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We have reexamined the problem of disorder in two-band superconductors, and shown within
the framework of the T -matrix approximation that the suppression of Tc can be described by a
single parameter depending on the intra- and interband impurity scattering rates. Tc is shown to
be more robust against nonmagnetic impurities than would be predicted in the trivial extension
of Abrikosov-Gor’kov theory. We find disorder-induced transition from the s± state to a gapless
and then to a fully gapped s++ state, controlled by single parameter – sign of the average coupling
constant 〈λ〉. We argue that this transition has strong implications for experiments.
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Introduction. The symmetry and structure of the su-
perconducting order parameter in recently discovered
iron-based superconductors (FeSC) is one of the main
challenges in this exciting new field1. The Fermi surface
is usually given by two small hole pockets around Γ =
(0, 0) point and two electron pockets around M = (π, π)
point in the 2-Fe zone. The proximity of the competing
SDW state with Q = (π, π) suggests antiferromagnetic
fluctuations as a mechanism for electron pairing. In this
case, the natural order parameter for most of the FeSC
is the so called s± state, described by an isotropic order
parameter on each FS with the opposite signs for electron
and hole-like pockets. Many experimental results, such as
NMR spin-lattice relaxation rate, spin-resonance peak at
the SDW wave vector Q in inelastic neutron scattering,
and quasiparticle interference in tunneling experiments
are in good qualitative agrement with this scenario, al-
though some materials are more anisotropic than others2.

Since varying amounts of disorder are present in the
materials, and because superconductivity is created in
some cases by doping, it is important to understand the
role of impurities. It has been shown that in an s± state,
any nonmagnetic impurity which scatters solely between
the bands with different sign of the order parameter sup-
presses Tc in the same way as a magnetic impurity in a
single band BCS superconductor3. Therefore the criti-
cal temperature Tc should obey the Abrikosov-Gor’kov
(AG) formula lnTc0/Tc = Ψ(1/2 + Γ/2πTc) − Ψ(1/2),
where Ψ(x) is the digamma function and Tc0 is the criti-
cal temperature in the absence of impurities4. The criti-
cal value of the scattering rate Γ defined by Tc(Γ

crit) = 0
is given by Γcrit/Tc0 = π/2γ ≈ 1.12 within AG theory.
However in several experiments on FeSC, e.g. Zn sub-
stitution or proton irradiation, it is found5–8 that the Tc

suppression is much less than expected in the framework
of AG theory. It has therefore been suggested that the
s± state is not realized at all in these systems, and that
a more conventional two-band order parameter without

sign change (s++) is the more likely ground state9,10.

The disorder problem in these systems is substantially
more complicated than this simple argument suggests,
however. Even within the assumption of isotropic gaps on
two different Fermi pockets and nonmagnetic scattering,
a much slower pairbreaking rate can be achieved by as-
suming that the scattering is primarily intraband rather
than interband. In the pure intraband scattering limit,
Anderson’s theorem applies, the system is insensitive to
the sign of the order parameter, and no Tc suppression
occurs. The rate of Tc suppression therefore apparently
depends on the interplay of both intra- and inter-band
scattering rates, and drawing conclusions regarding the
superconducting state based on systematic disorder stud-
ies is fundamentally more difficult than in one-band sys-
tems. One approach to this problem has been to try to
determine the intra- and interband scattering potentials
microscopically for each type of impurity and host11–13,
but the quantitative applicability of band theory to such
questions is unclear.

Here we consider the critical temperature of an
isotropic s± two-band superconductor within the usual
self-consistent T -matrix approximation for impurity scat-
tering14. We perform the study both analytically in the
weak coupling regime and numerically in the strong cou-
pling Eliashberg framework. We find that the depen-
dence of Tc on impurity concentration is given by a uni-
versal form independent of impurity potentials, with re-
spect to a generalized pairbreaking parameter. The form
depends, however, on the ratio of inter- to intraband pair-
ing matrix elements. Depending on the average values
of these matrix elements, we find there are two possible
types of s± superconductivity. The first is the one which
has been largely discussed so far in the literature, for
which Tc is suppressed as disorder is increased, until it
vanishes at a critical value of the scattering rate. There
is however also a second type of s± state, one for which
Tc tends to a finite value as disorder increases; at the
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same time the gap function acquires a uniform sign, i.e.
undergoes a transition from s± to s++.
Model. We consider the Eliashberg equations14 for a

two-band superconductor with 4×4 matrix quasiclassical
Green’s function in Nambu and band space,

