the assumption of a power-law form
also pre-supposes that the conduction is dominated by in-
trinsic properties of nearly crystalline materials, for both
the nanowire and the InP ridge, rather than by interface
states or adsorbates on the side walls. A partial justi-
fication is the degree of agreement achievable with data
using sensible parameter values.

These highly nonlinear equations were solved approx-
imately by numerical methods, yielding the position
dependent temperature profiles shown in Figs. 6(b)
and (c), respectively for S2 and S4. The fitting to Ir
versus temperature yielded the curves in Figs. 3(b)
and (c), with Lo fixed at the value from wire S1, of
3.65 × 10−8WΩ/K2. The critical value xc was found
to shiftly slightly toward the center, to 0.23L (0.46(L/2)
rather than L/4 (0.5(L/2)). The best fit is for γ = 5, cor-
responding to the electron-3D phonon energy relaxation
as the limiting step. Fits of slightly lower quality can
be achieved for γ = 4 or 3. On the other hand, the nu-
merical values for the coefficient β yielded values for the
parameters, which point to Kapitza boundary resistance
at the Al nanowire-InP interface as the limiting path to
phonon conduction.

For γ = 5 the extracted electron-3D-phonon relaxation
rate Σe−3D−ph for S2 is ∼ 6× as large as the established
value ∼ 2×109W/m3K518 and is ∼ 11× for S4. The val-
ues are thus inconsistent. We are forced to consider the
possibility that the Al phonons are reduced in dimensions
down to 1D. An enhancement of ∼ ΘD/T (a/w) ∼ 9 can
be expected per dimension reduced, where a is the lattice
constant, yielding a factor ∼ 81, far larger than the mea-
sured enhancement! Instead, within this scenario, one
expects the limiting step to be the Kapitza boundary
resistance between the Al nanowire and the InP ridge.

For Kapitza boundary limited conduction, one may ex-
pect γ = 3 rather than γ = 4 due to reduced-dimension
2D InP phonons, despite the poorer quality fit. An en-
hancement factor of ∼ 9 over the known 3D value should
be present from the reduction in dimension by 1. As a
reference, we use σK,3D−ph ∼ 20W/m2K4, obtained for
Au on GaAs rather than Al on InP25. Forcing γ = 4 yield
the parameter value σK,3D−ph ∼ 190W/m2K4, which is
10 times the reference value. Instead, after conversion of
the reference value to account for 2D phonons, the en-
hanced value of σK,2D−ph ∼ 280W/m2K3 is consistent
with the fitted values of 300W/m2K3 and 330W/m2K3,
respectively, for S2 and S4 (with γ = 3). To make certain
this picture of Kapitza boundary limited conduction is
consistent, we need to ensure the ridge phonon thermal
conduction is larger. An estimate of the phonon ther-
mal conductivity of the InP ridge itself yields a lower
bound of 700W/m2K3, corresponding to the case of a
very short, ridge-width limited phonon mean free path
∼ 8nm. This rules out phonon conduction in the InP
ridge as the limiting step, as required. Finally, as a refer-
ence, we estimate the conductivity in the absence of any
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electronic contribution. This yield a value roughly double
the above values for the 2D phonon Kapitza boundary
resistance coefficient.

It is worthwhile to re-emphasize the evidence for re-
duced dimension Kapitza boundary conduction as the
limiting step, based on a direct comparison of the fitting
parameter values for S2 and S4. Whereas, Σe−3D−ph for
electron-phonon relaxation limited heat removal shows a
discrepancy between S2 and S4 of a factor 1.2/2.2 ∼ 1.8,
the values for the reduced dimension σK,2D−ph for 2D InP
ridge phonon, Kapitza boundary limited thermal conduc-
tion are within 10% of each other! This, in conjunction
with the discrepancy with the known reference value for
Σe−3D−ph, helps establish the Kapitza boundary resis-
tance limited scenario.

One factor, which may impact the quantitative agree-
ment and account for the discrepancy between the model
and the data, could come from imperfections at the
nanowire-InP interface mentioned previously. For in-
stance, grain boundaries in the poly-crystalline nanowires
(grain size ∼ wire width), interface roughness, localized
interface states, etc., all can influence the phonon cou-
pling across the boundary. In the ordinary 3D case be-
tween liquid He3 and a metal, it is well known that in-
terface roughness can help break the translational invari-
ance, and supply the momentum transfer needed to mit-
igate the effects of phonon velocity mismatch across the
boundary. This leads to a weaker dependence than T 4

in the boundary conductance, and an enhanced conduc-
tance at low T . Unfortunately, for our nanowires such
effects are difficult to quantify.

Based on the detailed analysis presented in this work,
we establish that in the retrapping process, the longer
wires S2 and S4 require phonons to contribute to heat
removal, in addition to the electronic thermal conduc-
tion, while for the short S1, electronic conduction alone
is sufficient. The reasonable fits using sensible parame-
ters demonstrate that it is possible to achieve an under-
standing of the heating-induced hysteresis for nanowires
S1, S2 and S4, based on heating within the normal re-
gions, while at the same time account for the observed
differences.
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