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In most of the ternary (and higher order) ferromagnetic shape memory alloys (FSMAs) with
compositions close to the A2BC stoichiometry, the austenite phase exhibits L21-type ordering. Re-
cent investigations of the Co-Ni-Ga FSMA system, however, suggest that the austenite phase has
B2-type ordering, although definite confirmation remains elusive. In this work, we present a the-
oretical investigation of the effect of configurational order on the magnetic properties of ordered
(L21) and disordered (B2) FSMA Co2NiGa. Through the use of calculations based on density
functional theory, we predict the structural and magnetic properties (including magnetic exchange
constants) of ordered and disordered Co2NiGa alloys. We validate our calculation of the magnetic
exchange constants by extracting the Curie temperatures of the austenite and martensite structures
and comparing them to experiments. By constructing a q-state Potts magnetic Hamiltonian and
through the use of lattice Monte Carlo simulation, we predict the finite temperature behavior of the
magnetization, magnetic susceptibility as well as the magnetic specific heat and entropy. The role
of configurational order on the magnetic properties of the phases involved in the martensitic phase
transformation is discussed and predictions of the magnitude of the magnetic contributions to the
transformation entropy are presented.The calculations are compared to experimental information
available in the literature as well as experiments performed by the authors. It is concluded that in
FSMAs, magnetism plays a fundamental role in determining the relative stability of the austenite
and martensite phases, which in turn determines the martensitic transformation temperature MS ,
irrespective of whether magnetic fields are used to drive the transformation.

I. INTRODUCTION

In the recent years, research on ferromagnetic shape
memory alloys (FSMA) has gained significant momen-
tum owing to their remarkable multi-functional behavior,
not only related to the shape memory effect, giant mag-
netostriction, and coupled magneto-mechanical phase
transformations but also—at least in some systems—
due to other magnetic phenomena such as giant mag-
netocaloric effect and magnetoresistance1,2. Ni-Mn-Ga
based FSMAs have been studied in great detail since the
first reported large magnetic field induced strains in these
alloys3. Despite their remarkable magnetic field induced
shape change levels, these materials suffer from relatively
low Curie temperature (∼ 373 K), intrinsic brittleness,
relatively low martensitic transformation temperatures
and low actuation stress levels4,5. In order to increase
the martensite start transformation temperature (Ms),
Ga is replaced with Mn, but the resulting alloys have
poor magnetic properties due to antiferromagnetic inter-
action between Mn atoms occupying original Mn lattice
sites and those occupying Ga lattice sites6,7. Some of
these problems have been solved by substituting Mn with
Co.

Co2NiGa alloys have been proposed as a possible al-
ternative to Ni-Mn-Ga alloys due to their higher trans-
formation and Curie temperatures as well as better
ductility8. In most ternary–and higher—order FSMAs
the austenite phase that undergoes the martensitic trans-
formation has a L21-type ordered structure with the
A2BC stoichiometry. This structure can actually be visu-

alized as two interpenetrating bcc lattices with B2-type
ordering, in which the majority atom (A) occupies the
body-centered sites and the other minority atoms (B and
C) occupy alternate corners. Contrary to what is ob-
served in most Heusler-type FSMAs, the austenite phase
in Co-Ni-Ga alloys has a stoichiometry close to Co2NiGa
but seems to have B2-type ordering (β phase) as opposed
to L21, although there is no definite conclusion in this re-
gard9,10.

Judicious manipulation of the composition and heat
treatment temperature in Co-Ni-Ga SMAs can intro-
duce order in the disordered systems as well as result
in a multi-phase microstructure composed of the trans-
formable β phase, accompanied by a much more ductile
fcc-type (γ) phase as well as intermetallic precipitates
(γ′) based on the L12 structure. The γ phase greatly en-
hances the hot temperature workability and room tem-
perature ductility of these alloys but can also strongly af-
fect the shape memory properties and martensitic trans-
formation temperatures resulting in wide range of oper-
ating temperatures10–13.

Atomic ordering has been known to influence the
transformation behavior of SMAs. The order-disorder
transition, long range ordering, and effect of order-
ing on the phase transformation temperatures in var-
ious shape memory alloys have been studied experi-
mentally and numerically14–21. The effect of atomic
ordering on the transformation temperatures has been
experimentally investigated in Ni45Co5Mn36.7In13.3
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and Ni55Fe20Al25
21 FSMAs. In the case of

Ni45Co5Mn36.7In13.3, fully ordered L21and partially or-



2

dered B2 phases have been obtained by annealing the
samples at 623 K and 923 K while for Ni55Fe20Al25 or-
dered phase has been obtained by annealing at 793 K
and the site-disordered phase by simply quenching the
samples from higher temperatures. For the ordered sys-
tems, the Curie temperature in the austenite phase and
magnetization levels in the martensite phase are higher
but the martensite transformation temperature is lower
than in the partially ordered/disordered phase. The de-
crease in the martensitic transformation temperatures
with ordering of the austenite phase to L21 has also been
reported previously in NiMnAl FSMAs20. In case of
Ni55Fe20Al25, austenite and martensite phases coexist
in the ordered phase for a wide temperature range while
for the disordered phase the martensitic transformation
was well defined21.

