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Neutron scattering measurements of the dynamic structure factor, S(Q,ω), of liquid 4He as a
function of pressure at high momentum transfer, ~Q, are presented. At high ~Q the dynamics of
single atoms in the liquid is observed. From S(Q,ω) the atomic momentum distribution, n(k), the
Bose-Einstein condensate fraction, n0, and the Final State broadening function are obtained. The
shape of n(k) differs from a classical, Maxwell-Boltzmann distribution with higher occupation of
low momentum states in the quantum liquid. The width of n(k) and the atomic kinetic energy,
〈K〉, increase with pressure but the shape of n(k) remains approximately independent of pressure.
The present observed and Monte Carlo calculations of 〈K〉 agree within error. The condensate
fraction decreases from n0 = 7.25 ± 0.75% at SVP (p ≃ 0) to n0 = 3.2 ± 0.75% at pressure p =
24 bar, a density dependence that is again reproduced by MC calculations within observed error.
The Final State function is the contribution to S(Q,ω) arising from the interaction of the struck
atom with its neighbors following the scattering. The FS function broadens with increasing pressure
reflecting the increased importance of FS effects at higher pressure.

I. INTRODUCTION

Bose-Einstein condensation (BEC) plays an essential
role and is widely observed in condensed matter1. Super-
fluidity and superconductivity arise from BEC.2–5 Super-
fluidity in liquid 4He is a manifestation of BEC of pre-
formed Bosons (4He atoms)6,7. Superconductivity fol-
lows from BEC of paired Fermions (Cooper pairs) and
is generally limited by the formation of the pairs. In di-
lute gases of trapped Bose alkali atoms, essentially 100
% of the atoms can Bose condense. BEC in a gas of pho-
tons, in which the number photons is restricted, has also
recently been reported8.
BEC may be described as the condensation of a macro-

scopic fraction of the Bosons into one single particle state,
usually the lowest energy single particle state or ground
state orbital5. For Bosons in a trap, the wave functions of
the natural single particle orbitals are determined chiefly
by the trapping potential and less so by the inter-particle
interaction. The natural orbitals are most fundamentally
determined by diagonalizing the One-body density ma-
trix (OBDM).5,9–11 BEC is detected by the localization
of the atoms in space when the atoms condense into the
lowest energy orbital12–14.
In a uniform liquid where there is no external potential,

the natural single particle states are plane wave states
enumerated by the single particle momentum, k. In this
case BEC is associated with condensation into the zero
momentum (k = 0) state. In a uniform system, BEC
can be observed as the onset of a peak in the momentum
distribution, n(k), at k = 0 of magnitude n0δ(k), where
n0 is the condensate fraction. In this case, the OBDM
is the Fourier transform of n(k). In strongly interact-
ing liquid 4He less than 10 % of atoms can condense.

Nonetheless, the resulting phase coherence in the liquid
enables superflow and other remarkable properties.

The atomic momentum distribution, n∗(k), of atoms in
the states k > 0 above the condensate in quantum gases,
liquids and solids is also of great interest. In classical
systems where the momentum and position are indepen-
dent variables, n∗(k) is always a Gaussian function, the
Maxwell-Boltzmann distribution. In quantum systems
where the momentum and position are coupled via com-
mutation relations, n∗(k) depends on the interatomic po-
tential, on the external potential if any, and contains im-
portant information on quantum effects and inter-atomic
correlations. In strongly interacting systems, n∗(k) is a
dominate part of n(k).

As proposed initially by Miller, Pines and Nozières15

and Hohenberg and Platzman16, n(k) and n0 can be
measured in neutron scattering measurements of the dy-
namic structure factor (DSF), S(Q,ω). At high en-
ergy (~ω) and momentum (~Q) transfer from the neu-
tron to the liquid, the neutron strikes a single atom and
S(Q,ω) is a broad function of ω centered near the free
atom recoil frequency ωR = ~Q2/2m of width propor-
tional to vR = ~Q/m, the free atom recoil velocity. In
this momentum and energy transfer range, it is conve-
nient to express the energy transfer ω terms of the y-
scaling variable y = (ω−ωR)/vR and introduce the DSF
J(Q, y) = vRS(Q,ω). The scattering is then centered
near y = 0 and the width is approximately independent
of Q. If the interaction of the struck atom with its neigh-
bors following the scattering can be ignored, denoted
the Impulse approximation (IA), the J(Q, y) reduces to
JIA(y) which is entirely independent of Q. The conden-
sate appears in JIA(y) as a term n0δ(y) and JIA(y) has
a width arising from Doppler broadening by the atomic
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momentum distribution, n(k).

When there is interaction, the atoms struck by neu-
trons collide with their neighbors following the scattering,
denoted Final State (FS) interactions. When FS effects
are important, the condensate is observed in J(Q, y) at
y = 0 as a broadened peak of width n0R(Q, y), where
R(Q, y) is the FS function. It is also observed in
J(Q, y) at y 6= 0 as a function that tracks R(Q, y). Be-
cause of FS effects, the observed J(Q, y) also depends
on Q. This dependence can be used to determine the FS
function. In the absence of FS effects R(Q, y) → δ(y).

Early measurements of the atomic momentum distri-
bution and n0(T ) in liquid 4He using neutron inelastic
scattering are reviewed by Sokol,17 Glyde,18 Silver and
Sokol,19 Glyde and Svensson20, Svensson and Sears,21

Svensson22 and others. They produced a wide range of
n0 values23, 2 ≤ n0 ≤ 17 %. The different values of
n0 arose chiefly from the different treatment of the Final-
State contributions to S(Q,ω). Sears et al.24 developed
a method for treating FS effects based on an additive
expansion25 of S(Q,ω). Using this method and reac-
tor neutron measurements of S(Q,ω) at wave vectors
10 ≤ Q ≤ 13 Å−1, Sears et al.24 and Mook26 obtained
the first consistent values of n0, n0(0) = 13.9 ± 2.3 %
and n0(0) = 11± 3%, respectively. In an important step
forward, Sokol and collaborators17,27–31 made a series of
measurements at higher Q values (Q = 23 Å−1) drawing
on the IPNS spallation neutron source. They also an-
alyzed the data using the convolution method of treat-
ing FS effects developed by Gersch and Rodriguez32 and
the FS function calculated by Silver19,33. They found
n0 = 10.0± 1.25% at low temperature (0.35 K) in liquid
4He at SVP and an n0 that decreased significantly with
increasing pressure, to n0 = 5.5± 1.25% at 24 bar.

