aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nucleation of spontaneous vortices in trapped Fermi gases
undergoing a BCS-BEC crossover
A. Glatz, H. L. L. Roberts, I. S. Aranson, and K. Levin
Phys. Rev. B 84, 180501 — Published 1 November 2011
DOI: 10.1103/PhysRevB.84.180501


http://dx.doi.org/10.1103/PhysRevB.84.180501

Nucleation of Spontaneous vortices in trapped Fermi gases undergoing a BCS-BEC
crossover

A. Glatz,'! H. L. L. Roberts,?? I. S. Aranson,’ and K. Levin?

! Materials Science Division, Argonne National Laboratory, 9700 S. Cass Av., Argonne, IL 60439, USA
2 James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
3 Physics Department, University of California, Berkeley, CA 94720, USA
(Dated: October 17, 2011)

We study the spontaneous formation of vortices during the superfluid condensation in a trapped
fermionic gas subjected to a rapid thermal quench via evaporative cooling. Our work is based on the
numerical solution of the time dependent crossover Ginzburg-Landau equation coupled to the heat
diffusion equation. We quantify the evolution of condensate density and vortex length as a function
of a crossover phase parameter from BCS to BEC. The more interesting phenomena occur somewhat
nearer to the BEC regime and should be experimentally observable; during the propagation of the
cold front, the increase in condensate density leads to the formation of supercurrents towards the
center of the condensate as well as possible condensate volume oscillations.

PACS numbers: 67.85.-d,67.85.De,67.85.Jk,74.20.De

Atomic gases undergoing a superfluid condensation are
very clean and simple systems to address non-equilibrium
quantum dynamics of superconductors. As an example
of important non-equilibrium behavior, the present pa-
per focuses on the way in which a rapid quench from the
normal phase leads to the formation of a random tangle
of vortices. In addition to cosmology', the character and
dynamics of these defects is of great interest to a number
of different physics subdisciplines ranging from atomic
phy sics,?3 to condensed matter®® and high temperature
superconductivity® ®. To this end, theoretical investiga-
tions of rapid quenches of atomic Bose gases have been
undertaken? and appear consistent with experiments. In
this Rapid Communication we make predictions for fu-
ture observations on trapped Fermi gases throughout the
entire crossover from BCS to BEC, with special emphasis
on the unitary regime.

These fermionic systems are in many ways more suit-
able systems to study the dynamics of quantum gases.
The Pauli principle suppresses three body collisions mak-
ing it possible to study the strong interaction regime.
For the Bose counterparts, collisions are frequent and
lead to condensate decoherence. A related advantage of
the Fermi gases is the opportunity to explore tunable in-
teraction strengths which, in turn, affects the dynamics.
This tunability is associated with the crossover between
the BCS (where the inter-fermionic attraction is weak)
and the Bose-Einstein condensed (BEC) limits (where
the attraction is strong). This crossover is entirely ac-
cessible through application of a magnetic field, and the
exploitation of so-called Feshbach resonances®!%. Our
work is based on a numerical simulation of of the time-
dependent Ginzburg-Landau equation (TDGLE)!!2 in
the presence of thermal (white) noise y. This TDGLE
equation, which in many ways is one of the most funda-
mental equations in condensed matter physics, represents
a differential equation characterizing the dynamics and
spatial dependence of the pairing gap parameter. Micro-
scopically, one can demonstrate that %'%!* the TDGLE

coincides with the energy conserving Gross-Pitaevski de-
scription in the strong attraction or BEC limit, where
the dissipation is minimal Similarly in the weak attrac-
tion limit the TDGLE leads to the well known diffusive
dynamics of BCS theory.

It should be stressed that TDGL theory refers to
the gap or order parameter, and not to the underly-
ing fermions. In this way the number of fermions, or
the Fermi-Fermi interaction parameters do not enter, as
they have been effectively integrated out. In contrast to
static GL theory, which is a consequence of Gorkov the-
ory, there is no fully rigorous derivation of this dynamics;
alternative dynamical schemes such as time dependent
Bogoliubov deGennes (TDBDG) theory!®, which have
similar antecedents in Gorkov theory, are also not rig-
orous.

By contrast to this TDBDG approach, our studies are
in the highly non-equilibrium regime. We stress that
there are essentially no alternative effective simulation
techniques for addressing the condensate evolution, asso-
ciated with rapid quenches. Monte Carlo and first princi-
ple quantum dynamics are limited to small system sizes,
short times and typically zero temperature; moreover,
they deal with the dynamics of single particles, not the
collective dynamics of the order parameter (in the strong
coupling limit) which we consider here.