Ordered and disordered alloys of Co2NiGa have also
been studied experimentally 9. Comparison of the mag-
netic properties of ordered and disordered phases sug-
gest that ordering can increase the magnetization by
40%. This result is in contrast to those reported for
Ni55Fe20Al25 in which specific magnetization of the or-
dered phase is lower than the disordered phase21. The
decrease in magnetization of the disordered phase in
Co2NiGa is attributed to the sharp decrease in the mag-
netic moment of the Co atoms surrounded by large num-
ber of Co or Ni atoms in the disordered alloys9.

In previous work by the one of the authors22, ab-initio
calculations have been performed to study the phase sta-
bility, phase transformation, and electronic properties of
the stoichiometric ordered and disordered Co2NiGa al-
loys. The ordered structure was modeled as L21 while
the disordered phases have been modeled with a B2-type
structure. Austenite has been found to be less stable
than the martensite in both the ordered and disordered
states22. Specifically, Bain-path studies showed that the
austenite phase is metastable (at best) with respect to
volume-conserving tetragonal distortions. It was sug-
gested that the relative instability of austenite can be
attributed to the decrease in magnetism due to increase
in magnetic disorder and to the increase in the volume
of the system due to the lattice thermal expansion as the
temperature increases22. On the other hand, for the Ni-
Mn-Ga alloys, the stability of the tetragonal (martensite)
vs. the cubic (austenite) structure is associated with the
Jahn-Teller distortion23. From electronic structure cal-
culations, instability in Ni2MnGa is due to the lack of hy-
bridization between 3d spin-down Mn and Ni states while
in Co2NiGa, the instability is due to the location of the
Fermi level at the beginning of low-lying spin-down anti-
bonding states22. Similar theoretical work by Siewert
et al.24 on Co-Ni-Ga Heusler alloys seems to corroborate
the results presented in22, although in the former case the
effect of disorder on the stability of the austenite phase
was examined by exploring conventional Heusler L21 or-
dering as well as so-called inverse Heusler configurations
in which one of the majority atoms—Co in this case—is
replaced by either of the minority components—Ni or Ga

in this instance.
The present work has been performed to elucidate the

effect of atomic ordering on the magnetic properties of
Co-Ni-Ga alloys using experiments, ab-initio calculations
and Monte Carlo simulations. As described in previous
work22 a body centered structure with B2-type order-
ing has been used to mimic the disordered state of the
system and an L21 structure has been used to mimic
the fully-ordered state. We consider the stoichiomet-
ric Co2NiGa configuration as well as off-stoichiometric
compositions that have been widely studied experimen-
tally. In addition, we present results from the character-
ization of off-stoichiometric Co-Ni-Ga alloys prepared by
the authors. For the simulation of the off-stoichiometric
compositions, we considered different degrees of order by
varying the atomic occupation of the different sublattices
of the L21 structure as well as by considering the fully
disordered B2 configuration. We examine the effects of
configuration on magnetic properties by calculating the
magnetic exchange constants and report the calculated
saturation magnetization, Curie temperatures and struc-
tural parameters for all the configurations considered in
this work and compare these results with available experi-
mental information. For the stoichiometric compositions,
we calculate the magnetization, magnetic susceptibility,
magnetic specific heat and magnetic entropy by means of
Monte Carlo simulations assuming a q-state Potts Hamil-
tonian and using magnetic exchange parameters obtained
from ab-initio calculations.

II. SIMULATION METHODS

Electronic structure calculations are carried out using
the Spin Polarized Relativistic Korringa-Kohn-Rostoker
(SPR-KKR) band structure code25,26. This code is
based on the KKR-Green’s function formalism that
makes use of multiple scattering theory and the elec-
tronic structure is expressed in terms of the correspond-
ing Green’s function as opposed to Bloch wave functions
and eigenvalues. In this code, configurational disorder
is treated through the coherent potential approximation
(CPA). The exchange-correlation potential was modeled
within the generalized gradient approximation (GGA) of
Perdew-Burke-Ernzerhof (PBE). The first step in these
calculations is to determine the optimized lattice pa-
rameter for all the structures. These calculations were
performed using Spin-polarized Scalar-Relativistic (SP-
SREL) Hamiltonian with full potential using an orbital
momentum cut off lmax = 3 on a grid of 22 × 22 ×
22 k-points and 30 points on the complex energy path.
All calculations converged to 0.13 meV of total energy.
For the optimized lattice parameter, the self consistent
potential is calculated. This new self-consistent poten-
tial is then used to calculate the Heisenberg’s magnetic
exchange coupling parameters, J ij

m , using the equation
proposed by Liechtenstein et al.27.
The magnetic exchange parameters can be used to cal-
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culate Curie temperature of the system. For a multi-
lattice system, the Curie temperature of the system using
the mean field approximation (MFA) can be obtained by
solving the following coupled equations28,29

3

2
kBT

MFA
c =

∑

ν

Jµν
m,0〈e

ν〉 (1)

and

Jµν
m,0 =

∑

R 6=0 when µ=ν

Jµν
m,0R (2)

In equation (2), the magnetic exchange parameter Jµν
m,0

is obtained by summing all exchange parameters involv-
ing the sublattices µ and ν, including all equivalent
sublattices ν translated by lattice vector R,except when
µ = ν in the first unit cell (R = 0).
Rewriting these equations, we have the following eigen-

value problem:

(Θ − TI)E = 0
3

2
kBΘµν = Jµν

m,0 (3)

where Jµν
m,0 is the magnetic exchange parameter between

sublattices µ and ν, kB is the Boltzmann’s constant, I
is the identity matrix, Eν = 〈eν〉, 〈eν〉 is the average z
component of the unit vector, 〈eνR〉 , in the direction of
the magnetic moment at sublattice ν. The Curie temper-
ature of the system corresponds to the largest eigenvalue
of Θ28–31. For disordered systems, a single sublattice
may be occupied by more than one atom with different
atomic concentrations. In this case, effective exchange
parameters are used in the calculations of the Curie tem-
perature. For example, for a ternary stoichiometric B2
structure, the sublattice (0, 0, 0) is occupied by Ni and
Ga atoms each at 50 at.%, while the sublattice (0.5, 0.5,
0.5) is occupied by Co atoms. Let’s denote an equivalent
atom at sublattice (0, 0, 0) as X. The effective exchange
parameter between Co atom and the X ’atoms’ is given
as32

JCo−X
m = 0.5JCo−Ni

m + 0.5JCo−Ga
m (4)

where JCo−Ni
m is the exchange parameter between Co

atoms at sublattice (0.5, 0.5, 0.5) and Ni atom at sub-
lattice (0, 0, 0) and JCo−Ga

m is the exchange parameter
between Co atoms at sublattice (0.5, 0.5, 0.5) and Ga
atom at sublattice (0, 0, 0). To check the accuracy of
this method and validate our numerical technique, we
calculated the Curie temperature of Ni2MnSn alloy. The
Curie temperature was found to be 370 K which is in
good agreement with the previous published results of
362 K33 and 373 K34.
In this work, a q-state Pott’s model is used in place of

the Ising model to take into account the discrete magnetic
states of Co and Ni atoms. The Hamiltonian describing

the energy of the system is given as

H = −
∑

〈i,j〉

J ij
m(2δSiSj

− 1) δSiSj
=

{

1, if Si = Sj

0, else

(5)
where δSiSj

is the Knocker’s symbol, Si is the spin state

of the lattice site i, and J ij
m corresponds to the magnetic

exchange parameters involving sites i and j35. Magnetic
exchange parameters are positive for atoms interacting
ferromagnetically—favoring the same spin state on neigh-
boring lattice sites—and negative for atoms interacting
anti-ferromagnetically—-favoring opposite spin states on
neighboring lattice sites.
We would like to note that a modified version of the

Pott’s model is considered in this work 36 as we replace
the term δSiSj

in the original Pott’s model by (2δSiSj−1).
In the original Pott’s model, when a spin at a given site
is flipped, the change in the magnetic energy of the sys-
tem is half of that obtained by flipping a spin in the
Heisenberg’s model—-see reference36. Since the exchange
parameters calculated using the SPRKKR software are
based on the Heisenberg’s model, the Pott’s model has
been modified to make it equivalent to the Heisenberg’s
model. In the modified Pott’s model, the change in en-
ergy of the system, when a spin is flipped, is the same
as obtained in the Heisenberg’s model.The validity of
this modification is evident when comparing—see below–
the good agreement in the Curie temperatures calculated
within the MFA and through the Monte Carlo simula-
tions.
The Hamiltonian described in equation (5) is solved–

for specific temperatures—using a Monte Carlo simula-
tion scheme. In these simulations, the magnetic states
are randomly sampled and accepted or rejected based on
the Metropolis algorithm37,38. The numerical procedure
for the Monte Carlo simulation consists of the following
steps:

1. Select the initial configuration in a random manner.
Since the Metropolis algorithm satisfies the condi-
tion of ergodicity, the system will always reach the
equilibrium state regardless of the initial configu-
ration.

2. Choose a site, randomly select its new spin state
and calculate the change in the energy of the sys-
tem, ∆H .

3. Accept or reject the new state based on the
Metropolis algorithm. If ∆H is negative, accept the
new state and if this is not the case calculate the ac-
ceptance probability of new spin state, e−∆H/KBT .
Generate a random number between 0 and 1 and if
the random number less than the acceptance prob-
ability, the new state is accepted, otherwise it is
rejected.

4. Move to next site and follow the procedure outlined
above. Once all lattice sites are swept, one Monte
Carlo step (MCS) is finished.
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5. Continue the above procedure until equilibrium is
reached and after equilibration collect the statistics
from a sufficient number of configurations.

At any given temperature, the magnetization (m),
magnetic susceptibility (χm) and magnetic specific heat
(Cmag) of the system can be calculated as38–40

m =
1

∑n
i Ni

(

n
∑

i

qiN
i
max −Ni

qi − 1

)

(6)

χm =
1

kBT 2
[〈m2〉 − 〈m〉2] (7)

Cmag =
1

kBT 2
[〈H2〉 − 〈H〉2] (8)

where Ni is the total number of atoms of type i, n is
the total number of different (magnetic) atom types, two
in this case (Co, Ni), qi is the total number of magnetic
states of i atom and N i

max is the maximum number of
identical magnetic states for an atom i, kB is Boltzmann’s
constant, T is the temperature of the system, 〈m2〉 is the
average of magnetization square, 〈H〉 is the average en-
ergy of the system and 〈H2〉 is average squared energy.
The magnetic entropy can then be obtained through in-
tegration of the magnetic specific heat.