Taking advantage of the increased neutron beam in-
tensity and improved instrumentation at the ISIS Spal-
lation Neutron Source, Rutherford Appleton Labora-
tory, we have measured n0 with increased precision.
A condensate fraction at SVP of n0= 7.25 ±0.75% was
observed.34 Similarly in 3He -4He mixtures, again at SVP,
an n0 that increases only slightly with 3He concentra-
tion, to n0 = 11.0 ± 3.0% at a 3He concentration of 15
- 20 % was also observed.35 The treatment of FS effects
in these and the present measurements may be described
as an expansion of J(Q, y) at short scattering times in
the spirit proposed by Sears25 but within the convolution
formulation of Gersch and Rodrigez32. The FS broaden-
ing function is also determined from experiment. These
measurements34–36 also showed that n(k) in liquid he-
lium is more sharply peaked at low k than a Gaussian.
This deviation from a Gaussian can be described by a
kurtosis of δ = 0.4. A number of measurements of the
atomic kinetic energy in liquid 4He have been made at
much higher Q (Q ≥ 100 Å−1), where FS effects are neg-
ligible, using the VESUVIO instrument at ISIS . These
measurements and a wide range of measurements in other
systems made using VESUVIO are reviewed by Andreani
et al37.

In this background we present neutron scattering mea-
surements of J(Q, y) in liquid helium under pressure be-
tween SVP and 24 bar at ISIS. The goal is to determine
the condensate fraction, n0, up to 24 bar to the same level
of precision that it is known at SVP. We are particularly
interested in how much the condensate fraction, n0, de-
creases with increasing pressure between SVP (p ≃ 0)
and the solidification pressure (p = 25.3 bar). A second
goal is to determine the shape and width of n∗(k) and
whether this shape changes with pressure. The FS func-
tion is also determined as a function of pressure from
experiment. A short version of this work has already
appeared38.
In the next section we describe the model one-body

density matrix (OBDM), dynamic structure factor (DSF)
and FS function R(Q, s) used to analyse data and the
experiment. In section III we present the results and
discuss them in section IV.

II. EXPERIMENT AND DATA ANALYSIS

A. Model momentum distribution and OBDM

To represent n(k), we introduce the model momentum
distribution24,39,

n(k) = n0[δ(k) + f(k)] +A1n
∗(k). (1)

In fundamental treatments of Bose fluids the occupation
operators (ak) are separated into a condensate compo-
nent (a0 =

√
n0) and an above the condensate component

(ak, k 6= 0). This leads to the separation of n(k) into
n0δ(k) and n∗(k) in Eq. (1), the condensate and the
above the condensate components, respectively. In inter-
acting Bose fluids there is also a coupling between these
components represented by the term

n0f(k) =

[
n0mc

2~(2π)3n

1

|k| coth
(
c~|k|
2kBT

)]
e−k2/(2k2

c ). (2)

wherem is the mass, c is the sound velocity and n = N/V
is the number density. This coupling arises from the scat-
tering of Bosons from states above the condensate into
the condensate and vice versa. The scattering couples the
single particle (n(k)) and density (phonon-roton) excita-
tions. It is the coupling of these excitations that leads to
Eq. (2) which is derived and valid for low k modes where
it is most important. The coupling decreases at higher
k values (k ≥ 0.7 Å). We have multiplied the derived
f(k) by a Gaussian function exp[−k2/(2k2c)] with kc =
0.5 Å to cut off f(k) in a smooth fashion at higher k
as required. Eq. (2) is derived and discussed in Ref 18.
It is a small term and including it in Eq. (1) reduces the
n0 observed by approximately 15 %.
The Fourier transform of n(k) is the One-Body density

matrix (OBDM),

n(r) = 〈Ψ+(r)Ψ(0)〉/n = 〈e−ik·r〉 =
∫

dk n(k)e−ik·r.

(3)
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The OBDM is a more fundamental quantity than
n(k) since it is well defined for both strongly interacting
and non-interacting systems. It represents the probabil-
ity amplitude of simultaneously removing a particle from
the origin and placing it at point r. It is independent of
the basis of the system. The model OBDM corresponding
to Eq. (1), the Fourier transform of Eq. (1) for displace-

ments r = Q̂ s parallel to the scattering wave vector, Q,
is

n(s) = n0[1 + f(s)] + A1n
∗(s). (4)

The constant A1 is determined by normalizing n(k) to
unity, i.e. requiring n(s = 0) = 1. At s = 0, f(0) = 0.28.
We begin with n(s) in Eq. (4) as our basic model function
that will be fitted to the data.

B. Observed Dynamic Structure Factor

In this section, we set out the expressions for the dy-
namic structure factor (DSF) that we use to fit to the
data. In inelastic neutron scattering from pure liquid
4He, the coherent DSF, S(Q,ω), is always observed. The
coherent S(Q,ω) includes the dynamic correlations be-
tween atoms in the fluid. However, at high momentum
transfer Q ≥ 10 - 12 Å−1, where the static structure
factor, S(Q), reduces to one, the correlations have little
impact and the coherent S(Q,ω) reduces to the inco-
herent DSF, Si(Q,ω). The Si(Q,ω) describes the re-
sponse of the single atom that is struck by the neutron.
As discussed in the Introduction, at large, constant Q,
Si(Q,ω) is a broad function of ω peaked at approxi-
mately at ωR of width proportional to vR and magnitude
inversely proportional to vR. In this regime, the near Im-
pulse regime, it is convenient to express the energy trans-
fer in terms of the y-scaling variable and Si(Q,ω) as
J(Q, y) = vRS(Q,ω). The J(Q, y) peaks near y = 0 and
is approximately independent of Q.
The Fourier transform of Si(Q,ω), the intermediate

DSF Si(Q, t), is similarly conveniently expressed in terms
of the length s = vRt conjugate to y. In these variables,
the Fourier transform of J(Q, y) is,

J(Q, y) =
1

2π

∫
ds eiysJ(Q, s), (5)

where J(Q, s) is the intermediate DSF written in the
length variable, s.
The intermediate DSF in the Impulse Approximation

is also exactly the OBDM,

JIA(s) = n(s) = n0[1 + f(s)] +A1n
∗(s). (6)

This equality also makes n(s) a natural function to fit
to the data. The observed intermediate DSF is

J(Q, s) = JIA(s)R(Q, s). (7)

where R(Q, s) is the Final State (FS) broadening func-
tion that takes account of the interaction of the struck

atom with its neighbours. Eq. (7) can be taken as the
definition of the FS function. As discussed below we ob-
tain functions for both n∗(s) and R(Q, s) by making an
expansion of J(Q, s) in powers of s that is qualitatively
correct up to s6 and determine the parameters in the
expansion by fits to experiment. In this way R(Q,s) is
determined experimentally and is a function of pressure.
At high wave vector and energy transfer, the scattering

time is short. The recoil distance s = vRt traveled by the
struck atom within the scattering time is also short. For
short s the intermediate DSF in Eq. (7) can be written
as

J(Q, s) = 〈Ts exp

[
−i

∫ s

0

ds′kQ(s
′)

]
〉. (8)