We model the temperature equilibration in a physical
way as a non-uniform process, associated with evapo-
rative cooling. The effects of the BCS-BEC crossover
enter most prominently via the change in the complex
time relaxation rate of the TDGLE”!'314,  As a func-
tion of the continuous crossover from BCS to BEC we
see that the number and lifetime of spontaneous vor-
tices increases, so that the steady state condensate is
slower to form. Among the most interesting observations
in this paper pertains to the near unitary regime (or mid-
point between BCS and BEC) where the interactions are
strongest and the TDGLE- based approach is the most
appropriate.



For notational purposes, it is convenient to introduce
a parameter § = 0...7/2 that tunes the equation from
BCS (6 = 0) to BEC(6 = 7/2, BEC). Physically this pa-
rameter can be viewed as representing an applied mag-
netic field in conjunction with a Feshbach resonance.
This tunes the strength of interaction between the fun-
damental fermionic particles (see e.g.”'314 for a rigorous
derivation).
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FIG. 1: (Color online) Isosurfaces and phase-cuts of the order
parameter at different times. The upper row shows the 3D iso-
surfaces for the BCS (6 = 0) case at times t = 0.87,0.97, 1.17,
where 7 is the time needed to reach half of the condensate
steady state volume [see Fig. 2 (top)]. The phase-cuts (phase
¢ = arg1) are cuts through the center in the xy-plane - vor-
tices are marked as the end-points of 2m-phase jump lines
(sharp black-white transition). The lower row shows the
same pictures, but towards the BEC limit represented by
0 = 85 deg.

The TDGLE is given by

00 = Alr, T, 0] — W2 Y+ 5929+ x(,0) (1)

where ¥ = (r,t) is the order parameter and x €
[-Ty;Ty] is uniformly distributed thermal noise with
fluctuation temperature 7.

The coefficient A[r, T'(r, t)] takes into account the evap-
orative cooling of the system and the trapping potential,
ie. Alr,T(r,t)] = [Il — T(r,t)] — Upr?, where Uy is the
trapping potential which is determined by the trap size.
Eq. (1) is written in dimensionless units, with length scale
o, time scale 79, and the order parameter scale ¥y. Tem-
peratures are measured in units of T,.. For (fermionic)

Li% these values are estimated as: & = 3.2 - 10~ %m,
70 = 1.1- 1072, and concentration 17 = 2.9 - 10*°m~3.
The dimensionless fluctuation temperature for a conden-
sate at 10nK is in the interval T}, € [0.02;0.1], depending
on the condensed atoms.

The trap is assumed to be spherically-symmetric. Thus
we calculate the temperature profile T'(r,t) due to evap-
orative cooling by solving the spherically-symmetric heat
diffusion equation

8T (r,t) =D (af + %ar) T(rt), 2)

with an initial uniform temperature T'(r < R,t =0) =T
and final temperature T'(r > R,t) = Ty that is fixed at
the boundary » = R. The heat diffusion constant D is
renormalized by &2 /70; typical values for Li%: D ~ 3.

All simulation runs start with random initial condi-
tions in the normal phase (||?> < 1) at temperatures
To larger than the critical temperature T.. The evapo-
rative cooling is initiated at time ¢ = 0 on the surface
of our spherical trap with radius 75¢y. The cold front
surface propagates towards the center and quenches the
atomic gas below the critical temperature. The dimen-
sionless diffusion constant was typically set to D = 10
and the fluctuation strength T}, = 0.02. This mechanism
of condensate nucleation is to be contrasted with that
described in Ref.? where the cooling occurred uniformly
in space, thus corresponding to an infinite diffusion con-
stant. Another crucial difference with this previous work
is the equilibration mechanism: the time evolution of the
condensate used in? was based on the Gross-Pitaevskii
model where the dissipation was introduced by trunca-
tion of high-frequency modes. By contrast, our TDGLE
model includes a complex relaxation rate which is deter-
mined by the crossover physics through the phase factor
e'?. Experiments on these cold gases? cannot probe very
deeply into the BCS or BEC regimes, but are confined to
the so-called “unitary” midpoint. Nevertheless, at uni-
tarity, pairs are reasonably long lived'* so that we can
associate # =~ 70deg — 85 deg with the physically acces-
sible regime.