III. EXPERIMENTAL PROCEDURE

Experiments were performed on different compositions
in order to study the effect of atomic ordering on the mag-
netic properties. Since the study focuses on the effect
of disorder on the system properties, compositions other
than the stoichiometric ones have been considered. The
excess/deficiency of atoms of one type or replacement
of atoms from its sub-lattice by others introduces disor-
der in the system. The experimental results presented
here are being used to assess the effect of configurational
disorder–i.e. through deviations from stoichiometry—
on the magnetic properties of Co-Ni-Ga alloys including
their Curie temperatures. These results will also help us
set an estimate for the expected inaccuracy of the meth-
ods used to predict the Curie temperature of CoNiGa
FSMAs.
Two single β phase (B2 structure) Co-Ni-Ga al-

loys with nominal compositions of Co50Ni20Ga30 and
Co46.5Ni23Ga30.5 (in at.%) were prepared by vacuum arc-
melting of 99.9% Co, 99.95% Ni, and 99.999% Ga. Small
pieces were cut, homogenized at 1473K for 4 hrs in argon
followed by water quenching. The stress-free transforma-
tion temperatures and the Curie temperature were found
using low field thermal cycling in a Quantum Design
superconducting quantum interference device (SQUID)
magnetometer at a heating/cooling rate of 5K/min−1.
The crystal structure of the alloys was determined using
a Bruker-AXS D8 X-ray diffractometer (XRD) with CuK
(0.15406 nm) radiation.

IV. RESULTS AND DISCUSSIONS

A. Experimental Results

(a)

(b)

(c)

FIG. 1. X-ray diffraction pattern of the (a) tetrago-
nal Co46.5Ni23Ga30.5 at room temperature (RT), (b) cubic
Co46.5Ni23Ga30.5 at 350 K and, (c) cubic Co50Ni20Ga30 at
RT indicating the structures of the constitutive phases. L10:
tetragonal martensite, B2: cubic austenite, RT: room tem-
perature.

Transformation temperatures and Curie temperatures
of the experimentally investigated Co46.5Ni23Ga30.5 and
Co50Ni20Ga30 alloys are listed in Table I. In addi-
tion to the transition temperatures, lattice parameters
of the constitutive phases are given in the table. Fig-
ure 1(a) presents the X-ray diffraction pattern of the
Co46.5Ni23Ga30.5 sample after heat treatment at 1473 K
for 4 hrs. The Co46.5Ni23Ga30.5 sample crystal struc-
tures of the phases present are determined to be L10 for
martensite and B2 for austenite. The sample is heated
above the austenite finish temperature (350 K) to get
X-Ray diffraction pattern of the austenite phase that is
determined to be B2 (Figure 1(b)). The lattice param-
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TABLE I. List of the measured Curie and stress free transformation temperatures, and both austenite and martensite lattice
parameters of experimentally investigated alloys. Mf : martensite finish, Ms: martensite start, As: austenite start, Af : austenite
finish temperatures. Experimental uncertainties of the SQUID measurements is within ± 1 K. Extrinsic uncertainties due to
inhomogeneities in the composition of the sample or sample to sample variation is within ± 10 K.Tetra: Tetragonal crystal
structure, Cubic: Cubic crystal structure, RT:Room temperature.

Structure TC(K) Mf (K) Ms(K) As(K) Af (K) Lattice Parameter Å
Tetra Cubic

Co50Ni20Ga30 390 210 216 222 236 - 2.86 [@ RT]
Co46.5Ni23Ga30.5 341 221 305 262 332 3.84 (c : 3.19) [@ RT] 2.87 [@350K]

eters of Co46.5Ni23Ga30.5 sample are determined to be: a
= 0.384 nm and c = 0.319 nm for martensite, a = 0.287
nm for the B2 austenite. Figure 1(c) displays the X-ray
diffraction pattern of the Co50Ni20Ga30 sample after heat
treatment at 1473 K for 4 hrs showing B2 austenite struc-
ture at room temperature. Since this sample transforms
to martensite at very low temperature (216 K) only B2
phase lattice parameter can be determined. The lattice
parameter of B2 austenite phase is found to be a = 0.286
nm.

Ga

Ni

Co

(a)

Co

Ni/Ga

(b)

FIG. 2. Structure of (a) ordered (L21) system with Co, Ni
and Ga atoms occupying their own sub-lattice (b) disordered
(B2) system with Co atom in its sub-lattice I and Ni and Ga
atoms occupy the sub-lattice II. In ab-initio calculations (for
stoichiometric compositions), Ni and Ga atoms contribution
is 50% at each site of sub-lattice II while in Monte Carlo
simulations, they are randomly distributed on sub-lattice II
of the supercell.

B. Ab-Initio Calculations

The Heusler (L21) structure of Co2NiGa consists of
Ga at (0, 0, 0) sub-lattice, Ni at (1/2, 1/2, 1/2) sub-lattice
and Co at (1/4, 1/4, 1/4) and (3/4, 3/4, 3/4) sub-lattices
as shown in Figure 2(a). B2 is a body centered cu-
bic (BCC) structure, in which it is assumed that the
(0, 0, 0) sub-lattice is randomly occupied by either Ga or
Ni atoms and (1/2, 1/2, 1/2) sub-lattice is occupied by
(the majority) Co atoms as demonstrated Figure 2(b).
Here we would like to note that the actual stable configu-

ration in the B2-ordered structure may be different from
the configuration assumed in this work and in fact some
further disorder involving atomic exchanges between the
Co and (Ni,Ga) sub-lattices is also possible. At the same
time, the simplistic model for B2 ordering in this ternary
system may not be valid if significant short-range order
is still prevalent at elevated temperatures. For the case
of the stoichiometric alloys we only compare a fully or-
dered (L21) as well as a partially B2-type ordered con-
figuration. In the case of the off-stoichiometric alloys, we
considered multiple degrees of configurational order by
considering B2-type configurations as well as L21-type
ordering with different site occupations while the overall
composition was retained.