ĝ(ωn) =

(
g0a 0
0 g0b

)
⊗ τ̂0 +

(
g1a 0
0 g1b

)
⊗ τ̂2, (1)

where the τi denote Pauli matrices in Nambu space, and
g0α and g1α are the normal and anomalous quasiclassical
Nambu Green’s functions:

g0α = −
iπNαω̃αn√
ω̃2
αn + φ̃2

αn

, g1α = −
πNαφ̃αn√
ω̃2
αn + φ̃2

αn

. (2)

Here, index α runs over band indices a and b, Na,b are
the density of states of each band (a, b) at the Fermi
level, ωn = πT (2n+ 1) is the Matsubara frequency. The

quantities ω̃αn and φ̃αn are Matsubara frequencies and
order parameters renormalized by the self-energy Σ̂(iωn),
respectively,

ω̃αn = ωn + iΣ0α(iωn) + iΣimp
0α (iωn), (3)

φ̃αn = Σ1α(iωn) + Σimp
1α (iωn). (4)

The self-energy due to the spin fluctuation interactions
is then given by:

Σ0α(iωn) = T
∑

ω′

n
,β

|λαβ(n− n′)|g0β/Nβ, (5)

Σ1α(iωn) = −T
∑

ω′

n
,β

λαβ(n− n′)g1β/Nβ . (6)

The coupling functions λαβ(n − n′) =
2λαβ

∫∞

0 dΩΩB(Ω)/
[
(ωn − ωn′)2 +Ω2

]
are expressed

via the spectral functions B(Ω)15 and constants λαβ .
The matrix elements λαβ can be positive (attractive) as
well as negative (repulsive) due to the interplay between
spin-fluctuations and electron-phonon coupling15,16

and strongly renormalized due to the nested Coulomb
interaction17.
We use the T -matrix approximation to calculate the

average impurity self-energy Σ̂imp:

Σ̂imp = nimpÛ+ Ûĝ(ωn)Σ̂
imp(iωn), (7)

where Û = U ⊗ τ̂3 and nimp is impurity concentration.
For simplicity intra- and inter-band parts of the poten-
tial are set equal to v and u, respectively, such that
(U)αβ = (v − u)δαβ + u. This completes the specifica-
tion of the equations which determine the quasiclassical
Green’s functions.
Note that we have neglected possible anisotropy in

each order parameter φ̃a(b)n; these effects can lead to
changes in the response of the two-band s± system to
disorder and have been examined, e.g. in Ref. 18.

Critical temperature. Tc is found by solving the lin-
earized Eliashberg equations for the renormalization fac-
tors Z̃αn = ω̃αn/ωn and gap functions ∆̃αn = φ̃an/Z̃αn

14:

Z̃αn = 1 +
∑

β

Γ̃αβ/|ωn|

+ πTc

∑

ω
n′ ,β

|λαβ(n− n′)|sgn (ωn′) /ωn, (8)

Z̃αn∆̃αn =
∑

β

Γ̃αβ∆̃βn/ |ωn|

+ πTc

∑

ω
n′ ,β

λαβ(n− n′)∆̃βn′/|ωn′ |, (9)

where Γ̃αβ are impurity scattering rates.