In this expression Ts(Tt) is the distance (time) order-

ing operator and ~kQ = ~(k · Q̂) is the momentum of
the struck atom along Q. From Eq. (8) we see that
J(Q, s) depends only on the momentum of the struck
atom; the initial momentum kQ(0) and the momentum
after it has traveled a distance s away from the scattering
event. The kQ(s) differs from kQ(0) as result of collisions
of the recoiling struck atom with its neighbors, the Fi-
nal State effects. If we ignore these FS collisions so that
kQ(s) = kQ(0) for all s, J(Q, s) reduces to the IA,

JIA(s) = 〈e−ikQs〉. (9)

The IA assumes that the momentum kQ of the struck
atom is constant and not changed from its initial value af-
ter the scattering (no Final-State interactions). By com-
paring Eqs. (3) and (9) we see that the intermediate DSF

in the IA is the OBDM for displacements r = Q̂ s parallel
to Q.
To obtain the expressions for JIA(s) and the FS func-

tion R(Q, y) that we fit to data, we make cumulant ex-
pansions of Eqs. (8) and (9). The cumulant expansion of
the OBDM Eq. (9) gives, up to terms in s6,

J∗

IA(s) = n∗(s) = exp

[
−α2s

2

2!
+

α4s
4

4!
− α6s

6

6!

]
, (10)

where

α2 = 〈k2Q〉,
α4 = 〈k4Q〉 − 3〈k2Q〉2,
α6 = 〈k6Q〉 − 15〈k4Q〉〈k2Q〉+ 30〈k2Q〉3.

(11)

are cumulants of n(s). This cumulant expansion contains
terms in n∗(s) only, terms arising from atoms above the
condensate which contribute at short s in Eqs. (7) and
(9). The condensate contribution, which is long range
in s, has to be added separately to n∗(s) in Eq. (8) as
discussed below. The model JIA(s) has four parameters,
n0, α2, α4 and α6. These are determined as a function of
pressure by fitting to experiment in the Results section
below.
The model Final-State function R(Q, s) that we fit

to data is obtained by making a cumulant expansion of
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the intermediate DSF J(Q, s) in Eq. (8). The terms in
J(Q, s) = n∗(s)R(Q, s) that belong to n∗(s) (the Q in-
dependent terms in Eq. (10)) are identified and the re-
maining terms arise from R(Q, s). Up to powers s6, this
gives,

R(Q, s) = exp

[
iβ3s

3

3!
+

β4s
4

4!
− iβ5s

5

5!
− β6s

6

6!
+ · · ·

]
.

(12)
Expressions for the coefficients βn are:

β3 = a3/λQ,
β4 = a4/(λQ)2,
β5 = a52/(λQ)3 + a54/λQ,
β6 = a62/(λQ)4 + a64/(λQ)2.

where the anm are independent of Q and λ = ~
2/m =

1.0443 meV Å2 in liquid 4He. Expressions for the anm
can be derived from the moments of J(Q, y) and ex-
pressions up to a64 have been obtained25,39. The low-
est two are a3 = 〈∇2v(r)〉/6 and a4 = 〈(∇v)2〉/3 where
v(r) is the total potential seen by the struck atom. In
applications34,40 we have found that β4 is negligible.
Similarly the a54 term in β5 and the a62 term in β6 are
also small and can be neglected. In this way R(Q, s) re-
duces to three terms,

R(Q, s) = exp

[
i(a3/λQ)s3

3!
− i(a52/(λQ)3)s5

5!

− (a64/(λQ)2)s6

6!
]. (13)

which depend on three parameters, a3 a52 and a64. These
parameters are determined as a function of pressure by
fits of the total J(Q, y) to experiment in the Results
section below.
The expressions in Eqs. (10) and (13) were derived for

a fluid without a condensate. When there is BEC, we
assume that we can replace the n∗(s) in Eq. (10) by
n(s) in Eq. (6) which contains the condensate without
affecting the short time expansions. This is based on the
picture that the condensate term, n0[1+f(s)], in n(s) is
small and long range function in s. As a result adding it
to n∗(s) should not change significantly the expansion
of J(Q, s) at short distances s. Empirically, we have
found that R(Q, y) is the same within precision above
Tλ (where n(s) = n∗(s)) and below Tλ (where n(s) 6=
n∗(s)).

C. Experiment

The data reported here were collected using the MARI
time-of-flight (TOF) spectrometer located at the ISIS
spallation neutron facility, Rutherford Appleton Labora-
tory, UK. MARI was chosen because it has a combination
of high incident energies (up to 1eV possible) and a wide
and almost continuous angular detector coverage (3◦ to

135◦ in steps of 0.43◦) making it ideal to simultaneously
access a large range in energy and momentum transfer.
Due to the pulsed nature of the source, data collection
is performed in TOF in which the time of arrival of a
neutron in the detector, relative to when they leave the
moderator, determines its energy loss or gain after scat-
tering from the sample. The momentum transfer depends
on the TOF and the scattering angle of the neutron.
Commercial grade 4He (0.3 ppm of 3He) was condensed

in a cylindrical aluminum sample cell of volume 100 cm3

that is thermally anchored to the mixing chamber of a
Vericold dry dilution fridge with a base temperature of 40
mK. Highly neutron absorbing Boron Nitride (BN) was
used as shielding material to reduce undesirable back-
ground scattering from the sample cell end-caps and ex-
posed parts of the fridge. In addition, to minimizing
multiple scattering within the 4He sample, 1 mm thick
BN discs were placed perpendicularly to the cylindri-
cal axis essentially splitting the sample volume into 5
smaller cylinders. Temperature was measured using a
calibrated RuO2 sensor and the pressure was monitored
using a pressure transducer situated in an external gas
panel containing a 4 liter buffer volume. The incident
neutron energy was determined to be 720 meV.
Data were successfully collected as follows: at base

temperature (40 to 75 mK) in the superfluid phase and
at pressure, p = 0, 7.5, 12, 15, 20 and 24 bar; in the
normal phase (2.3 K) and at p = 12, 20 and 24 bar; and
additionally for p = 24 bar at T = 1.0, 1.5 and 2.0 K.
The data collected in TOF was then converted to en-

ergy transfer (~ω) at constant scattering angle and sub-
sequently to constant scattering vector Q using standard
procedures. A detailed discussion of the data transfor-
mation from TOF to S(φ, ω) and then to S(Q,ω) is given
by Andersen et al.

41. As discussed in section 2, we ex-
pressed the DSF as J(Q, y) = (~Q/m)S(Q,ω) which is
weaklyQ dependent as a result of FSE. The experimental
data were transformed to J(Q, y) for Q = 20 to 29 Å−1in
steps of 0.5 Å−1and a sample of the data are shown in
From Figs. 1 and 2. Since the observed J(Q, y) consists of
a convolution of the underlying momentum distribution,
the FS function and the instrumental resolution function,
for a quantitative analysis of the data, the instrumental
resolution function must be accurately known. The in-
strument resolution was calculated using Monte Carlo
simulation as discussed in Ref. 34.