Our numerical calculations were done for volumes dis-
cretized in up to 5123 grid points, averaged over up to
50 different initial conditions and time evolved for 65 dif-
ferent crossover phase values. The timestep in dimen-
sionless units was chosen to be 0.1 and the total simula-
tion time up to 3000 at #-values close to the BEC limit.
Our quasi-spectral split step method to solve the TDGLE
which uses fast Fourier transforms, is much more stable
than the traditional finite difference method. As a re-
sult of employing modern graphics processing units, our
systems are an order of magnitude larger than in recent
work on the bosonic BEC?. This allows us to simulate
more realistic physical situations'®.

We begin with an illustration of the time evolved con-
densation process for the BCS limit (§ = 0) and a near-
BEC situation (§ = 85deg). Throughout this paper we
avoid the strict fermion-based BEC limit (6 = m/2) since



without dissipation the condensate does not form and nu-
cleation of vortices is completely suppressed. By intro-
ducing a complex relaxation rate in the TDGLE, we avoid
having to include the interactions between condensed and
non-condensed pairs which do not enter as naturally, in
the fermionic- BEC limit. These were essential for ad-
dressing the bosonic counterpart experiments®17.

Plotted in Fig. 1 are the isosurfaces for constant con-
densate magnitude. We also show cross-sections in the
xy-plane through the center of the system, indicating the
phase of the order parameter ¢ = argey. These lat-
ter plots appear below the counterpart isosurface pic-
tures and contain information about spontaneous vor-
tices. The isosurfaces for the condensate magnitude are
color-coded according to fixed condensate density values
ps = |[¥]?, where we used ps; = 0.1,0.2,0.3. The three
different panels from left to right correspond to three
different times close to the typical time 7 at which the
condensate forms, i.e. the time when the condensate vol-
ume reaches half of its saturation value.

One can see from Fig. 1, that most spontaneous vor-
tices are connected to the surface of the condensate.
Their time evolution is entirely accessible in our simula-
tions'® and one can follow their decay in the bulk and at
the condensate surface. In the phase cross-section plots,
these vortices are even more visible appearing as topolog-
ical defects (phase singularities). Although vortices are
most plentiful at the surface of the condensate, we find
their decay occurs mostly in the bulk.

It is clear that in the BCS limit the condensate forms
quickly occupying the entire trap volume in a relatively
short time period. At much longer time scales (than
shown here), the condensate will appear uniform. The
near-BEC limit exhibits an interesting contrast: Here the
condensate expands slowly, and vortices are much more
plentiful, decaying even more gradually. An interesting
feature is shown in the middle panel of the last row of
Fig. 1. We observe in the course of condensate formation,
concentric rings in the phase cross-section interrupted by
trapped topological defects. This corresponds to the gen-
eration of supercurrents from the surface of the conden-
sate towards its center. The phenomenon of transient
supercurrent J;, = psVp generation can be understood
as follows: In the BEC limit the TDGLE can be written
in the hydrodynamic form'® with the condensate density
ps satisfying the continuity equation 9ps/0t = —VJs.
During the quench, ps changes from zero to its maximal
value leading to the formation of supercurrents.

Figure 2 presents a plot of the time evolution of the
condensate volume V., as well as the vortex length L,
for different values of the crossover phase 6. Both quan-
tities are normalized to the asymptotic final condensate
volume. Here the condensate volume is calculated from
the number of grid points with condensate density larger
than 0.2. Assuming a spherical shape of the condensate
(reflecting the trapping potential) we establish the diam-
eter of the condensate; we then calculate the number of
grid points with ps < 0.2 inside this sphere to estimate
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FIG. 2: (Color online) a) Condensate volume V./V normal-
ized to the asymptotic condensate volume V. with simulation
time t/7o for different crossover phases §. The horizontal line
at V./Vo = 1/2 can be used to read the typical conden-
sate formation time 7. Inset: the behavior of the condensate
volume near the ”overshoot” for 6 = 85 deg for the full sim-
ulation (labelled 3D) and the spherically-symmetric equation
(labelled 1D). b) Time evolution of the vortex length L,/V
for different 6. Inset: a log-log representation illustrating a
power-law decay for different . The straight dashed line cor-
responds to a 1/t decay.

the vortex length. In the BCS limit the dissipation is
maximum which is responsible for the rapid formation of
the condensate. Increasing 6 as one approaches the near-
BEC gradually delays the formation of the condensate
leading to increase of the maximum total vortex length.