If one inserts Eq. (8) into Eq. (9) and gets a set of

equations for ∆̃αn, it is easy to show that the impurity
intraband scattering terms ∝ Γ̃aa and Γ̃bb drop out19, in
agreement with Anderson’s theorem. From Eq. (7) one

finds Γ̃ab(ba) as

Γ̃ab(ba) = Γa(b)
(1− σ̃)

σ̃(1− σ̃)η (Na+Nb)2

NaNb

+ (σ̃η − 1)2
, (10)

where σ̃ = (π2NaNbu
2)/(1 + π2NaNbu

2) and Γa(b) =

nimpπNb(a)u
2(1 − σ̃) are generalized cross-section and

normal state scattering rate parameters, respectively.
The parameter η controls the ratio of intra-band and
inter-band scattering as v2 = u2η. In the Born (weak
scattering) limit, σ̃ → 0, while for σ̃ → 1 the unitary limit
(strong scattering) is achieved. From (10), we therefore
recover explicitly the well-known but counterintuitive re-
sult that in the unitary limit nonmagnetic impurities do
not affect Tc in an s± state19,20.

The linearized Eliashberg equations (8) and (9) are
now solved numerically, varying T and finding Tc as
the highest temperature where a nontrivial solution ap-
pears. Results for Tc as a function of Γ̃ab, are shown in
Fig 1, in which situation all cases with various values of
σ̃ and η fall on the same universal Tc curve for each av-
erage 〈λ〉 ≡ [(λaa + λab)Na/N + (λba + λbb)Nb/N ] with
N = Na + Nb. It is clearly seen that depending on the
sign of 〈λ〉, one gets two types of Tc behavior vs. Γ̃ab

in the s± scenario. For type (i), the critical tempera-
ture vanishes at a finite impurity scattering rate Γcrit

a for
〈λ〉 < 0. For type (ii), the critical temperature remains
finite at Γa → ∞. In the marginal case of 〈λ〉 = 0 we find

that Γ̃crit → ∞ but with exponentially small Tc. There-
fore, we have found universal behavior of Tc controlled
by a single parameter 〈λ〉.

Weak-coupling limit. To understand the origin of the
two types of limiting behavior of Tc in s± scenario, we
now consider the weak coupling limit assuming λαβ(n−
n′) = λαβΘ(ω0−|ωn|)Θ(ω0−|ω′

n|). In this approximation
the calculation can be performed analytically.
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FIG. 1: (color online). Critical temperature for various σ̃
and η as a function of the effective interband scattering rate
Γ̃ab for the same parameters. Note that curves for differ-
ent sets of σ̃ and η overlap and fall onto one of the three
universal curves depending on the 〈λ〉. Nb/Na = 2, cou-
pling constants for illustrative purpose are chosen for 〈λ〉 > 0
as (λaa, λab, λba, λbb) = (3,−0.2,−0.1, 0.5), for 〈λ〉 = 0 as
(2,−2,−1, 1) and for 〈λ〉 < 0 as (1,−2,−1, 1).

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

∆ α
n 

/ T
c0

, T
c 

/ T
c0

Γa / Tc0

Nb / Na=2

Tc

∆a

∆b

Tc
∆a0
∆a1
∆a2

∆b0
∆b1
∆b2

FIG. 2: (color online). Critical temperature Tc and ∆̃αn (in
units of Tc0) for first, second, and third Matsubara frequencies
n at T = 0.04Tc0, σ̃ = 0.5, η = 1, and Nb/Na = 2 and 〈λ〉 > 0.
The coupling constant are chosen as in Fig. 1.

We introduce the parameter

∆α = Θ(ω0 − |ωn|)
∑

β

λαβπT
∑

|ωn|<ω0

∆̃βn

|ωn|
, (11)

which plays the role of the pair potential in the clean
limit. Substituting ∆̃αn from Eqs. (8) and (9) and recall-

ing Γ̃ab/Γ̃ba = Nb/Na, we get for |ωn| < ω0 an equation
for ∆α similar to AG:

∆α = λα〈∆〉(I1 − I2) + I2
∑

β

λαβ∆β , (12)

where I1 = πT
∑

|ωn|<ω0
1/|ωn| ≈ log 2γω0/(πTc), I2 =

πT
∑

|ωn|<ω0
1/(|ωn| + Γ̃ab + Γ̃ba), λα =

∑
β λαβ , and

〈∆〉 = (∆aNa/N +∆bNb/N).

