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We have developed tight-binding Hamiltonians for the hcp transition metals zinc and 

cadmium based on the Naval Research Laboratory Tight-Binding (NRL-TB) method. 

The Hamiltonians have a nonorthogonal basis and are derived by fitting to band 

structures and total energies of first-principles linearized augmented plane wave 

calculations. We have applied this approach to compute the ground state behavior, phase 

stability, band structures, densities of states, elastic moduli, and phonon frequencies for 

both Zn and Cd, and have found good agreement with available experimental and 

theoretical data in most cases. This approach also enables us to perform large-scale 

molecular dynamics simulations to calculate the vacancy formation energies, atomic 

mean square displacements and coefficients of thermal expansion, at a small fractional 

cost of computational times compared with first-principles techniques. 
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I. Introduction 

The Naval Research Laboratory Tight-Binding (NRL-TB) method is based on 

the two-center Slater-Koster1, 2 formulation of tight-binding with a nonorthogonal basis, 

taking advantage of the fact that the density functional theory3, 4 allows an arbitrary shift 

in the potential,5, 6 which makes it possible to fit the total energy without employing an 

empirical potential.  The form of the NRL-TB parameters allows excellent transferability 

to different crystal structures and atomic configurations, and has been successfully 

applied to examine various structural, electronic, energetic and dynamical properties of 

many transition and noble metals,5-18 semimetals,19 heavy metals,20  semiconductors,21-23 

alloys,24-27, carbon nanostructures,28-30 and metal oxides31-33, etc.  In particular, NRL-TB 

Hamiltonians have been previously developed for all the transition metals, except for 

column IIB. Here we applied the NRL-TB method to the hcp transition metals zinc and 

cadmium. Both Zn and Cd differ significantly from the typical transition metals that have 

a low lying s-band and another five d-bands that progressively fill up so that the Fermi 

level (Ef) is either within the d-bands or just above for the noble metals. On the contrary, 

Zn and Cd have deep d-bands which fall between the first predominantly s-like band and 

a seventh band with s-p character crossed by Ef. The situation is also different from some 

free-electron metals such as Al that have no occupied d-bands. In contrast to most hcp 

metals, Zn and Cd have unusually large axial ratios which are well above the ideal hcp 

ratio34 and thus have some unique material properties such as the lowest melting points in 

transition metals aside from mercury.  In section II we detail the theoretical methods used 

to develop the NRL-TB Hamiltonians and perform tight-binding molecular dynamics 
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simulations.  In section III we present the results and related discussions on various tight-

binding derived properties obtained from both the static calculations and molecular 

dynamics simulations, and conclude with a brief summary in Section IV.   

II. Theoretical methods 

 In the two-center nonorthogonal NRL-TB scheme, the Slater-Koster terms 

include both the environment-dependent on-site parameters and the bond-length-

dependent hopping parameters.5, 35   The on-site terms are assumed to be diagonal and 

have a polynomial form as a function of the atomic density. For a single element, the 

density of atom i is defined as  

,                                (1) 

where the sum is over all the neighboring atoms j within a range of cutoff distance Rc of 

atom i, λ is a fitting parameter, and FC(Rij) is a smooth cut-off function.  The angular-

momentum-dependent on-site terms are defined by  

 ,                               (2) 

where ℓ represents the s, p, and d orbitals, and aℓ,bℓ,cℓ and dℓ are our fitting coefficients.  

We construct the two-center spd Slater-Koster hopping integrals from the ten 

independent SK parameters, which are assumed to all have polynomial times exponential 

forms in terms of neighbor distance  

                                (3) 

where γ indicates the type of interactions, including ssσ, ppσ, spσ, ddσ, sdσ, pdσ, ppπ, 

ddπ, pdπ, and ddδ.  R is the distance between the atoms, and eγ, fγ, gγ, and qγ are our 
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fitting coefficients.   We define the Slater-Koster overlap functions in a non-orthogonal 

calculation to have the same form as the hopping parameters.  Overall, there are in total 

93 fitting coefficients for a single element in the on-site, hopping and overlap terms in the 

NRL-TB Hamiltonians with s, p, and d orbitals, and the values of these fitting 

coefficients for Zn and Cd are listed in Table I.  