The vortices show a roughly 1/t-decay of the total vor-
tex length®3. In Fig. 2b the time dependence of the total
vortex length is plotted from the BCS to the near-BEC
limit. The inset shows some of these same curves on a
log-log scale and compares with a linear curve (dashed)
representing a 1/t decay. In two dimensions, bulk vortices
annihilate in pairs, the relaxation should be proportional
to the square of the vortex concentration, i.e. the relax-
ation follows a power-law?’. Similarly, a 1/t is expected
for the decay of vortex lines in 3D for the BCS case and
1/t3/2 near the BEC limit?'. The deviations from 1/t
power law are likely caused by finite size effects.

The condensate volume shows a well pronounced over-



shoot with subsequent oscillations in time. This appears
around unitarity, albeit closer to the BEC limit. This
overshoot is not generic, since it disappears in the BCS
limit, presumably as a consequence of the large dissi-
pation. In the near-BEC limit, where the dissipation
is strongly suppressed, the condensate takes longer to
form than the time associated with a thermal quench.
We quantify this “condensate breathing” by studying the
height of this condensate volume overshoot in the inset
of Fig. 3. Plotted here is the maximum of the volume of
the condensate as a function of 6. Also indicated is the
maximum vortex length within the condensate. It can
be seen that the maximum of the condensate overshoot
occurs at 6§ = 82.5deg. The appearance of the overshoot
is also characterized by the time scale t¢ max, Where the
condensate reaches its maximum, which diverges below
0 ~ 60deg (since there is no overshoot) and near the
BEC limit (because the time of the occurrence of the
overshoot diverges for  — 7/2). A minimum of tc max
is observed at 75 deg, i.e., the overshoot happens fastest.
Fig. 3 indicates the typical time scale of the condensate
formation 7 and the nearly identical time scale ¢y max,
which is the time at which the vortex length is maxi-
mum. Both these times generally depend only weakly on
0, except near § — /2. Also the typical decay time of
the vortices ty decay appears to be nearly independent of
0 below ~ 85deg (see Fig. 2b). Using the experimental
time scales for Li%, we can conclude from Figs. 2 & 3, that
the condensate forms within a few seconds and vortices
annihilate on the same time scale.
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FIG. 3: (Color online) Time scales extracted from the time
evolution of the condensate volume and vortex length [time
in units of 7]. 7 is the time needed to reach half of the
steady state condensate volume. tcmax and t, max are the
times when the condensate volume and vortex length has a
local maximum respectively. %, decay i the time over which
the vortex length decays to 1/e of it maximum value. Inset:
Maximum of the volume of the condensate Ve ymq. and vortex
length Ly mae normalized to V. versus the crossover phase 6.
The data is thermally averaged over 10 to 50 realizations.

The overshoot and subsequent time oscillations of the
condensate may be related to excitation of sound waves
produced in a spherical trap by the quench. To fur-
ther clarify this phenomenon we solved the spherically-
symmetric TDGLE and obtained similar behavior as
shown in the inset to Fig. 2a; the main difference being a
delay in the condensate nucleation?2. In the process we
verified that the period of these oscillations is close to the
time needed for sound waves to traverse the condensate.
Indeed in our units the speed of sound (which emerges
from the BEC limit of the TDGLE) is equal to unity
in the long-wavelength limit, while the oscillation period
obtained from Fig. 2a is approximately 140 time units.
This is close to the time needed for the sound wave to
cross our system with diameter 150 length units. Using
the value for & and 79 for Li®, the speed of the second
sound is on the order 10~*m/s, comparable to the mean
velocity of the atoms at 10nK.

There has been recent excitement over numerical ap-
proaches for addresses vortices in Fermionic superfluids,
particularly with the implementation'® of a time depen-
dent Bogoliubov deGennes numerical scheme. Unlike
TDGLE, this approach addresses the fermionic degrees
of freedom in conjunction with the fermionic gap parame-
ter. Generally it has been applied to T" = 0. Importantly,
it does not incorporate the fact that the superconducting
order parameter need not be the same as fermionic exci-
tation gap. Related to this last observation is the fact
that these schemes do not accomodate non-condensed
bosons which are expected to enter into the dynamics
away from the strict BCS regime. As a consequence,
our understanding of vortices in fermionic superfluids will
require the exploration of a number of different numeri-
cal approaches, including the TDGLE scheme we address
here.
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