III. RESULTS

A. Data and Fits to Data

Fig. 1 shows the observed dynamic structure factor,
J(Q, y), at constant wave vectorQ = 27.5 Å−1 as a func-
tion of y at three pressures. Fig. 2 shows similar data at
SVP taken from Ref. 34. From Figs. 1 and 2, we see that
J(Q, y) at low temperature in the Bose condensed phase
has a higher peak at y ≃ 0 than J(Q, y) in the normal
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FIG. 1: (Color online) Observed data, the dynamic struc-
ture factor J(Q, y) folded with the instrument resolution, at
wave vector Q = 27.5 Å−1. Shown is J(Q, y) versus y of
liquid 4He at low temperature in the Bose condensed phase
(blue diamonds) and in the normal liquid phase (red circles)
at three pressures, where y = (ω − ωR)/vR is the energy
transfer, ωR = ~Q2/2m and vR = ~Q/m. The difference
between J(Q, y) in the Bose condensed and normal liquid
phases decreases with increasing pressure reflecting a decreas-
ing condensate fraction. (The 12 bar and 24 bar data are from
Ref. 38)

phase. This reflects the contribution from the conden-

FIG. 2: (Color online) As Figure 1 for liquid 4He at saturated
vapor pressure (SVP) (from Ref. 34).

sate, chiefly from the term n0R(Q, y) in J(Q, y). The
width of the additional peak at y ≃ 0 at low temperature
is set by the width of the FS function R(Q, y). The term
n0R(Q, y) can also be seen in the data at finite y. The
height of the additional peak at low temperature clearly
decreases with increasing pressure displaying directly the
decrease in condensate fraction with increasing pressure.
Figs. 3 shows fits to the data at three pressures. Specif-
ically, the model OBDM, given by Eqs. (6) and (10), was
multiplied by the Final-State function R(Q, s), Eq. (13),
and Fourier transformed as given by Eq. (5) to obtain
J(Q, y). The J(Q, y) was convoluted with the MARI in-
strument resolution function and fitted to the data. The
MARI resolution function is shown as a dotted line in
Fig. 3. The values of the condensate fraction n0 that
provide the best fit are indicated in Fig. 3. The best
values are determined both by the height of the peak
at y ≃ 0 and by the shape of J(Q, y) in the wings at
y ≃ ± 2 Å−1. The sensitivity of the fit to the value of
n0 is displayed in Fig. 4. The best overall fit at all y
values is obtained with n0= 3.5 %. In Fig. 4 we see that
the fitted J(Q, y) for n0= 3.5 % lies somewhat below the
data in the peak region at y = 0. This suggests that the
FS function is too broad in the peak region, a point we
return to in the Discussion. With only three terms, the
FS function has a limited flexibility. The four parame-
ters, n0, α2, α4, and α6 in the OBDM, n(s) in Eqs. (6)
and (10), and the three parameters a3/λ , a52/λ

3 , and
a64/λ

2 in the Final-State function R(Q, s) in Eq. (13)
were all determined by fits to the data. Specifically the
parameters were determined as those which provided a
best overall fit to the data at each Q value at each pres-
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TABLE I: Parameters in the One body Density Matrix, JIA(s) =
n(s), given by Eqs. (6) and (10). The atomic momentum distri-
bution is the 3D Fourier transform of n(s). The parameters are
determined by fitting the total DSF J(Q, y) given by Eq. (5) to
data as shown for example in Fig. 3. The SVP* values are from
Ref (34).

P T ᾱ2 ᾱ4 ᾱ6 n0

(bar) (K) (Å−2) (Å−4) (Å−6) (%)

24 0.055 1.10 ± 0.02 0.49 ± 0.10 0.30 ± 0.20 3.2 ± 0.75

24 2.10 1.18 ± 0.02 0.51 ± 0.10 0.30 ± 0.25

20 0.065 1.08 ± 0.02 0.51 ± 0.10 0.25 ± 0.20 3.5 ± 0.75

20 2.30 1.15 ± 0.02 0.56 ± 0.10 0.38 ± 0.20

15 0.065 1.05 ± 0.02 0.49 ± 0.10 0.25 ± 0.20 4.4 ± 0.75

12 0.065 1.00 ± 0.02 0.42 ± 0.10 0.30 ± 0.20 4.4 ± 1.00

12 2.30 1.08 ± 0.02 0.52 ± 0.10 0.39 ± 0.30

7.5 0.075 0.93 ± 0.02 0.39 ± 0.12 0.32 ± 0.20 5.2 ± 1.00

SVP 0.045 0.85 ± 0.02 0.28 ± 0.05 0.38 ± 0.05 7.0 ± 0.75

SVP* 0.5 0.897 ± 0.02 0.46 ± 0.05 0.38 ± 0.04 7.25 ± 0.75

sure. Typically, 3-4 parameters could be determined in
a single fit at a given Q and pressure. The parameters
as defined above should all be independent of Q. The
actual Q dependence of n0 and α2 emerging from the
fits is shown in Figs. 5 and 6. There we see that the pa-
rameters providing the best fit fluctuate with Q reflecting
the statistical nature of the data but are independent of
Q. There was clearly correlation between the values of
α2 and n0 in n(s) obtained at a given Q. This can be
seen in the parameters shown in Figs. 5 and 6 at 20 bar.
However, we found that the parameters of n∗(s) and
R(Q, s) were reasonably independent. By using param-
eter values averaged over Q and iterating between the
determination of the parameters in n(s) and R(Q, s),
we were able to determine all 7 parameters with reason-
able precision. The values of n0, α2, and a3/λ were
best determined and the values of α6 and a64/λ

2 least
well determined. The values of the parameters n0, α2,
α4, and α6 in the momentum distribution determined
by a best fit to data are listed in Table 1. A condensate
fraction of 7 % at SVP is obtained from the present data.
This agrees within error with our previous value34 of 7.25
%. The n0 decreases from 7 % at SVP to 3.2 % at 24
bar.
Fig. 7 shows the parameters α2, α4, and α6 of the

OBDM that are listed in table 1 as a function of pres-
sure. We note firstly that the α2 parameter, which sets
the width of the Gaussian component of the OBDM and
of n∗(k), decreases with temperature. The α2 and the
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FIG. 3: (Color online) Observed J(Q, y) (open circles)
at low temperature showing fits (solid lines) of the model
J(Q, y) given by Eqs. (5), (6), (7) and (13) to the data. Both
the observed and fitted J(Q, y) include the MARI instrument
resolution function shown by the dotted line. The condensate
fraction, n0, in the model that provides the best fit clearly
decreases with increasing pressure.
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FIG. 4: (Color online) Observed J(Q, y) (open circles) at T
= 0.065 K and p = 20 bar showing fits to data with a pre-
set condensate fraction. The best least squares fit is n0 =
3.5 %. Note that when n0 is set at 5 % the fit is good in
the peak region but not good at y ≃ ± 2 Å−1 where the
n0R(Q,y) term is still important.