For both Zn and Cd, we used the full-potential Linearized Augmented Plane-

Wave (LAPW) total energies36, 37 within the Local Density Approximation (LDA)4 to 

generate total energies and band structures for bcc, fcc, hcp and simple cubic crystal 

structures with varying atomic volumes, and, in the case of the hcp structure, we fitted 

only selected total energy values and not a full range of values and c/a ratios. The total 

energy is usually weighed at around 200-300 times over a single band energy.  We are 

able to obtain fitting RMS error of less than 5 mRy and 0.2 mRy for the energy bands and 

total energy, respectively.  

We calculate the finite-temperature dynamical properties from tight-binding 

molecular dynamics simulations, which are performed in the micro-canonical ensemble 

by integrating the equations of motion using Verlet’s algorithm38 and a time step of two 

femtoseconds.  The forces on each atom are calculated from the eigenvectors of the TB 

Hamiltonian of the system using the Hellmann-Feynman theorem.39  The supercells used 

in our molecular dynamics simulations contain 288 atoms, and we typically are able to 

approach equilibrium in the tight-binding molecular dynamics simulations within 2000 

time steps (4 picoseconds).  

III. Results and Discussion 
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1. Equilibrium Structure and Phase Stability 

The NRL-TB method’s combination of computational efficiency and 

transferability to different crystal structures and atomic configurations enable us to 

examine low-symmetry crystal structures and defect structures, in addition to the high-

symmetry bcc, fcc, hcp and simple cubic phases used in the Hamiltonian fitting.  In Table 

II,  we list the calculated tight-binding total energies of Zn in 26 different crystal 

structures. Among all the structures examined, we find that   the hcp structure is  lowest 

in energy, consistent with experiment.34  In Fig. 1(a) we show the volume dependence of 

the tight-binding total energies for fcc, bcc, simple cubic, hcp and diamond structures. 

The tight-binding calculations successfully reproduce the first-principles LAPW data of 

the fcc, bcc and simple cubic structures that are used in the development of the tight-

binding Hamiltonians. For the hcp structure, we minimize the tight-binding total energies 

as a function of c/a ratio at each given volume, thus the tight-binding results are not 

directly comparable with the LAPW energies used in the tight-binding fitting due to the 

different c/a ratios. The equilibrium volume for hcp Zn is somewhat underestimated in 

tight-binding (91.23 bohr3/atom), in comparison to the experiment at 102.56 

bohr3/atom.34 This discrepancy is mainly due to the use of the LDA in our input database, 

which usually underestimates the equilibrium volume of the 3d transition metals.40  In 

contrast, previous first principles calculations using generalized-gradient-approximation 

(GGA) predict an equilibrium volume of 97.32 bohr3/atom,41 in closer agreement with 

experiment. The tight-binding calculated c/a ratio at the equilibrium (c/a=1.828) is in 

good agreement with experiment (c/a=1.856), similar to previous first principles 

calculations.41  Our tight-binding calculations find no significant anomaly in the c/a ratio 
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for hcp Zn under compression, consistent with hydrostatic high-pressure powder x-ray 

diffraction experiments42 and first-principles calculations43.  

The tight-binding predicted equilibrium properties of Cd are quite similar to 

those of Zn. The hcp structure also has the lowest energy among the 26 different crystal 

structures examined, as shown in Table III and Fig. 1(b). The tight-binding calculations 

underestimate the hcp equilibrium volume by ~6.5%, in comparison with the 

experimental value of 145.63 Bohr3/atom at ambient conditions, again due to the fitting 

of the Hamiltonians to LAPW calculations using the LDA approximation. The tight-

binding calculations predict a c/a ratio of 1.883 in close agreement with equilibrium 

experimental value of 1.885, similarly to the Zn results.  

The fact that the LDA results, to which our TB fit was based, are in better 

agreement with experiment for Cd than Zn is consistent with previous findings.  Indeed 

the LDA results for the 4d metals agree better to the experiment than those for the 3d 

metals44.  