The equilibrium lattice parameter and calculated prop-
erties are listed in Table II. We would like to note that
the SPRKKR code is unable to correctly predict the fact
that the tetragonal structure (i. e. martensite) is more
stable than the cubic structure under shear deformations
and we have used results obtained earlier22,24 and as-
sumed that the martensite has a c/a ratio of approxi-
mately ∼ 1.4. The reason for this is unclear but a pos-
sible explanation may lie on rather subtle effects related
to the effect of symmetry breaking (under the tetragonal
distortion) on d-electrons of Co and Ni. For all the struc-
tures, equilibrium lattice parameter (amin) correspond-
ing to the lowest energy of the system has been calculated
using SPRKKR. In previous calculations, the tetrago-
nal distortions of B2 structures were fully relaxed while
in this work the structure can only relax with constant
c/a ratio. As a result, the lattice parameters obtained
in these calculations for tetragonal distorted structures
are smaller than previous calculations (as well as exper-
iments). Overall, the lattice parameters and magnetic
moments per Co atom obtained in these calculations are
in good agreement with the previous calculations and
experimental work. In agreement with previous theoret-
ical studies22,24, the SPRKKR results suggest that the
total magnetic moment increases upon tetragonal dis-
tortion. This observation is in agreement with general
trends observed in experimental studies of Co-Ni-Ga al-
loys42. When comparing the total magnetization (nor-
malized per Co atom) of the ordered vs. disordered sto-
ichiometric martensite (L21 (Tetra) and B2 (Tetra), re-
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TABLE II. Calculated data on lattice parameters, magnetic moment and Curie temperature for Co-Ni-Ga alloys. The alloy
compositions are stoichiometric unless otherwise stated. L21 (Tetra) and B2 (Tetra) denotes the tetragonal distortion of L21

and B2 structures obtained by considering c/a = 1.4

Structure Order Lattice Parameter Magnetic Curie Temperature (K)
CoNiGa Parameter⋆ Å [at 0K] Moment (µB/Co atom) MFA MCS

Alloy Composition : xCo = 0.5, xNi = 0.25, xGa = 0.25

L21 (Cubic) 1.0 5.62 (5.68b) 1.143 (1.262b, 1.335c) 423 445
L21 (Tetra) 1.0 3.56 (3.59b) 1.281 (1.395b, 1.46c) 510 510
B2 (Cubic) 0.0 2.81 (2.84b) 0.898 (1.083b) 252 275
B2 (Tetra) 0.0 2.52 (2.74b) 1.231 (1.133b) 413 430

Alloy Composition : xCo = 0.5, xNi = 0.2, xGa = 0.3
B2 (Cubic) 0.0 2.79 0.7364 169 -
B2 (Tetra) 0.0 2.51 (2.733a) 1.0441 262 (432d,425a) -
L2•

1 (Cubic) 0.5 5.58 0.77 194 -
L2•

1 (Tetra) 0.5 3.546 1.049 277 -
L2>

1
(Cubic) 1.0 5.577 0.858 250 -

L2>

1
(Tetra) 1.0 3.543 1.065 297 -

Alloy Composition : xCo = 0.465, xNi = 0.23, xGa = 0.305
B2 (Cubic) 0.0 2.80 0.8095 164 -
B2 (Tetra) 0.0 2.514 1.0543 272 (373d) -
L2⊕

1
(Cubic) 0.847 5.58 0.7523 209 -

L2⊕

1
(Tetra) 0.847 3.545 0.98 295 -

L2⊙

1
(Cubic) 1.0 5.607 0.9762 280 -

L2⊙

1
(Tetra) 1.0 3.548 1.0966 355 -

⋆ Order Parameter:
xIII
Ni −xIV

Ni

xNi
, 1 for fully ordered, 0 for fully disordered

• Sub-lattice occupation: 100% Co on sub-lattice I and II, 60% Ni and 40% Ga on sub-lattice III, 20% Ni and 80% Ga on
sub-lattice IV
> Sub-lattice occupation: 100% Co on sub-lattice I and II, 80% Ni and 20% Ga on sub-lattice III, 100% Ga on sub-lattice IV
⊕ Sub-lattice occupation: 93% Co and 7% Ni on sub-lattice I and II, 78% Ni and 22% Ga on sub-lattice III, 100% Ga on
sub-lattice IV
⊙ Sub-lattice occupation: 93% Co and 7% Ga on sub-lattice I and II, 92% Ni and 8% Ga on sub-lattice III, 100% Ga on
sub-lattice IV
a Oikawa et al.10 : alloy composition, xCo = 0.45, xNi = 0.25, xGa = 0.3
b Arróyave et al.22: structure obtained by full relaxation of the tetragonal distortion of L21 structure
c Siewert et al.24

d Sarma et al.41

spectively in Table II), one can see that increased order
leads to larger magnetization, which is also in agreement
with previous calculations22 as well as experiments9. In
fact, Dai et al.9 suggest that for stoichiometric Co2NiGa
martensite, ordering induces a significant (about 30%)
increase in the magnetization.

