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We consider spin-1 Haldane chains with single-ion anisotropy, which exists in known Haldane chain mate-
rials. We develop a perturbation theory in terms of anisotropy, where magnon-magnon interaction is important
even in the low temperature limit. The exact two-particle form factor in the O(3) nonlinear sigma model leads
to quantitative predictions on several dynamical properties including dynamical structure factor and electron
spin resonance frequency shift. These agree very well with numerical results, and with experimental data on the
Haldane chain material Ni(C5H14N2)2N3(PF6).

PACS numbers: 75.10.Jm, 75.30.Gw, 76.30.-v

One-dimensional quantum spin systems are an ideal subject
to test sophisticated theoretical concepts against experimental
reality [1]. One of the best examples is the Haldane gap prob-
lem. Haldane predicted in 1983 [2] that the standard Heisen-
berg Antiferromagnetic (HAF) chainH = J

∑

j S j · S j+1 has a
non-zero excitation gap and exponentially decaying spin-spin
correlation function for an integer spin quantum numberS.
It has been long known that the HAF chain withS = 1/2
is exactly solvable by Bethe Ansatz, and that it has gapless
excitations and the power-law spin-spin correlation function.
While the same model cannot be solved exactly forS ≥ 1,
Haldane’s prediction was rather unexpected and surprisingat
the time.

Haldane’s argument was based on the mapping of the HAF
chain to the O(3) Nonlinear Sigma Model (NLSM), which is
a field theory defined by the action

A0 =
1
2g

∫

dtdx
[1
v

(∂tn)2 − v(∂xn)2
]

+ iθQ, (1)

whereg = 2/S is coupling constant,v is spin-wave velocity,
θ = 2πS andQ = (1/4π)

∫

dtdxn · ∂tn × ∂xn is an integer-
valued topological charge. The fieldn(x) is related to the
spin S j via S j ≈ (−1) j

√
S(S + 1) n(x) + L(x), whereL(x) =

n × ∂tn/g. The fieldn has a constraintn2 = 1. For a half-
integerS, the topological termiθQ should be kept. However,
for an integerS, the topological termiθQ = 2πi × (integer)
is irrelevant and it suffices to dropiθQ in eq. (1). The O(3)
NLSM without the topological term is a massive field theory,
which implies that the integerS HAF chain (Haldane chain)
has a non-zero gap and a finite correlation length. The Hal-
dane’s conjecture is now confirmed by a large body of the-
oretical, numerical, and experimental studies [3]. Moreover,
the O(3) NLSM is also useful in description of integerS HAF
chains.

There are various complications in real materials. A Hal-
dane chain material generally has a single-ion anisotropy
(SIA): H ′ = ∑ j [D(Sz

j)
2 + E{(Sx

j )
2 − (Sy

j )
2}]. This interac-

tion is important, for example, for Electron Spin Resonance
(ESR) measurements. ESR is a useful experimental probe
which can detect even very small anisotropies. In other words,

anisotropic interaction is the key to understand a rich store
of ESR experimental data. However, theory of ESR is not
sufficiently developed for many systems, including Haldane
chains, leaving many experimental data without being under-
stood. In order to fully exploit the potential of ESR, accurate
formulation of the SIA in Haldane chains is required.

The SIA can be treated as a perturbation since it is usually
small compared to the isotropic exchange interactionJ. In the
O(3) NLSM language, the perturbation is written as

H ′ = S(S + 1)
∫

dx
[

D(nz)2 − E{(nx)2 − (ny)2}], (2)

which spoils the integrability of the O(3) NLSM. Several sim-
ple calculations have been done based on Landau-Ginzburg
(LG) model [4, 5]. When the elementary excited particles
(magnons) are dilute, the interaction between magnons may
be ignored. If this is the case, the system is effectively de-
scribed by a much simpler theory of free massive magnons
(LG model) [4]. However, description by the LG model is
not accurate and furthermore phenomenological [6]. Even in
the low-energy limit, where the free magnon approximation is
supposed to be exact, it is not the case with respect to the eval-
uation of eq. (2). This is because eq. (2) creates/annihilates
two magnons at the same point; in such a situation, interac-
tion among the magnons is indeed important even when the
average density of magnons in the entire system is infinitesi-
mal. Therefore, correct handling of the SIA in the O(3) NLSM
framework requires a proper inclusion of the magnon interac-
tion.