2. Electronic Structure  

At the ambient experimental equilibrium volume, the tight-binding calculated 

band structure and electronic density of states are in excellent agreement with first-

principles LAPW results for both hcp Zn and Cd, as shown in Fig. 2 and 3.  For hcp Zn, 

the 3d bands are centered at ~ 0.58 Ry below the Fermi level and mostly confined within 

a narrow range of ~0.15 Ry.  The 3d bands are located deeper in hcp Cd, at ~0.66 Ry 

below the Fermi level with a narrow distribution of  ~0.15 Ry. For both hcp Zn and Cd, 

most bands around the Fermi level have mixed s and p character.  Since the d-bands are 
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occupied and located far below the Fermi level, Zn and Cd should be viewed more like 

free‐electron metals such as Mg, instead of as a typical transition metal, where d-bands 

are generally close to the Fermi surface and play an important role in bonding. 

The tight-binding calculated Fermi surfaces of hcp Zn at the ambient 

experimental equilibrium volume are in close agreement with first-principles LAPW 

results, as shown in Fig. 4.  There are three major bands shown in the Fermi surfaces, one 

forming pockets around the upper and lower parts of each corner (the H point in the 

Brillouin zone) (green/yellow); the second (purple/blue) filling the entire corner (along 

the K-H line) and possibly connecting the corners (it's hard to be certain even using 

11,000 k-points); and the third, in light blue, filling the zone center. One noticeable 

difference between the tight-binding and LAPW surfaces can be found in the purple 

necks. In tight-binding the neighboring necks tend to connect to each other, while in 

LAPW there are no connections. Such differences can be also seen in the band structure,  

where the the tight-binding band goes just above the Fermi level and the LAPW band 

goes just below it in the Σ direction.  For hcp Cd, the tight-binding and LAPW calculated 

Fermi surfaces show better agreement, as shown in Fig. 5. There is no observable trend to 

connect the purple necks, and both tight-binding and LAPW predict the band energy 

below the Fermi level in the Σ direction.    

3. Elastic Moduli  

To calculate the elastic moduli, we impose volume-conserving external strains 

on the structure, relax any internal parameters to obtain the energy as a function of the 

strain, and numerically calculate the second derivative of the energy-strain curves.45 As 
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shown in Table IV, in hcp Zn our tight-binding calculations significantly underestimate 

the bulk modulus and some of the elastic moduli (C13, C33, and C44), all by over 20 GPa, 

in comparison to the experiment46. The significant underestimation of C13 and C33 has 

been previously reported in density-functional theory calculations using both GGA and 

hybrid functionals for Zn47. The calculated bulk and elastic moduli of hcp Cd show much 

better agreement with the experiment, all agree within 8 GPa.46 

4. Phonon Dispersion 

Using the frozen phonon approximation,48 we calculate the phonon dispersion 

curves along several high-symmetry directions in the Brillouin zone for both hcp Zn and 

Cd, as shown in Fig. 6.  The phonon spectra were calculated using supercells generated 

by the PHON code49 and Stokes's FROZSL code50, the calculations agreeing well with 

each other. Since these calculations are performed at the equilibrium volume and c/a ratio 

predicted by the tight-binding Hamiltonians and  the tight-binding equilibrium volume is 

significantly smaller than the experimental value, it is not surprising to see that the tight-

binding calculated phonon frequencies for hcp Zn and Cd are mostly 10-20% higher than 

the inelastic neutron scattering measurements51. Phonon frequencies generally increase 

significantly with volume compression (increase of the pressure) in transition metals, as 

shown in many previous experimental and first-principles calculations45, 52-54.  