The magnetic exchange parameters calculated for cu-
bic and tetragonal systems of ordered and disordered
structures using the equation proposed by Liechtenstein
et al.27 are plotted in Figure 3 (only for stoichiomet-
ric compositions) and reported in Table III. In all the
cases, magnetic exchange interactions between the near-
est neighbors of Co, Ni and Co - Ni atoms are significant
(in the order of a few meV). Those between the Ga and
neighboring atoms are very small as evident from the Co -
Ga interaction in Figure 3. Thus, other magnetic inter-
actions involving Ga have been omitted from the graphs
and not considered in the Monte Carlo simulations. For

Co-Co interactions, for a dimensionless distance (Rij/a)
of 0.866 in the ordered cubic structure,there are two val-
ues of magnetic exchange parameters. The different val-
ues are due to the different mediating atoms, as in real-
space approaches the final values are not averaged29. To
clarify this point, consider a pair of Co atoms situated
at the (0.25,0.25,0.25) and (0.75,0.75,0.75) positions, re-
spectively. In the L21 structure, the atom occupying the
(0.5,0.5,0.5) position can be Ni or Ga. This atom is iden-
tified as the ’mediating’ atom in this work.The large val-
ues of exchange parameters are between Co atom pairs
mediated by Ni atoms and smaller values for Co atom
pairs mediated by Ga atoms. The calculations suggest
that Ga atoms essentially screen the magnetic interac-
tions between pairs of Co atoms.

In the context of considering energetic interactions in
lattice models, it is usually found that in ordered struc-
tures long range and in disordered structures short range
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TABLE III. Magnetic exchange parameters calculated in these simulations. L21 (Tetra) and B2 (Tetra) denotes the tetragonal
distortion of L21 and B2 structures obtained by considering c/a = 1.4

Atoms Distance (Rij/a) Magnetic Exchange Parameters (Jij
m)

L21 L21 (Tetra) B2 B2 (Tetra)
Co - Co 0.5 2.528 13.45 - -

0.7 - -1.58 - -
0.707 1.212 -0.89 - -
0.866 0.591 0.335 - -
1.0 -0.597 -0.747 1.99 10.648
1.4 - - - -1.364

1.414 - - 0.1 -0.683
2.0 - - -0.46 -0.883

Co - Ni 0.433 4.566 - - -
0.497 - 4.20 - -
0.866 - - 3.477 -
0.995 - - - 4.093

Ni - Ni 0.707 -0.07 -0.01 - -
0.86 - 0.336 - -
1.0 0.206 0.095 0.634 2.88

1.732 - - -0.589 0.43

interactions are important18. Now considering the mag-
netic exchange parameters plotted in Figure 3, for cu-
bic ordered structures next nearest and second nearest
atomic interactions between Co atoms are significant but
for the disordered cubic structures only the next nearest
neighbor interactions are significant, as expected.

The Curie temperatures calculated using the mean
field approximation—equations (1)-(3)—and Monte
Carlo simulations for the structures are reported in Ta-
ble II. In general, the Curie temperatures for the cu-
bic structures are lower than their tetragonal distortions
for both L21 and B2 structures. For the stoichiometric
compositions, it can be noted that the Monte Carlo sim-
ulations and MFA calculations agree within a few K and
therefore, the systematic study of effect of ordering on
the Curie temperature of experimental compositions has
been carried out using the MFA.

For both compositions, Co50Ni20Ga30 and
Co46.5Ni0.23Ga30.5, three structures with varying
degree of ordering are considered. In both compositions,
B2 structure denotes the fully disordered structures. In
the case of Co50Ni20Ga30, the most ordered structure is
created with L21 structure with sub-lattice I and II is
occupied by Co atoms, sub-lattice III occupied by 80%
Ni and 20% Ga (at. % )and sub-lattice IV occupied by
Ga atoms while a partially ordered structure is created
with sub-lattice I and II is occupied by Co atoms,
sub-lattice III occupied by 60% Ni and 40% Ga and
sub-lattice IV occupied by 20% Ni and 80% Ga atoms.
For the Co46.5Ni0.23Ga30.5 composition, in the highly
ordered structure, sub-lattice I and II are occupied with
93% Co and 7% Ga atoms, sub-lattice III with 92% Ni
and 8% Ga and sub-lattice IV with Ga atoms, while
for partial disordered structure, sub-lattice I and II are

occupied with 93% Co and 7% Ni atoms, sub-lattice III
with 78% Ni and 22% Ga and sub-lattice IV with Ga
atoms.

The results in Table II show that the Curie temper-
ature is lowest for the disordered structures and highest
for the ordered structures. The Curie temperature for
ordered systems is expected to be higher than the dis-
ordered systems, since in ordered systems, due to long
range ordering, the exchange parameters are expected to
be significant up to three or more atomic shells. In the
case of the disordered systems, usually the exchange pa-
rameters are significant only between nearest neighbors.
This trend can be seen in the stoichiometric cubic struc-
tures in Table III.