TABLE II: Parameters in the Final State function R(Q, s) given
by Eq. (13) obtained by fitting the total DSF J(Q, y) given by
Eq. (5) to data. An example of R(Q, s) is shown in Fig. 13. The
SVP* values are from Ref (34). (λ = ~

2/m = 1.0443 meV Å−1 =
12.12 K Å−1)

P (ā3/λ) (ā52/λ
3) (ā64/λ

2)

(bar) (Å−4) (Å−8) (Å−8)

24 8.5 ± 0.8 9500 ± 2000 400 ± 200

20 8.0 ± 0.8 8000 ± 800 400 ± 100

15 7.6 ± 1.0 8500 ± 2000 400 ± 150

12 7.4 ± 1.2 7800 ± 1500 240 ± 150

7.5 5.5 ± 0.5 5000 ± 600 180 ± 70

SVP 5.3 ± 0.5 4400 ± 600 170 ± 60

SVP* 2.43 ± 0.25 2560 ± 300 215 ± 25

width of the momentum distribution n∗(k) is larger at
high temperature in the normal liquid phase than at low
temperature in the Bose condensed phase. This temper-
ature dependence of α2 is somewhat unexpected since
the temperature is already low and the width is domi-
nated by zero point effects. The drop in α2 corresponds
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FIG. 5: Condensate fraction, n0, obtained from fits of Eq. (6)
to data at several wave vectors, 23 ≤ Q ≤ 28 Å, and pressures
SVP and 20 bar. The best fit n0 fluctuates from Q to Q re-
flecting the statistical error of the data but n0 is independent
of Q.

to a drop in the atomic kinetic energy of approximately
2.0 K, between T = 2.3 K and T ≃ 0.05 K, the same
as the change in the temperature. We return to this
point below. The α2 increases with increasing pressure
reflecting an increased localization of the atoms and a
broadening of the momentum distribution with pressure.
The α4 parameter also increases with increasing pres-
sure so that the kurtosis of the distribution, δ = α4/α2

2,
remains approximately independent of pressure at δ =
0.40. Within precision, α6 is independent of pressure.

The pressure dependence of the parameters a3/λ ,
a52/λ

3 , and a64/λ
2 of the Final-State function are listed

in Table 2 and shown in Fig. 9. All three of the param-
eters increase with increasing pressure. There is a sub-
stantial compensation between the parameters a3/λ and
a52/λ

3 . In fitting the present data, we found best fit val-
ues of both a3/λ and a52/λ

3 that were larger than
those obtained34 in fits to previous data. For example,
the present and previous values of a3/λ and a52/λ

3 at
SVP are compared in Table 2 showing that the present
values are significantly larger. However, a plot of the two
Final-State functions in Fig. 8 shows that the two FS
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FIG. 6: The parameter α2 = 〈k2

Q〉 which sets the width of
the Gaussian component of the OBDM in Eq. (10) obtained
from fits to data at several wave vectors, 23 ≤ Q ≤ 28 Å, and
pressures SVP and 20 bar. The α2 fluctuates from Q to Q
but is independent of Q.

functions are actually very similar. This is because of
the significant compensation between a3/λ and a52/λ

3 .

B. OBDM, momentum distribution and

condensate fraction

The function, n(s), representing the One-body density
matrix (OBDM) that we have fitted to the data is given
by Eqs. (6) and (10). The parameters in n(s) obtained
from the fits to data are listed in Table 1 and shown
in Fig. 7. The part of the OBDM that represents the
fluid above the condensate, n∗(s), given by Eq. (10), is
shown in the upper frame of Fig. 10 at SVP and 24 bar.
The n∗(s) which is short range in s is clearly narrower
at 24 bar than at SVP. The narrowing arises from the
increased localization of the atoms in space as they are
compressed to higher density. The increased localization
at higher density is induced by the hard core component

FIG. 7: Parameters α2, α4 and α6 that describe the one
body density matrix (OBDM) of the liquid above the con-
densate, n∗(s) given by Eq. (10), as obtained from fits to the
present data. The atomic momentum distribution n∗(k) is
the Fourier transform of n∗(s). The α2 that determines the
Gaussian component of n∗(s) and n∗(k) is larger in the
normal liquid phase than in the Bose condensed phase. The
α4 and α6 are independent of temperature within precision.

of the inter-atomic potential. The lower frame of Fig. 10
shows the corresponding momentum distribution, n∗(k),
which is broader at 24 bar than at SVP. Since n∗(k) is
normalized to unity, the broader n∗(k) at 24 bar must
also be smaller at k = 0 to preserve normalization. The
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FIG. 8: (Color online) Comparison of the present
and previous34 determinations of the Final-State function
R(Q,y) at SVP.

TABLE III: The atomic kinetic energy 〈K〉 of liquid 4He at low

temperature. When there is a condensate, 〈K〉 = 3~
2

2m
A1 α2 where

A1 = 1 - 1.28n0 as discussed in the text. (~2/m = 1.0443 meV
Å−1= 12.12 K Å−1)

P T n0 A1 ᾱ2 〈K〉

(bar) (K) (%) (Å−2) (K)

SVP 0.045 7.0 ± 0.75 0.910 0.86 ± 0.02 14.25 ± 0.3

7.5 0.075 5.2 ± 1.0 0.933 0.93 ± 0.03 15.8 ± 0.4

12 0.065 4.4 ± 1.0 0.944 1.00 ± 0.02 17.2 ± 0.4

15 0.065 4.4 ± 0.75 0.944 1.05 ± 0.02 18.1 ± 0.3

20 0.065 3.5 ± 0.75 0.955 1.08 ± 0.02 18.75 ± 0.3

24 0.055 3.2 ± 0.75 0.959 1.10 ± 0.02 19.2 ± 0.3

full OBDM, given by Eqs. (6), which includes the con-
densate component, n0[1 + f(s)], is shown in Fig. (5) of
Ref. (38). For s >

∼ 3.0 Å, the n∗(s) is effectively zero
and n(s) reduces to the long range component given by
n0[1 + f(s)]. The magnitude of the long range compo-
nent is set by the condensate fraction n0. The reader is
referred to Ref. 38 for further discussion of the OBDM.
The condensate fraction extracted from the OBDM is

shown in Fig. 11. The n0 decreases from 7.25 ± 0.75 %
at SVP to 3.2 ± 0.75 % at 24 bar. At the liquid/solid
boundary, p = 25.3 bar, n0 ≃ 3.0 %. The increased lo-
calization of the atoms in space at higher density means
that a smaller fraction can be localized in a single state
in k space. In Fig. 11 we see that the diffusion Monte
Carlo (DMC) values of Moroni and Boninsegni42 and the

FIG. 9: Parameters that describe the Final-State broadening
function, R(Q, s), given by Eq. (13) and its Fourier transform,
R(Q,y), as a function of pressure.

path integral ground state (PIGS) values of Rota and
Boronat43 agree well with our observed value. Taken to-
gether, the present observed and calculated n0 provide a
reliable value of the condensate fraction at low tempera-
ture in liquid 4He as function of pressure. In the top panel
of Fig. 12, we compare the full momentum distribution
with its Gaussian component which is obtained by set-
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FIG. 10: (Color online) The One body density matrix
(OBDM), n∗(s), given by Eq. (8) and its Fourier transform
the 3D momentum distribution, n∗(k), for the liquid above
the condensate at SVP and 24 bar.