5. Atomic Mean Square Displacements 

Atomic mean square displacement (MSD) is an important materials parameter 

to describe the lattice vibrational properties at finite temperatures.38 We calculate the 

MSDs based on the time-dependent atomic coordinates obtained through tight-binding 
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molecular dynamics simulations at several selected temperatures.38 The calculated MSDs 

for both hcp Zn and Cd show a linear increase with the increase of temperature, as shown 

in Fig. 7. Cd has a larger atomic MSD than Zn at all the temperatures we examined.  We 

only report MSDs for Zn and Cd up to 500 K due to the low melting points of Zn (693 K) 

and Cd (594 K), and the fact that our tight-binding molecular dynamics simulations break 

when the temperature approaches the melting point. Our high-temperature tight-binding 

molecular dynamics simulations break at 750 K for Zn and 525 K for Cd, which are both 

close to the experimental melting points. The calculated MSD values of Cd agree well 

with the experimental data derived from the Debye-Waller factor measurements55, 56, 

especially at around the ambient temperature.  The increasing differences between the 

calculated and experimental values at higher temperatures are partially due to the fact that 

we perform all the molecular dynamics simulations at constant volume. The tight-binding 

calculations underestimated the MSD values of Zn, partially due to the underestimation 

of  ambient equilibrium volume. 

6. Coefficient of Thermal Expansion 

The thermal expansion coefficient is a thermodynamic parameter that can also 

be obtained from our volume-conserving tight-binding molecular dynamics simulations 

at finite temperatures, 11 

, (4) 

where B is the bulk modulus, P is the temperature-dependent pressure, and T is the 

temperature. We calculated P using the usual virial definition11, 18 by adding up both the 

potential and kinetic contributions, and found a linear temperature dependence for both 
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Zn and Cd, similar to that previously reported in several bcc transition metals.18  Zn and 

Cd are both highly anisotropic, due to the unusually large c/a ratios at their equilibrium 

hcp structures, so the experimentally measured linear thermal expansion coefficients vary 

significantly along the a and c axes. Our tight-binding calculated linear thermal 

expansion coefficients are in reasonable agreement with the average experimental 

values57(having the same order of magnitude), as shown in Table V.  

7. Vacancy Formation Energy 

The computational efficiency of our tight-binding method enables us to examine 

large supercells, such as defect structures with minimal defect-defect interactions. Point 

defects such as monovacancies are intrinsic at high temperatures and have significant 

impact on a materials’ thermal and mechanical properties. The thermal concentration of 

vacancies is usually associated with the vacancy formation energy Evac, which can be 

obtained from our tight-binding calculations using5 

(5) 

where Esc(M, Q; V) is the total energy of a supercell with volume V containing M atoms 

and Q vacancies, and Ebulk(V/N) is the total energy per atom for a bulk supercell of N 

atoms with volume V.  When calculating the total energy for the vacancy-contatining 

supercell, we ensure that the supercell is large enough to avoid the vacancy-vacancy 

interactions, and fully relax all the atoms using the conjugate gradient method while 

keeping the lattice symmetry.  The calculated values are very sensitive to the supercell 

size and the number of k-points used in the tight-binding calculations.  Using a supercell 

of 5×5×5 which contains 249 metal atoms and one vacancy, we are able to obtain well 

)/()1();1,1()( NVENVNEVE bulkscvac −−−=
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converged results of Evac for both Zn and Cd when using 72 k-points in the tight-binding 

calculations,  as shown in Table VI.  In comparison to the experimental data measured 

from positron annihilation58, our tight-binding calculation overestimated the Evac for Cd 

and underestimated the value for Zn, by ~0.3 eV. Both hcp Zn and Cd have very low 

vacancy formation energies, roughly one order of magnitude smaller than many of the 

transition metals we previously studied.5, 18 As shown in the band structure, the occupied 

d bands in Zn and Cd are located deep below the Fermi level, and most bands around the 

Fermi level have mixed s and p character.  Thus Zn and Cd have electronic structures 

more similar to free-electron meals than transition metals. Aluminum, one of the free-

electron metals which is not far from Zn in the periodic table, is reported to have a 

vacancy formation energy of 0.6 eV59, similar to the values of Zn and Cd.  