We would like to note that the Curie temperature ob-
tained in the experiments is higher than the MFA cal-
culations in some cases differing by about 100 K. In a
similar study on NiMnGa FSMAs, Buchelnikov et al.40

observed the same trends and ascribed the discrepancy
between experiments and calculations to the neglect of
the magneto-structural coupling when dealing with struc-
tures undergoing martensitic transitions as well as the ne-
glect of nonlocal CPA corrections as the SPRKKR code
only considers single-site CPA calculations of the mag-
netic exchange parameters J ij

m . Table II shows that for
a given composition (in the off-stoichiometry configura-
tions) an increase in the configurational order (simulated
in this case through changes in the site occupancy of
L21 structures) leads to an increase in the magnitude of
the magnetic exchange constants which in turn results in
higher Tc. In fact, the calculations of Tc for the ordered
structure for the experimental compositions are close to
the values obtained in the experiments. Whether this is
because the experimental alloys are in fact not fully dis-
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FIG. 3. Magnetic exchange interaction parameters, J ij
m ,between an atom i and its neighbor j located at a distance of Rij

for (top) disordered austenite and martensite phases (bottom) ordered austenite and martensite phases. The distances are
normalized with respect to the lattice parameter, a. Notice the variation in the values of the vertical scale.

ordered cannot be ascertained at the moment and further
analysis of these compositions with varying site occupa-
tions and numerical techniques is required.
The density of states (DOS) of the stoichiometric sys-

tems have been plotted in Figure 4. The figure shows
that, as calculated previously by one of the authors22 and
other groups24, the electronic structure is dominated by
d-electronic states. As in previous works, Co and Ni d-
states seem to hybridize. Moreover, the plots for the
ordered cubic structure suggests that the Fermi level is
located in an unstable region in which anti-bonding states
are dominant in the case of the minority states. The elec-
tronic density of states for the disordered phases shows
the usual smearing of the electronic band structure due to
disorder. The disordered electronic DOS, however, main-
tains the general trends observed for the ordered struc-
tures. The calculations using plane-waves and pseudo-
potentials published previously by the authors22 suggest
that the stabilization of the tetragonal structures is due
to the displacement of anti-bonding states further up in
the energy scale. The approximations used in the SPR-

KKR method are not able to show this43.

C. Monte Carlo Simulations

For the Monte Carlo simulations, the simulation do-
main was created by replicating cubic and tetragonal unit
cells. The simulation domain consists of 4,096 atoms of
Co, 2,048 atoms of each Ni and Ga. As will be seen below,
the size of the simulation domain is sufficient to simulate
the magnetic behavior of these systems39,40. Also since
the real crystal lattice is used, the number of neighbor-
ing atoms will vary depending upon the atom type and
the distance between the atoms. As discussed above, the
magnetic exchange interactions between Ga and Co or Ni
are very small and are therefore neglected in the simula-
tions. From the ab-initio calculations, the local magnetic
moments for Co and Ni are ∼ 1µB and ∼ 0.5µB. Thus,
in these simulation it is assumed that Co has three dis-
crete magnetic states while Ni has two discrete magnetic
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FIG. 4. Calculated density of states (DOS) for (a) disordered cubic (b) disordered tetragonal (c) ordered cubic (d) ordered
tetragonal structures. Vertical dotted lines corresponds to the Fermi energy level.
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FIG. 5. Effect of simulation domain size on the magnetization and specific heat of the system. A supercell with 3456 or more
atoms is sufficiently large to nullify the effect of boundary conditions. A supercell with 8,192 atoms (equivalent to replicating
the L21 unit cell 8 times or B2 unit cell 16 times in all the three directions) is considered in this work.

states, estimating the number of magnetic states using numstates = 2S +1. A 3-2 states Potts model has there-
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FIG. 6. Results of the Monte Carlo simulations for ordered and disordered systems (a) magnetization (b) magnetic susceptibility
(c) magnetic specific heat (d) magnetic entropy (e) entropy difference between the ordered (L21) cubic structure and its
tetragonal distortion (f) between disordered (B2) cubic structure and its tetragonal distortions

fore been used in these calculations. The temperature
range explored in these calculations varies from 30 K to
600 K. At each discrete temperature step, system equili-
bration has been performed for 50,000 Monte Carlo steps.
After equilibration, energy (H) and magnetization (m)
of the system are collected every 100 steps and averaged
over 500 configurations. Periodic boundary conditions
are used in all the simulations.

The first step in performing the Monte Carlo simula-
tions is to study the simulation domain size effect on the
properties under consideration. In this regard, normal-
ized magnetization and specific heat have been studied
for L21 cubic system with supercell size varying from 3 to
9 unit cells (432 to 11,664 atoms in the supercell). The
results have been plotted in Figure 5. From the fig-
ure it is clear that for systems with 3,456 atoms (6 unit
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cells), the system size is sufficiently large to nullify the
effect of boundary on the system properties. As stated
above, in these calculations we have considered a super-
cell with 8,192 atoms (8 unit cells), so our results are
well-converged.
Figure 6(a) shows the variation of normalized mag-

netization with temperature. Zero value of normalized
magnetization means paramagnetic behavior of the sys-
tem while the value of one is indication of the ferromag-
netic behavior. At high temperatures, all the systems
behave paramagnetically. As the temperature decreases,
the magnetization starts increasing, initiating the mag-
netic transformation from paramagnetic to ferromagnetic
state. To ascertain the exact temperature of the mag-
netic transformation, magnetic susceptibility is plotted
as a function of temperature in Figure 6(b). The peak
in the susceptibility is located at the transition temper-
ature.
The transition temperatures for the disordered systems