TABLE IV: The atomic kinetic energy 〈K〉 in normal liquid 4He
at the temperatures indicated. (~2/m = 1.0443 meV Å−1= 12.12
K Å−1)

P T ᾱ2 〈K〉

(bar) (K) (Å−2) (K)

SVP* 2.3 0.897 ± 0.02 16.3 ± 0.3

12 2.3 1.08 ± 0.02 19.6 ± 0.3

20 2.3 1.15 ± 0.02 20.9 ± 0.3

24 2.1 1.18 ± 0.02 21.45± 0.3

ting the terms in s4 and s6 equal to zero in Eq. (10). The
full n∗(k) has larger occupation of low momentum states
than a Gaussian. The OBDM n∗(s) obtained from the
present data at SVP is compared with that determined
at SVP in Ref. 34 in the bottom panel of Fig. 12. The
agreement is very good with some difference at large s.
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   DMC, Moroni (2004)
   PIMC, Boninsegni (2006)
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FIG. 11: Condensate fraction, n0, at low temperature (T
≤ 0.075 K) in liquid 4He versus pressure (solid circles) ob-
tained from fits to the present data. Also shown are path
integral Ground State (PIGS) values calculated by Rota and
Boronat43 and diffusion Monte Carlo (DMC) values by Mo-
roni and Boninsegni42(Moroni 2004). At SVP, values cal-
culated by Boninsegni et al.44 (open triangle) and observed
previously34 (solid square) are also shown (from Ref. 38)

.

C. Final-State function

The Final State function at SVP and at 24 bars are
compared in Fig. 13. There we see that R(Q, s) is a
smoothly varying function of s and goes uniformly from
1.0 at s = 0 to zero at approximately s = 4Å. In the
absence of FS effects R(Q, s) = 1 at all s. The FS
function in J(Q, s) = JIA(s)R(Q, s) serves to cut off
the Impulse Approximation at a finite s value so that
JIA(s) can no longer be observed in J(Q, s). Particularly
this means that the condensate fraction in JIA(s) can be
observed out to s ≃ 4Å only. This limits the accuracy to
which n0 in JIA(s) can be determined. In contrast the
R(Q, y) is an oscillating function of y and apparently
very complicated. The representation in y shows that
R(Q, y) has a broad peak at y = 0. In the absence of FS
effects when R(Q, s) = 1, the peak is a delta function,
R(Q, y) = δ(y). The peak is broad if R(Q, s) goes to
zero at a small value of s. The peak is broader at p =
24 bar than at SVP. Finally the present R(Q, s) at SVP
is compared with that obtained from previous data at
SVP in Fig. 8. There is some difference arising chiefly
from the different values of the parameters a3/λ and
a52/λ

3 obtained in the two cases.

D. Atomic kinetic Energy

The kinetic energy per atom, 〈K〉, of liquid and solid
helium has been extensively investigated37,45. It is a fun-
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FIG. 12: (Color online) The full n∗(k) has larger occupa-
tion of low momentum states than a Gaussian. The OBDM
n∗(s) obtained from the present data at SVP is compared
with that determined at SVP in Ref. 34. The agreement is
very good with some difference at large s.

damental property since it forms part of the total energy,
E = 〈K〉 + 〈V 〉. The atomic kinetic energy reflects the
degree of quantumness of the system, of confinement of
the atoms in space by their neighbors and the interatomic
correlations. In a classical system, 〈K〉 = (3/2) kBT , an
energy of (1/2) kBT for each translational degree of free-
dom of the atom. In a quantum system, the momentum
and position of atoms are coupled. If the atoms are con-
fined in space the 〈K〉 must increase. The 〈K〉 can de-
crease somewhat if the atomic motion is highly correlated
in space. A higher correlation means the wave function
can be broader and the width in momentum space and
〈K〉 can be smaller.

Ceperley et al.45 have determined 〈K〉 in the liquid
and solid 4He over a wide range of density and tem-
perature, chiefly at higher temperature, T ≥ 5 K. At
lower temperature the 〈K〉 in the solid depends almost
entirely on the solid density and little on the temper-
ature. This reflects the highly quantum nature of the
solid (zero point energy dominates the thermal energy)
and that phonon energies change little with temperature.
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FIG. 13: (Color online) Final State function R(Q, s) and
its Fourier transform R(Q, y) given by Eq. (13) at SVP and
at 24 bar. The R(Q, s) goes to zero at smaller values of s
and R(Q,y) broadens at higher pressure. (Lower frame from
Ref. 38.)

In contrast the 〈K〉 in the liquid increases with increas-
ing temperature45,46. At low temperature, below 2.3 K,
it increases because the condensate fraction is decreasing
and because the P-R mode energies are decreasing with
increasing temperature. Between 2.3 K and 5 K it in-
creases less rapidly but increases rapidly again at higher
temperature.

Ceperley et al.45 find that the 〈K〉 is somewhat lower
in the solid than in the liquid at the same density. This
indicates that the atomic motion is somewhat more cor-
related in the solid than in the liquid. The difference
increases with increasing temperature since the 〈K〉 in
the liquid increases with temperature. The extensive lit-
erature on the 〈K〉 at temperatures of 4 K and above is
reviewed by Andreani et al.37
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FIG. 14: (Color online) Atomic kinetic energy, 〈K〉, of liquid
4He versus pressure in the normal phase and at low temper-
ature in the Bose condensed phase. The 〈K〉 is given by
(3~2/2m)A1α2 where A1 = 1−n0[1 + f(s = 0)] and f(s = 0)
= 0.28 and ~

2/m = 12.12 K Å2 = 1.0443 meV Å2. The T = 0
K, DMC calculated values of Moroni et al.48 are also shown.