IV. Conclusions 

In summary, we have developed NRL-TB Hamiltonians for Zn and Cd by fitting to first-

principles LAPW band structures and total energies within the LDA, and applied the 

Hamiltonians to compute the ground state behavior and phase stability, band structures, 

densities of states, elastic moduli, phonon frequencies, vacancy formation energies, mean 

square displacements, and thermal expansion coefficients.  We examined the tight-

binding energies of 26 different crystal structures including many low-symmetry and 

defect systems, and find that hcp has the lowest energy for both Zn and Cd. The tight-

binding calculated band structure, density of states, and Fermi surfaces agree well with 

first-principles LAPW results. The tight-binding bulk and elastic moduli of hcp Cd are in 

excellent agreement with experiment, and tight-binding calculations underestimate the 

bulk modulus and several elastic moduli for hcp Zn. The phonon spectra, calculated using 
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the frozen phonon approximation, are in reasonable agreement with experiment. The 

calculated atomic mean square displacements increase linearly with temperature, and hcp 

Cd has a larger MSD value over Zn at all temperatures, in good agreement with the 

Debye-Waller factor measurements. The calculated linear thermal expansion coefficients 

agree with experiment. The vacancy formation energies of Zn and Cd are roughly one 

order of magnitude lower than most transition metals, but close to the formation energy 

of Aluminum. 
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Fig. 1  The tight-binding total energies (lines) of fcc, bcc, hcp, simple cubic, and diamond 

structures of Zn (a) and Cd (b) as functions of atomic volume, in comparison to the first-

principles LAPW results (symbols) of fcc, bcc, and simple cubic structures used in the 

development of tight-binding Hamiltonians.  The tight-binding hcp results here are not 

directly comparable to the LAPW values used in the fitting due to different c/a ratios.  
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Fig. 2  The tight-binding band structure and electronic density of states of hcp Zn at the 

ambient experimental equilibrium volume agree well with first-principles LAPW results. 
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Fig. 3  Same as Fig. 2, but for hcp Cd. 
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Fig. 4 The tight-binding (a) and LAPW (b) calculated Fermi surfaces for hcp Zn. There 

are three bands, one forming pockets around the upper and lower parts of each corner (the 

H point) (green/yellow); the second (purple/blue) filling the entire corner (the K ‐H line) 

and maybe connecting the corners; and the third, in light blue, filling the zone center.  
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Fig. 5  same as Fig. 4, but for hcp Cd.    
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Fig. 6  The calculated phonon dispersion of hcp Zn (a) and Cd (b), in comparison to the 

inelastic neutron scattering measurements (Ref. 51).  

(a) 

(b) 
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Fig. 7  The temperature dependence of the atomic mean square displacements for hcp Zn 

(solid line) and Cd (dash line) calculated from tight-binding molecular dynamics 

simulations, in comparison  to the experimental data derived from the Debye-Waller 

factor measurements (Zn, filled circles, Ref. 55, filled triangles, Ref. 56; Cd, open squares, 

Ref. 56).  
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Table I   Tight-binding coefficients for Zn and Cd, generated by fitting to the first-

principles LAPW total energies and band structures of bcc, fcc, hcp and simple cubic 

structures.  

Zn 

On-site parameters (λ=1.469991 a.u.-1/2) 
 
 
 
 
 

ℓ aℓ bℓ cℓ dℓ 

s 0.22328 33.46771 -5376.929237 530223.036806 

p 0.697637 10.633128 -4414.114916 858194.489409 

d -0.032554 -1.145394 339.451793 -73547.97693 

Hopping terms 
 
 
 

γ eγ fγ gγ qγ 

ssσ 2.630211 -1.072291 0.049662 0.800106 

spσ 1.702888 0.371463 0.119067 1.022335 

ppσ -0.138547 0.077519 0.001158 0.660035 

ppπ -3.547105 0.662968 0.02738 0.788917 

sdσ -0.088475 -0.139397 0.00354 0.834245 

pdσ -0.480234 0.082434 0.004016 0.839235 

pdπ 9.892114 0.247499 -0.585076 0.981195 

ddσ 1.573334 0.054652 -0.204651 1.042584 

ddπ 5.528614 -0.835957 0.046933 1.037825 

ddδ -160.313912 -9.176101 7.146619 1.358961 

Overlap terms 
 
 
 