In this Letter, we present such a formulation, utilizing the
integrability of the O(3) NLSM. The effects of interaction is
encoded in form factors of operators. The form factors in in-
tegrable field theories can be determined by the consistency
with the exactS-matrices and several additional axioms [7–
9]. Form factor expansion (FFE) is particularly powerful in
massive field theories such as the O(3) NLSM, because the
higher-order contributions survive only above the higher en-
ergy thresholds [10]. The leading contribution to the FFE
of eq. (2) is given by the two-particle form factor. The FFE
shows an excellent agreement with the correlation functionof



(Sz)2 numerically obtained in theS = 1 HAF chain, demon-
strating the importance of the interaction. At the same time,
the renormalization factor for the SIA (2) is determined by
the fitting of the numerical data. Furthermore, we discuss two
applications to physical problems of interest: split of triplet
magnons in the dynamical structure factor and ESR shift in
theS = 1 HAF chain with SIA. We find very good agreement
with numerical results in both applications, and with experi-
mental data on the ESR shift, without introducing any extra
fitting parameter.

A single magnon excitation can be parametrized by the
rapidity θ, so that its energy and wavenumber are given
respectively as∆0 coshθ and (∆0/v) sinhθ, where ∆0 =

0.41J is the Haldane gap. Because of interactions among
magnons, S-matrix of O(3) NLSM has the complicated
structure [11]. The one-particle form factor of an op-
erator O is defined as a matrix element which connects
the ground state|0〉 to a one-particle state|θ1, a1〉 (a1 =

1, 2, 3), namelyFO(θ1, a1) ≡ 〈0|O|θ1, a1〉. And then-particle
form factor is defined asFO(θ1, a1; θ2, a2; · · · ; θn, an) ≡
〈0|O|θ1, a1; θ2, a2; · · · ; θn, an〉, where this n-particle state
is normalized as 〈θ′1, a′1; · · · ; θ′n, a′n|θ1, a1; · · · ; θn, an〉 =

(4π)nδa′1,a1 · · · δa′n,anδ(θ
′
1 − θ1) · · · δ(θ′n − θn).

The FFE of the fundamental fieldna, which corresponds to
(staggered part of) the spin operatorSa, has often been stud-
ied. The leading contribution to the FFE is the one-particle
form factor Fna(θ1, a1). Becausena is odd under the trans-
formation n → −n, the next order contribution comes from
the three-particle form factor, which gives small corrections
to the spin-spin correlation function [12, 13]. On the other
hand, the composite operator (Sa)2, which is of our central
interest, has been less studied. Since it is proportional to
(na)2 and even under the reversaln → −n, the leading con-
tribution to the FFE comes from the two-particle form factor
F(na)2(θ1, a1; θ2, a2). Including the renormalization factors for
spin operators, which are undetermined at this point, we have

FSa(θ1, a1) =
√

Z δa,a1, (3)

F(Sa)2(θ1, a1; θ2, a2) = −iZ2 δa1,a2(3δa,a1 − 1)ψ2(θ1 − θ2). (4)

The two-particle form factor (4) receives contributions from
higher-order terms in the FFE ofSa, and cannot be determined
by eq. (3) alone. ThusZ2 is a parameter independent ofZ.

We have the constraint
∑

a=1,2,3(Sa)2 = 2 on the compos-
ite operator. From this constraint and the O(3) symmetry, it
follows that

∑

a=1,2,3 F(Sa)2(θ1, 3;θ2, 3) = 〈0|θ1, 3;θ2, 3〉 = 0,
which is satisfied by (4). Integral representation ofψ2(θ) is
given in Ref. [14], for O(N) NLSM with general integerN.
For N = 3, it reads

ψ2(θ) = sinh
θ

2
exp

[∫ ∞

0

dω
ω

e−πω
cosh[(π + iθ)ω] − 1

sinh(πω)

]

.