The 〈K〉 in liquid 4He at T = 0 K as a function of
density has been accurately calculated using Green func-
tion Monte Carlo47 (GFMC) and diffusion Monte Carlo48

(DMC) methods. At SVP, the temperature dependence
of the 〈K〉 between 1.18 and 3.33 K has been accurately
calculated by path integral Monte Carlo46 (PIMC). We
can determine the 〈K〉 in this temperature and density
range for comparison from our measured momentum dis-
tribution as,

〈K〉 = (
~
2

2m
)

∫
dkn(k)k2. (14)

Inserting the n(k) given by Eq. (1), we find that the con-
densate term makes a negligible contribution with all the
〈K〉 arising from the n∗(k) term. At low temperature
in the Bose condensed phase, the resulting 〈K〉 is:

〈K〉 = 3~2

2m
A1α2. (15)

The constant A1 is determined by requiring that n(k) be
normalized to unity. This normalization requires n(s =
0) = n0[1+f(s = 0)]+A1 = 1. With f(s = 0) = 0.28, we
have A1 = 1 - 1.28n0. Using the low temperature values
of α2 and n0 in Table 1, we obtain the 〈K〉 at T ≃ 0.5
K listed in Table 3.

In the normal phase, where n0 is zero and A1 = 1,
Eq. (15) reduces to 〈K〉= (3~2/2m) α2. The values of
the 〈K〉 in the normal phase at T ≃ 2.3 K, using the
α2 values in Table 1, are listed in Table 4. The 〈K〉 val-
ues are shown as a function of pressure in Fig. 14.

14 16 18 20 22 24 26 28
10

15

20

25

30

35

40

45 Solid
                        PIMC Solid
                        GFMC Solid

           Superfluid
           Normal liquid

 

 

A
to

m
ic

 K
in

et
ic

 E
ne

rg
y 

(K
)

V (cm3/mole)

0.2859 0.2502 0.2224 0.2001 0.1819 0.1668 0.1539 0.1429

 (g/cm3)

FIG. 16: (Color online) Kinetic energy per atom in solid and
liquid 4He. The solid symbols are experimental values in
the solid from Hilleke et al.50(solid triangles), Celli et al.51

(solid circle), Blasdell et al.52(solid squares) and Diallo et

al.53(solid star). The open circles and squares are calculations
in the solid from Whitlock and Panoff47 and from Ceperley
Refs. 52,54. The open triangles and diamonds are the present
measurements in the liquid.
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FIG. 15: (Color online) Kinetic energy per atom of liquid
4He versus density. The blue dots (T = 0.05 K) and red
squares (T = 2.3 K) are the present measurements. The open
triangles are ground state (T = 0 K) calculations of Whitlock
and Panoff47 and Moroni et al.48. The open square is from
Ceperley and Pollock46. The vertical lines with error bars
and the crosses are values observed by Herwig et al.49 and
calculated by Ceperley49, at T = 4.25 K, respectively.

Fig. 15 shows the present 〈K〉 as a function of density.
There we see that the GFMC and DMC values47,48 of the
〈K〉 at T = 0 K agree well with the present low tem-
perature values. The PIMC values at SVP (ρ = 0.1451
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g/cm3) agree well with the present and previous34 values
at SVP. This agreement serves to confirm both the ex-
periment and MC results, since today MC values are very
reliable. The 〈K〉 increases with increasing density as
the atoms become more localized in space by their neigh-
bors at higher density. Also shown are 〈K〉 at 4.25 K
observed by Herwig et al.49 and calculated by Ceperley
and Pollock55. The 〈K〉 clearly increases with increasing
temperature.

Fig. 16 shows the present 〈K〉 values in the liquid com-
pared with those in the solid. The line through the solid
〈K〉 is simply a best fit straight line through all the
points, observed and calculated. The line through the
low temperature liquid data is a quadratic but a straight
line over this short density range fits equally well. The
comparison of the solid 〈K〉 and the liquid 〈K〉 at low
temperature in Fig. 16 confirms, within error, that the
〈K〉 of the two differ little at the liquid/solid boundary at
low temperature, as demonstrated previously by Ceper-
ley et al45. At higher temperature the 〈K〉 in the liquid
is higher than that in the solid at the boundary, since
the liquid 〈K〉 increases with temperature while that in
the solid is approximately independent of temperature,
again as shown previously.45

IV. DISCUSSION

A. Condensate fraction

In the present measurements, we find a condensate
fraction that decreases with increasing pressure from
from n0 = 7.25 ± 0.75% at SVP (p ≃ 0) to n0 =
3.2± 0.75% at pressure p = 24 bar. These values are sig-
nificantly less than those found initially in the pioneering
measurements of Snow et al.31 The pressure dependence
is also different. The n0 of Snow et al. are compared
with the present n0 in Fig. 6 of Ref. 38.

The condensate fraction can also be obtained from the
difference in kinetic energy of the liquid in the normal and
superflid phases, a method proposed by Sears56. The cen-
tral assumption is that the difference between 〈K〉 above
and below Tλ arises soley from BEC. The expression
for n0 can be obtained from Eq. (15). Specifically, the

〈K〉 in the normal phase is 〈K〉N = 3~2

2m α2(N), where
α2(N) is the second moment of n∗(k), the atomic mo-
mentum distribution of the atoms above the condensate
in Eq. (1), in the normal phase. In contrast at T ≃ 0

where there is BEC, the 〈K〉 is 〈K〉0 = 3~2

2mA1α2(0)
where α2(0) is the second moment of n∗(k) in the su-
perfluid phase at T ≃ 0 and A1 = 1 − f(s = 0)n0. If we
assume the α2 does not change with temperature, (α2(0)
= α2(N)), then n0 is obtained from the 〈K〉 as n0= [1
- 〈K〉0/〈K〉N ]/f(s = 0) where f(s = 0) = 1.28. The
〈K〉N and 〈K〉0 are determined experimentally from the
second moment of JIA(y) above and below Tλ. Using
this method, in two separate measurements57,58 of 〈K〉,

Mayers et al. find n0 = 15± 4% and n0 = 8.8± 0.3% at
SVP.

The n0 determined from the 〈K〉 are generally larger
than those determined by fits of the same model n(k) to
data. This is because part of the decrease in 〈K〉 below
Tλ arises from a decrease in α2. Assuming α2 is constant
and that all the change in 〈K〉 arises from BEC leads to
an overestimate of n0. To illustrate this effect we use the
present values of α2 and 〈K〉. The difference between
α2 in the normal phase and at low temperature is shown
in Table I and Fig. 7. Using the kinetic energies in
Tables III and IV, 〈K〉N = 16.3 ± 0.3 K and 〈K〉0 =
14.25±0.3 K at SVP and the expression in the paragraph
above, we obtain n0= 9.8 % ≃ 10%. We may correct this
n0 value for the change in α2 by estimating the change in
〈K〉 arising from α2 alone. This is δ〈K〉= 〈K〉N - 〈K〉0
= 〈K〉N [1- α2(0)/α2(N)]≃ 0.041〈K〉N ≃ 0.67 K. Thus
approximately 30 % of the drop in 〈K〉 below Tλ arises
from α2 so that n0 is over estimated by approximately
30 %. The corrected n0 is n0 ≃ 7 % in agreement with
present value obtained by fitting n(k) in Eq. (1) to data
at SVP. The relative correction for the change in α2 will
be much larger at higher pressure where n0 is smaller.