γ δγ tγ rγ uγ 

ssσ -40.426164 13.824170 0.064994 1.063141 

∑ −=
j

ijCiji RFR )()exp( 2λρ
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∑ −++=
j

cr RFRqRgRfeRP )(]exp[)()( 22
γγγγ

∑ −++=
j

cr RFRuRrRtRS )(]exp[)()( 22
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spσ 8.349221 -3.406862 -0.124509 0.895341 

ppσ -0.758428 -0.047789 0.002815 0.549763 

ppπ 1.905233 -0.050823 -0.008351 0.666625 

sdσ 5.482247 -1.123358 -0.072468 0.848286 

pdσ 1.096869 0.443588 -0.23008 0.860846 

pdπ 317.522047 -47.939737 -6.193006 1.188616 

ddσ 2179.46986 466.04847 -186.821306 1.442683 

ddπ -2.729519 0.11063 -0.093612 1.041364 

ddδ 20.891994 0.38954 -0.571871 1.00681 

Cd 

On-site parameters (λ=1.605663 a.u.-1/2) 
 
 
 
 
 

ℓ aℓ bℓ cℓ dℓ 

s 0.363794 86.10881 -76791.192088 108436393.485 

p 0.867613 -127.036573 133590.464111 124813010.82 

d -0.06385 15.238177 -20740.893262 -2843236.2717 

Hopping terms 
 
 
 

γ eγ fγ gγ qγ 

ssσ 5.724943 -6.601102 0.015762 1.061474 

spσ 0.245014 -0.02487 0.000418 0.542236 

ppσ -31.355628 5.972695 -0.038353 0.894364 

ppπ 18.204678 -0.142384 -0.550664 1.01025 

sdσ -380.682071 88.930014 -0.168741 1.212736 

pdσ 15.707529 -3.273015 0.003657 0.890509 

pdπ 2.011892 0.250708 0.027848 1.073848 

ddσ 58.263161 -19.937689 0.347991 1.163757 

ddπ 11.827992 -1.5099 0.017756 1.013595 

ddδ -4.736575 0.623097 -0.001169 1.073331 

∑ −=
j

ijCiji RFR )()exp( 2λρ
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Overlap terms 
 
 
 

γ δγ tγ rγ uγ 

ssσ -0.392718 0.470493 -0.033283 0.667106 

spσ 59.630549 -15.443898 -0.204783 0.973806 

ppσ 6.28926 -3.547458 -0.134306 0.90149 

ppπ 4.911012 -0.602315 0.006926 0.754477 

sdσ 11.256193 -0.07029 -0.410407 1.030123 

pdσ 133.598176 -11.940802 -3.109452 1.097928 

pdπ -33.085745 3.64351 1.411897 1.047261 

ddσ 4.848817 0.438177 -0.121407 1.031423 

ddπ -7.338715 -0.233211 0.021357 1.002701 

ddδ -26.229872 2.851133 0.782012 1.096638 

Table II   The calculated tight-binding total energies of Zn in 26 different crystal 

structures.  Tight-binding calculations correctly predict that hcp is the equilibrium 

structure, and its energy E0 is the lowest among all the structures examined.  

structure  name  # atoms  V(bohr3/atom) E-E0(Ry/atom) 

A3  hcp  2  91.23 0.00000 

C19  α-Sm  3  91.75 0.00063 

A3'  dhcp  4  91.62 0.00079 

 A13  β-Mn  20  93.97 0.00093 

Aa  α-Pa (c/a = 0.77)  1  93.47 0.00129 

A10  α-Hg (51.5º)  1  93.77 0.00246 

A1  fcc  1  90.45 0.00247 

A12  α-Mn  29  92.60 0.00418 

Ab  β-U  30  91.46 0.00458 

A7  α-As  2  98.39 0.00481 

A15  A15  8  91.70 0.00539 

A11  α-Ga 4  99.14 0.00550 

∑ −++=
j

cr RFRuRrRtRS )(]exp[)()( 22
γγγγ δ
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A16  α-S 32  97.89 0.00745 