This integral can be analytically carried out to give

ψ2(θ) =
i
2

(θ − πi) tanh
θ

2
. (5)

Figure 1. (color online): Numerically calculated spin-spin
correlation (−1)r 〈0|Sz(r)Sz(0)|0〉 (circles) and the correlation
〈0|(Sz(r))2(Sz(0))2|0〉 − 4/9 (triangles) are compared with FFEs (6)
with Z = 1.26 (solid curve) and the connected part of (7) with
Z2 = 0.24 (dashed curve). The free magnon approximation (dotted
curve) cannot fit the correlation function of (Sz)2.

Determination of the renormalization factorsZ and
Z2 requires numerical calculations. In order to test
the validity of the FFE for (Sa)2 and further to deter-
mine Z2, we computed the equal-time correlation function
〈0|(Sz(r))2(Sz(0))2|0〉 by infinite time-evolving block decima-
tion (iTEBD) method [15], as shown in Fig. 1,

FFE is derived by inserting the identitŷ1 =
∑∞

n=0 Pn,
where Pn’s are the projection operators ton-particle sub-
space of the Fock space, defined byP0 = |0〉〈0| and
Pn =

1
n!

∑

a1,··· ,an

∫

∏

j dθ j

(4π)n |θ1, a1; · · · ; θn, an〉〈θ1, a1; · · · ; θn, an|
for n ≥ 1. In the leading nonvanishing order, we find

(−1)r〈0|Sz(r)Sz(0)|0〉 ≈ Z
∫

dθ
4π

ei∆0r sinhθ/v, (6)

〈0|(Sz(r))2(Sz(0))2|0〉 − 4
9

≈ 3Z2
2
∫

dθ1dθ2

(4π)2
|ψ2(θ1 − θ2)|2ei∆0r(sinhθ1+sinhθ2)/v. (7)

Z = 1.26 was given in Ref. [16] by comparing numerically
obtained spin-spin correlation function with the LG model.
Concerning the spin-spin correlation function, the LG model
is equivalent to the lowest-order FFE (6); our iTEBD calcula-
tion also confirms the result of Ref. [16]. On the other hand,
Z2 has not been determined previously.

As shown in Fig. 1, the lowest order of FFE (7) shows an
excellent agreement with the numerical data; the fit also de-
termines

Z2 = 0.24. (8)

Since we used the known values of the Haldane gap∆0 =

0.41J and the spin-wave velocityv = 2.49J [17] for S = 1,
the renormalization factorZ2 is the only fitting parameter.

In contrast to the FFE (7), the LG model, which ignores
interaction among magnons, shows discrepancy with the nu-
merical data, as also shown in Fig. 1. To illustrate the effect
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Figure 2. (color online): Numerically determined excitation gaps
∆x (circles) and∆z (triangles) are plotted for−0.4 ≤ D/J ≤ 0.6
and E = 0. Deviation of numerical data from the 1st order FFPT
(solid and dashed lines) is attributed to higher-order perturbations.
Inset: The ratioSzz(π,∆z)/Sxx(π,∆x) obtained by Lanczos method
(symbols) and (14) (solid curve) are compared. The extrapolation to
L = ∞ is done by fitting the finite-size data forL = 12, 14, 16, 18 and
20 with a polynomial of 1/L.

of the interaction, let us discuss the asymptotic long-distance
behavior of eqs. (6) and (7). Whenr → +∞, only the be-
havior of ψ2(θ) at θ ∼ 0 is relevant in (7). Here we can
expand (6) and (7) as (−1)r〈0|Sz(r)Sz(0)|0〉 ∝ e−r/ξ/

√

8πr/ξ
and〈0|(Sz(r))2(Sz(0))2|0〉 − 4/9 ∝ e−r/ξ2/(4πr/ξ2). In a rel-
ativistic field theory, the inverse correlation length is equiva-
lent to the lowest excitation energy created by the operator; in
fact ξ = v/∆0. Furthermore, in the LG model [4],ξ2 = ξ/2
should hold. This is because the composite field (na)2 creates
two particles, and O(3) NLSM does not contain any bound
states [18]. Thus the excitation energy for the two-particle
creation would be twice the magnon mass (2∆0), implying
ξ2 = ξ/2. However, the actual numerical data are inconsistent
with this relation:ξ2 = 2.75 < ξ/2 = 3.01. This discrepancy
is attributed to the interaction between magnons. Since (na)2

creates two magnonsat the same point, the actual excitation
energy is larger than 2∆0, resulting inξ2 < ξ/2.