As shown in Fig. 11, the condensate fractions calcu-
lated by MC methods agree very well with the present
observed values. This confirms the accuracy of the MC
calculations, at least over this limited pressure range.
Over a wider pressure range, the MC calculations find
that n0 decreases from n0 = 28 % at the spinodal den-
sity (ρ = 0.1063 g/cm3)(p ≃ - 10 bar)42 to n0 = 0.5 % at
p = 300 bar59. At high pressure, the calculated n0 de-
creases exponentially with increasing pressure59 but does
not go to zero. Whenever there is BEC, the bulk liquid
will have a superfluid density of ρS = 1 at T = 0 K in-
dependent of the magnitude of n0. Thus bulk liquid 4He
is expected to remain superfluid up to high pressures.

In equilibrium, bulk liquid 4He solidifies to a crys-
talline solid at 25.3 bar. MC calculations predict a
negligible condensate fraction in perfect crystalline solid
helium.60–62 If, however, the solid is held in an amor-
phous rather than a crystalline structure in simulations,
then a condensate fraction of n0≃ 0.5 % is predicted61. A
solid containing vacancies is also predicted to have a con-
densate fraction; for example, n0= 0.09 % for a vacancy
concentration of cV = 0.6 % at p ≃ 40 bars63 and n0=
0.23 % for a cV = 1 % at pressure p= 54 bars.64 An amor-
phous solid is observed65–67 in porous media if the pore
diameter is d <

∼
50 Å. The static structure factor of the

amorphous solid differs little from that of the liquid.65–67

Assuming the liquid and amorphous solid have similar
condensate fractions, the values of n0 observed here sug-
gest that there will be a small but finite n0 (n0 ≃ 0.5-1.0
%) in amorphous solid helium at pressures p ≃ 40 bar. A
condensate fraction has not been observed in crystalline
solid helium40,68,69 at these pressures, even when the sur-
face area is large.69 An upper limit of n0≤ 0.3 % has
been set.69 Observation of a condensate fraction in solid
helium would be an unambiguous verification of the re-
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ports of possible superflow in solid helium70–72.

B. Momentum distribution

To obtain a functional form for the momentum dis-
tribution, n∗(k), we made a cumulant expansion of the
OBDM in Eq. (10)). The leading term in the expansion
is a Gaussian of width set by the second cumulant. If the
OBDM and its Fourier transform n∗(k) are Gaussian, all
higher order cumulants beyond the Gaussain vanish (i.e.
α4 = α6 = 0 in Eq. (10)). We find that the chief effect of
pressure is to increase the width of the Gaussian compo-
nent of n∗(k) (i.e α2 increases with increasing pressure
as shown in Fig. (7)). The increase of width with pressure
is reproduced by Monte Carlo calculation.43. We also
note that the width increases with temperature. Specif-
ically, the width, α2, of n

∗(k) is larger in the normal
phase than at low temperature. This means that the ob-
served decrease in 〈K〉with decreasing temperature be-
low Tc arises from both BEC and a reduction in width
of the intrinsic n∗(k). As a result determinations of the
condensate fraction from the T dependence of 〈K〉 with
the assumption that n∗(k) is independent of T will over
estimate n0.
In previous measurements34,49 of n∗(k) in liquid 4He,

non-Gaussian atomic momentum distributions have been
observed. In the present and earlier treatments,34 the
deviation from a Gaussian is characterized by the mag-
nitude of the higher order cumulants (i.e of α4 and
α6 in Eq. (10). The leading deviation from a Gaus-
sian is given by the kurtosis, δ = α4/α2

2. In the present
measurements, we find δ = 0.4 independent of pressure
within present error, the same as found34 previously at
SVP. In liquid neon a smaller value of δ was observed36.
Calculations46 of the shape of n(k) in liquid 4He at SVP
agreed well34 with the observed n(k).
If the higher order cumulants are not large, the expo-

nential in Eq. (10) can be expanded as,

J∗

IA(s) = n∗(s) = exp

(
−α2s

2

2!

)
[1+

α4s
4

4!
−α6s

6

6!
]. (16)

Keeping only the fourth order term in this OBDM, the
corresponding 3D momentum distribution, the Fourier
transform of the OBDM n∗(r), is,

n(k) =
1

(2πα2)3/2
exp(− k2

2α2
)[1 +

δ

8
(5− 10k2

3α2
+

k4

3α2
2

].

(17)
This expression, the current values of α2 in Table 1
and δ = 0.4 provide a reasonably accurate representa-
tion of n(k) in liquid 4He as a function of pressure.
Measurements at higher momentum transfer at SVP are
consistent37 with this expression for n(k).

C. Final-State function

The Final State (FS) function R(Q, y) is the Fourier
transform of the intermediate FS function R(Q, s). The
intermediate FS function, R(Q, s), that we have used in
the intermediate DSF, J(Q, s)= JIA(s)R(Q, s), is given
by Eq. (13). The functional form of R(Q, s) is obtained
by expanding J(Q, s) in powers of s as discussed above
Eq. (12) and retaining terms up to s6. Thus R(Q, s) is
valid at short s (at high Q) up to powers of s6. Since the
leading term in R(Q, s) is s3, R(Q, s) has four terms
in s. We found the term in s4 small, so this term was
neglected. The R(Q, s) in Eq. (13) that was fitted to
data has three terms and depends on three parameters.
The parameters in R(Q, s) can be determined from fits
to data over a range of Q values because R(Q, s) depends
on Q while JIA(s) does not. The function R(Q, s) in
Eq. (13) with the parameters in Table 2 provide a FS
function that can be used over a range wave vectors 15
≤ Q ≤ 40 Å−1and temperatures 0 ≤ T ≤ 3 K. Within
precision, we found that R(Q, y) was independent of T
up to 3 K. The R(Q, s) in Eq. (13) probably provides a
reasonable estimate up to 100 Å−1.

The chief limitation of the present R(Q, s) is that it
has only three terms. The R(Q, s) has limited flexi-
bility in fits to data. For example, the R(Q, y) shown
in Fig. (3) appears to be too broad in the peak region
at y ≃ 0. The width of the J(Q, y) at y ≃ 0 is
largely limited by the width of the FS function and FS
function is not sufficiently flexible to assume a narrow
peak and also fit well over a wide range of y values. In
Ref. 34 a comparison of the present R(Q, y) with cal-
culated R(Q, y) showed that the present R(Q, y) was
broader in the peak region than all calculated R(Q, y).
At the same time the n0 extracted from the data using
the calculated R(Q, y) was always less than that ob-
tained using Eq. (13). At this time we believe that the
determination of the FS function is the weakest part of
the data analysis. The FS function could be improved by
introducing a model function that captures the physics
of the recoil more precisely than an expansion in powers
of s.
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