In the clean limit, I2 = I1, Eq. (12) reduces to ∆α =
I1

∑
β λαβ∆β . Diagonalization of this equation results

in the equation for the critical temperature I1 = 1/λ0,

where λ0 = (λaa+λbb)/2+
√
(λaa − λbb)2/4 + λabλba > 0

is the highest positive eigenvalue of the matrix λαβ . The

critical temperature is then Tc0 = 2γ
π
ω0 exp(−1/λ0). A

similar expression was found in3,21. The relative sign
of the pair potential of the bands is determined by the
off-diagonal interaction matrix elements: sgn (∆a/∆b) =
sgn (λab).

When ∆a −∆b 6= 0, nonmagnetic impurities suppress
the critical temperature3. The critical value of the im-
purity scattering rate for type (i) systems is given by

log[ω0/(Γ̃ab + Γ̃ba)crit] = 〈λ〉/(λaaλbb − λabλba).

We now focus on the case of type (ii) systems, 〈λ〉 > 0,
which have not been discussed extensively in the lit-
erature. Multiplying the both sides of Eq. (12) with
Nα followed by summation and using in the dirty limit
I2 → 0, one obtains 1 = I1〈λ〉 and consequently Tc =
2γ
π
ω0 exp(−1/〈λ〉). Analysis of the Eqs.(8-9) shows, that

for small n in the clean limit ∆̃αn ∼ ∆α, while in the
dirty limit both ∆̃an and ∆̃bn converge to the same value
∆̃αn → ∆Γ→∞, that is s++ state is realized. If the initial
state corresponds to s±, a transition s± → s++ at finite
concentration of impurities must exist.

There is a simple physical argument behind the s± →
s++ transition. With increasing inter-band disorder, the
gap functions on the different Fermi surfaces tends to the
same value. A similar effect has been found in Refs.3,22

for a two-band systems with s++ symmetry, and in Ref.18

discussing node-lifting on the electron pockets for the ex-
tended s-wave state in FeSC.

To demonstrate the transition explicitly, we calculate
∆̃αn for n = 1...3 at T = 0.04Tc0 and show the results
in Fig. 2 for a particular choice of λαβ with 〈λ〉 > 0. For
this parameter set, Tc0 ≈ 40K. Both order parameters
∆̃a(b)n converge to ∆Γ→∞ for large disorder, while the Tc

suppression quickly saturates. The transition s± → s++

provides a possible explanation for the observed much
weaker reduction of the critical temperature than the
naive application of the AG formula.

Another important consequence of the transition s± →
s++, relevant to experiments in pnictides, is gapless su-
perconductivity as one of the gaps vanishes. The den-
sity of states Ntot(ω) = −

∑
α Img0α(ω)/π is shown in

Fig. 3(a) for a type (ii) case. With increasing impurity
scattering rate, the lower gap is seen to close, leading
to a finite residual Ntot(ω = 0), followed by a reopening
of the gap. A similar behavior is reflected in the tem-
perature dependence of the penetration depth, Fig. 3(b),
which varies in the clean limit with activated behavior
controlled by the smaller gap, crossing over to T 2 in the
gapless regime, to a new activated behavior in the s++

state in the dirty limit. Fig. 3(b) should be compared
to similar works, where the effect of scattering on the
T -dependent superfluid density was calculated for a two-
band s++ state13,22,23.
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FIG. 3: (color online). (a) Density of states Ntot(ω)/N vs.
Γa/Tc0 and ω/Tc0 for 〈λ〉 > 0 and impurity parameters σ̃ =
0.5, η = 1, Nb/Na = 2, N = Na + Nb. (b) Total superfluid
density 1/(ωpλL)

2 vs. Γa/Tc0 and T/Tc0 where ωp is the total
plasma frequency and λL is the London penetration depth.

Conclusions. We have shown that in two-band mod-
els with s± ground state, Tc has a universal dependence
on the impurity scattering rate which can be calculated
explicitly in terms of the inter- to intraband impurity
scattering rate ratio. We demonstrated that s± super-
conductivity may be quite robust against nonmagnetic
impurities, depending on the ratio of inter- to intraband
pairing coupling constants, and may even display a tran-
sition to an s++ gap structure with increasing disorder,
which will manifest itself in thermodynamic and trans-
port properties.
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