With the full determination of the two-particle form factor
(4), we turn to discussion of dynamical structure factor (DSF)
at T = 0 in Haldane chains with a SIA. The peaks in the DSF
reflect the energy of magnon at a given momentum. Triply-
degenerate magnon dispersions in the isotropic chain are split
due to the SIA. We determine the first-order perturbation to
the masses,∆(1)

a ≡ ∆a − ∆0, in the form-factor perturbation
theory (FFPT) [19]:

∆(1)
a ∼

〈θ, a|H ′|0, a〉
〈θ, a|0, a〉 . (9)

In fact, both the numerator and the denominator are propor-
tional to δ(θ), and eq. (9) should be understood as the ratio
of the coefficients ofδ(θ). Furthermore, the numerator equals
to FH ′ (0, a; θ − πi, a) because of the crossing symmetry [20].

Figure 3. (color online): Magnetic field dependence of ESR shift
YD(T,H) for T = 0.1J (circles) andT = 0.2J (triangles). The solid
curve is (18) which is exact inH → 0. The dashed and dotted curves
are (19) atT = 0.1J andT = 0.2J respectively.

Therefore, (9) reads

∆(1)
x = −

Z2v
2∆0

D − 3Z2v
2∆0

E, (10)

∆(1)
y = −

Z2v
2∆0

D +
3Z2v
2∆0

E, (11)

∆(1)
z =

Z2v
∆0

D. (12)

The leading contribution to theT = 0 DSFSaa(π, ω) corre-
sponds to creation of a single magnon. Therefore we find

Saa(π, ω) ∼ πZv
∆a

δ(ω − ∆a), (13)

which has the identical form to the DSF of a system of free
particles. This is natural because the population of magnons
approaches zero in theT → 0 limit, and thus interactions
are negligible. Nevertheless, we emphasize that the change
of the masses as∆a (10)–(12) due to the SIA is affected by
the magnon-magnon interaction. Eq. (13) implies that the
magnon masses∆a can be identified with the peak frequency
of DSF at the antiferromagnetic wavevectorq = π. In Fig. 2,
we compare the magnon masses∆a extracted from theT = 0
DSF peak obtained numerically by Lanczos method [21] for
various values ofD (while settingE = 0). For smallD, the
numerical data agree very well with the FFPT (10)–(12).

The form of theT = 0 DSF (13) leads to another prediction:
the ratio of the DSF intensities should obey

∫

dω Szz(π,∆z)
∫

dω Sxx(π,∆x)
=
∆x

∆z
. (14)

This is also confirmed by the Lanczos data as shown in the
inset of Fig. 2.

Let us extend our discussion to the system under a finite
magnetic field. Now our HamiltonianH = H0 + HZ + H ′
consists of three terms.H0 is the SU(2) symmetric exchange
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interaction,HZ = −geµBH ·S = −geµBH ·∑ j S j is the Zeeman
interaction, andH ′ is the SIA, which is assumed to be small.
ge is Landég-factor of electrons andµB is Bohr magneton. We
setgeµB = 1 unless otherwise stated. ESR is a very powerful
tool to study effects of anisotropies on spin dynamics. One of
the fundamental quantities in ESR is the resonance frequency
shift (ESR shift). The ESR shift is generally given, in the first
order of the anisotropyH ′, as [22–24]

δω = −〈[[H
′,S+],S−]〉0
2〈Sz〉0

. (15)