are significantly lower than the transition temperatures
of the ordered systems. The difference is the consequence
of the long range ordering (LRO) in ordered systems and
short range ordering (SRO) in the disordered systems.
At higher temperatures, the spin states of the atoms are
aligned in a random direction. With decrease in temper-
ature, spin states start aligning in the same direction as
their neighbors. As a result, for LRO systems the spin
alignment is completed at much higher temperatures as
compared to SRO systems.
The above findings are in good agreement with the

experimental results obtained by studying the depen-
dence of magnetization on the magnetic field. The higher
the Curie temperature, the higher the saturation mag-
netization of the system. Saturation magnetization of
the ordered system in Co2NiGa alloys (69.3 emu/g) has
been found to be 40 % more than the disordered systems
(50.1 emu/g)9. Moreover, Co-rich alloys have been found
to have higher saturation magnetization12,44 since Co
atoms—having higher magnetic moment—tend to intro-
duce more order in the systems. Also annealing of Co-Ni-
Ga alloys results in higher saturation magnetization8,12

and this is consistent with an increase in the degree of or-
der of the alloys, even with full ordering into an L21-type
configuration.
The magnetic specific heat of the system calculated us-

ing equation (8) is plotted in Figure 6(c). As evident
from the figure, the specific heat of the systems increases
with decreasing temperature. Near the magnetic tran-
sition temperature, the specific heat increases at a very
high rate, reaching a peak value at the transition temper-
atures. With further cooling the specific heat decreases
at a very fast rate. The magnetic entropy of the systems
as a function of temperature is calculated using equation
(9).

Smag(T ) =

∫ T

0

Cmag

T
dT (9)

From Figure 6(d) at low temperatures all the sys-

tem have very low entropy. In the close vicinity to the
magnetic transition temperature, the entropy increases
and saturates once the transition temperature is reached.
The saturation value of entropy is consistent with the re-
sults of the saturation magnetic entropy obtained using
the equation (10)40.

Smag,sat = R
∑

i

Ni

N
loge(2S + 1) (10)

where i represents a magnetic atom (Co or Ni), N is the
total number of magnetic atoms (Co and Ni), S is the
spin states of the ith atom and R is the universal gas con-
stant. The theoretical saturation entropy is calculated
to be 8.01 Jmol−1K−1. This value is in good agreement
with the results of the Monte Carlo simulations shown in
Figure 6(d). The difference in the entropy of ordered
and disordered structures is shown in Figure 6(e) and
Figure 6(f). From these figures, for the ordered sys-
tems, the difference in the entropy of the cubic structure
and its tetragonal distortion is small owing to the small
difference in the magnetic transition temperature. In the
case of the disordered structure, the entropy difference
is large due to large difference in the transition temper-
atures. Thus, in case of the disordered structures, the
magnetic entropy has a significant effect on the stability
of the structures. This observation is rather important
as the relative stability of the cubic and tetragonal struc-
tures determines the transformation temperature MS .
The Ms temperature depends on the energy difference
between the two crystal structures as well as on the dif-
ference in their entropies. For the same energy difference,
a higher entropy of the cubic phase results on a lowerMS .
Assuming that vibrational contributions to the entropy
difference of the cubic and tetragonal structures remains
the same regardless of the order state, large differences
in the magnetic entropy of the cubic and tetragonal state
will play a dominant role in controlling the MS . The ef-
fect of ordering on the magnetic thermodynamic proper-
ties of the cubic (austenite) and tetragonal (martensite)
structures will therefore explain the effects of aging on
the martensitic transformation temperatures observed in
many Heusler FSMA systems.

V. CONCLUSION

In this work, we have investigated the effect of atomic
ordering on the magnetic properties of Co2NiGa alloys at
stoichiometric and off-stoichiometric compositions. The-
oretical calculations and experiments have been per-
formed with different compositions to simulate ordering
and disordering effects. Results of magnetic exchange pa-
rameters show that ordered structures possess long range
ordering while disordered structures are short range or-
dered. This trend can also be deduced from the Curie
temperature calculations using the MFA, with ordered
structures having higher Curie temperature than disor-
dered structures. The results of Curie temperature of
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experimental compositions agree with numerical calcula-
tions for ordered structures. These results suggest atomic
ordering in the alloys during annealing and requires fur-
ther work on the effect of heat treatment on the atomic
ordering and site occupations.

Further analysis of the magnetic properties (including
Curie temperatures, magnetic susceptibility, specific heat
and entropy) of stoichiometric Co2NiGa alloys with L21
and B2-type ordering has been carried out using Monte
Carlo simulations. These results suggest that ordering
seems to screen ferromagnetic interactions when the al-
loys have B2-type ordering. This screening is accompa-
nied by a decrease in the saturation magnetization as well
as the Curie temperature of the alloys, in accordance with
empirical evidence obtained from investigations on Co-
Ni-Ga as well as other FSMAs. B2-type ordering results
in a higher magnetic entropy contribution for the marten-

sitic transformation than L21 ordering in Co2NiGa. Fu-
ture investigations on the quantitative effect of magnetic
entropy on the martensitic transformation characteristics
can provide important insights into the structural trans-
formation and stability in these alloys.
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