Af  simple hexagonal 1  101.96 0.00760 

A8  γ-Se 3  101.99 0.00769 

A2  bcc  1  91.90 0.00848 

 C32  ω  3  93.34 0.00913 

bct5  bct 5  2  99.34 0.00968 

 A5  β-Sn  2  104.43 0.01705 

Ah  simple cubic  1  108.63 0.02181 

 hR12  α-B  12  122.10 0.02199 

d2h  2H diamond  4  123.53 0.02990 

 A9  graphite  4  119.08 0.03511 

A4  diamond  2  140.29 0.04553 

E21  perovskite  5  128.76 0.05067 

 D09  ReO3  4  173.36 0.06615 

 

Table III   Same as Table II, but for Cd.  

structure  name  # atoms  V(bohr3/atom) E-E0(Ry/atom) 

A3  hcp  2  136.23 0.00000 

C19  α-Sm 3  136.74 0.00059 

A3'  dhcp  4  136.78 0.00080 

Aa  α-Pa (c/a = 0.76)  1  139.19 0.00133 

A10  α-Hg (53.0º)  1  137.69 0.00202 

A1  fcc  1  136.33 0.00323 

A15  A15  8  138.05 0.00342 

 A13  β-Mn  20  141.25 0.00379 

Ab  β-U  30  137.76 0.00423 

A12  α-Mn  29  139.59 0.00518 

A7  α-As  2  143.71 0.00711 

A11  α-Ga  4  145.29 0.00756 
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A2  bcc  1  137.99 0.00837 

bct5  bct 5  2  148.61 0.00840 

A16  α-S 32  146.31 0.00849 

 C32  ω  3  141.34 0.00869 

A8  γ-Se 3  149.32 0.01157 

Af  simple hexagonal 1  149.38 0.01160 

 A5  β-Sn  2  151.81 0.01399 

 hR12  α-B 12  158.72 0.01408 

Ah  simple cubic  1  157.49 0.01591 

d2h  2H diamond  4  190.37 0.02893 

 A9  graphite  4  177.19 0.03081 

A4  diamond  2  209.54 0.04040 

E21  perovskite  5  187.21 0.05024 

 D09  ReO3  4  298.49 0.06042 
 

Table IV   The tight-binding calculated bulk and elastic moduli for hcp Zn and Cd  at the 

ambient experimental equilibrium volume are in reasonable  agreement with 

experimental measurements (46).  

 elastic moduli (GPa)  

 hcp Zn  hcp Cd  

TB  experiment  TB  experiment 

C
11 

 168.52  179.09  134.37  129.23  

C
12 

 27.99  37.50  47.35  39.99  

C
13 

 28.92  55.40  33.66  40.95  

C
33 

 43.17  68.80  62.45  56.68  

C
44 

 24.04  45.95  22.24   24.20  
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C
66 

 70.27  70.80  43.51  44.62  

B  40.74  66.09  52.81  52.51  
 

Table V   The tight-binding calculated linear coefficients of thermal expansion for hcp Cd 

and Zn both agree with experiment57.  

element  
linear thermal expansion coefficient (×10-5 K-1) 

TB  experiment  

Zn  1.50  3.01(a:1.30, c: 6.43)  

Cd  2.43  3.13(a: 1.98, c: 5.43)  
 

Table VI   The tight-binding calculations underestimate the vacancy formation energy for 

hcp Zn and overestimate the value for hcp Cd, both by ~0.30 eV, in comparison to the 

positron annihilation measurements (58). 

supercell  # atoms  # k-points

vacancy formation energy (eV)  

hcp Zn  hcp Cd 

unrelaxed relaxed unrelaxed relaxed 

4x4x4  128 

32 0.428 0.218 0.951 0.617 

48 0.475 0.272 0.971 0.643 

72 0.494 0.295 1.032 0.708 

108 0.491 0.291 1.033 0.709 

5x5x5  250 

32 0.447 0.214 1.100 0.740 

48 0.480 0.248 1.086 0.732 

72 0.454 0.222 1.049 0.689 

108 0.487 0.258 1.049 0.690 

experiment   0.52 0.39 
 