〈· · · 〉0 denotes the average with respect to the unperturbed
HamiltonianH (0) = H0 + HZ. For the SIA, (15) reads
δω = f (Θ,Φ) YD(T,H), where f (Θ,Φ) = D(1 − 3 cos2Θ) −
3E sin2Θ cos 2Φ and

YD(T,H) =

∑

j〈3(Sz
j)

2 − 2〉0
2〈Sz〉0

. (16)

(Θ,Φ) is the polar coordinate of the magnetic field axis.
To apply the results of the FFPT, first we consider the limit

T,H ≪ ∆0. Here we could project the numerator to one-
magnon subspace, ignoring the multi-magnon contributions.
The projection operator isP1 =

∫

dθ
4π

∑

a=0,± |θ, a〉〈θ, a|. Note
that we introduce a new set of indicesa = 0,± representing
magnons with dispersionEa(θ) = ∆0 coshθ−aH. The projec-
tion leads to

P1

∑

j

[

3(Sz
j)

2 − 2
]

P1

=

∫

dθ
4π

3Z2v
2∆0 coshθ

[

2|θ, 0〉〈θ, 0| − |θ,+〉〈θ,+| − |θ,−〉〈θ,−|
]

.

(17)

Its thermal expectation value can be given in terms of the
(classical) distribution function. Thus we find

YD(T,H) = −3Z2

4
tanh
( H
2T

)

∫

dθ
4π

v
∆0 coshθe

−∆0 coshθ/T

∫

dθ
4πe−∆0 coshθ/T

. (18)

Fig. 3 shows the magnetic field dependence ofYD(T,H),
comparing (18) from the FFPT with numerical results ob-
tained by (16) with quantum Monte Carlo (QMC) method in
ALPS software [25].

Although the agreement is good at low temperatureT =
0.1J and at low magnetic fieldsH ≪ ∆0, the discrepancy is
evident forH & ∆0. This is rather natural, because the magnon
population increases asH is increased, invalidating the dilute
limit approximation made in the derivation of eq. (18). In
particular,T = 0, H = ∆0 is a quantum critical point which
separates the low field gapped phase and the high field TLL
phase, where magnons are condensed. Although it is difficult
to handle the case with nondilute magnons, a reasonable im-
provement would be incorporating magnon-magnon repulsion
through Pauli exclusion principle by utilizing the Fermi-Dirac
distribution functionfa(k) = [eωa(k)/T + 1]−1 instead of clas-
sical one, in eq. (18). This is demonstrated by the fact that

Figure 4. (color online) Comparison of the resonance frequencyωr =

geµBH+δω by QMC (circles) with experimental data [28] (triangles).
We performed QMC calculations withL = 30 sites. We usedD =
0.25J and H ‖ c (Θ = Φ = 0). The solid curve is obtained from
(19) and the dashed line represents the paramagnetic resonanceω =
geµBH.

z = 2 free fermion theory well describes the low-energy be-
havior near the quantum critical pointH = ∆0 [26, 27]. The
magnetization is〈Sz〉 = m(T,H) =

∫

dk
2π

[

f+(k) − f−(k)
]

and
YD(T,H) is

YD(T,H) =
3Z2

2m(T,H)

∫

dk
2π

v
2ω0(k)

[

2 f0(k) − f+(k) − f−(k)
]

.

(19)

This reduces to eq. (18) in the limitH,T → 0. We emphasize
that there is no free parameter in our theory since renormal-
ization factorZ2 in the overall coefficient of (19) has been al-
ready determined in (8). As shown in Fig. 3, the free fermion
approximation (19) explains the extremum of ESR shift ob-
served numerically around the critical fieldH = ∆0.

Fig. 4 shows the ESR shift observed experimentally in
Ni(C5H14N2)2N3(PF6) [28], which possesses the SIA, and the
corresponding numerical result by the QMC method. Our
FFPT (19) successfully accounts for the experimental and nu-
merical results, including the gradual approach to the param-
agnetic resonance lineω = geµBH in the high field region.
Detailed analysis of ESR shift in the whole range ofH will be
given in a subsequent publication [29].
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