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We consider spin-1 Haldane chains with single-ion aniggtravhich exists in known Haldane chain mate-
rials. We develop a perturbation theory in terms of anigmntravhere magnon-magnon interaction is important
even in the low temperature limit. The exact two-particlenfdactor in the O(3) nonlinear sigma model leads
to quantitative predictions on several dynamical propsrtncluding dynamical structure factor and electron
spin resonance frequency shift. These agree very well witherical results, and with experimental data on the
Haldane chain material Ni@E114N2)2N3(PFs).

PACS numbers: 75.10.Jm, 75.30.Gw, 76.30.-v

One-dimensional quantum spin systems are an ideal subjeahisotropic interaction is the key to understand a richestor
to test sophisticated theoretical concepts against exgatal of ESR experimental data. However, theory of ESR is not
reality [1]. One of the best examples is the Haldane gap probsuficiently developed for many systems, including Haldane
lem. Haldane predicted in 1983 [2] that the standard Heisenchains, leaving many experimental data without being under
berg Antiferromagnetic (HAF) chal = J}; Sj- Sj;1 hasa  stood. In order to fully exploit the potential of ESR, acdera
non-zero excitation gap and exponentially decaying spin-s formulation of the SIA in Haldane chains is required.
correlation function for an integer spin quantum numBer The SIA can be treated as a perturbation since it is usually
It has been long known that the HAF chain wigh= 1/2  small compared to the isotropic exchange interaciioim the
is exactly solvable by Bethe Ansatz, and that it has gaples®(3) NLSM language, the perturbation is written as
excitations and the power-law spin-spin correlation figrct
While the same model cannot be solved exactlySop 1, H =S(S+ 1)fdx[D(nz)2 —E{(M)?-(m)3], (2
Haldane’s prediction was rather unexpected and surpréeing

the till”r(;e. ) based h ) fth which spoils the integrability of the O(3) NLSM. Several sim
Haldane’s argument was based on the mapping of the HAL o - 1culations have been done based on Landau-Ginzburg
chain to the O(3) Nonlinear Sigma Model (NLSM), whichis | oy model [4, 5]. When the elementary excited particles

a field theory defined by the action (magnons) are dilute, the interaction between magnons may
1 1 ) o be ignored. If this is the case, the system fieetively de-
Ao = 2 fdtdx[v(atn) = V(0xn)*| +16Q, (1) scribed by a much simpler theory of free massive magnons
(LG model) [4]. However, description by the LG model is
whereg = 2/S is coupling constanty is spin-wave velocity, not accurate and furthermore phenomenological [6]. Even in
0 = 2nS andQ = (1/4n) fdtdxn - 0n X dyn is an integer-  the low-energy limit, where the free magnon approximaton i
valued topological charge. The fiel(x) is related to the supposed to be exact, it is not the case with respect to the eva
spinSj via Sj ~ (-1)! VS(S+ I)n(x) + L(X), whereL(X) =  uation of eq. (2). This is because eq. (2) createsihilates
n x &n/g. The fieldn has a constraim? = 1. For a half- two magnons at the same point; in such a situation, interac-
integerS, the topological ternmvQ should be kept. However, tion among the magnons is indeed important even when the
for an integerS, the topological termidQ = 2xi x (integer)  average density of magnons in the entire system is infinitesi
is irrelevant and it sfices to drogdQ in eq. (1). The O(3) mal. Therefore, correct handling of the SIA in the O(3) NLSM
NLSM without the topological term is a massive field theory, framework requires a proper inclusion of the magnon interac
which implies that the intege® HAF chain (Haldane chain) tion.
has a non-zero gap and a finite correlation length. The Hal- In this Letter, we present such a formulation, utilizing the
dane’s conjecture is now confirmed by a large body of theintegrability of the O(3) NLSM. The féects of interaction is
oretical, numerical, and experimental studies [3]. Moerov encoded in form factors of operators. The form factors in in-
the O(3) NLSM is also useful in description of integgHAF  tegrable field theories can be determined by the consistency
chains. with the exactS-matrices and several additional axioms [7—
There are various complications in real materials. A Hal-9]. Form factor expansion (FFE) is particularly powerful in
dane chain material generally has a single-ion anisotropynassive field theories such as the O(3) NLSM, because the
(SIA): H' = 3[D(S})* + E{(S})* - (SJY)Z}]. This interac-  higher-order contributions survive only above the higher e
tion is important, for example, for Electron Spin Resonanceergy thresholds [10]. The leading contribution to the FFE
(ESR) measurements. ESR is a useful experimental prob&f eq. (2) is given by the two-particle form factor. The FFE
which can detect even very small anisotropies. In other gjord shows an excellent agreement with the correlation funafon



(S»? numerically obtained in th& = 1 HAF chain, demon- 12
strating the importance of the interaction. At the same time 10_27
the renormalization factor for the SIA (2) is determined by :
the fitting of the numerical data. Furthermore, we discuss tw 104+

applications to physical problems of interest: split oplet N - " ..... )

magnons in the dynamical structure factor and ESR shift in0 | O 2pointcor. S,

theS = 1 HAF chain with SIA. We find very good agreement 10_8; — 1-particle FFE e

with numerical results in both applications, and with exper | A 4-point corr. o

mental data on the ESR shift, without introducing any extrajg-1o-| -—-2-particle FFE g e

fitting parameter. |+ free magnon approx. "
A single magnon excitation can be parametrized by thé0'120 0 % s 4 =

rapidity 8, so that its energy and wavenumber are given Distance r

respectively asAgcoshd and (Ap/v)sinhd, where Ag =

0.41J is the Haldane gap. Because of interactions amongigure 1.  (color online): Numerically calculated spinsspi
magnons, S-matrix of O(3) NLSM has the complicatedcorrelation 1) (0/S%r)S%0)0) (circles) and the correlation
structure [11]. The one-particle form factor of an op- (0|(S¥(r))?(S*0))?0y — 4/9 (triangles) are compared with FFEs (6)
erator O is defined as a matrix element which connectswith Z = 1.26 (solid curve) and the connected part of (7) with

the ground staté0) to a one-particle statégy,a;) (& = Z, =024 (dashed curve). 'I_'he free _rnagnor21 approximation (dotted
1,2,3), namelyFo(61,a1) = (0[0l61, ). And then-particle curve) cannot fit the correlation function &%)-.

form factor is defined asFp(61,a1;62,82; - ;6h,an) =

(010I61, y; 2. 8; -+ - ; 6, @), Where this n-particle state Determination of the renormalization factord and

is normalized as(@y.aj;--- ;0 alon, @ - ;6h,an) = 7z, requires numerical calculations.  In order to test
(47) 62 2y - -~ Oy, 2,0(6 — 61) - - 66, = bn)- the validity of the FFE for $2)? and further to deter-

The FFE of the fundamental fiefd, which corresponds o mine 7, we computed the equal-time correlation function
(staggered part of) the spin opera®, has often been stud- (((57(r))2(S%(0))2|0y by infinite time-evolving block decima-
ied. The leading contribution to the FFE is the one-particlgjon (;TEBD) method [15], as shown in Fig. 1
form factor Fra(61,a1). Becausen® is odd under the trans-  FEE is derived by inserting the identity = ¥, P,
formationn — —n, the next order contribution comes from \yhere p's are the projection operators teparticle sub-
the three-particle form factor, which gives small correat space of the Fock space, defined By = [0)0 and
to the spin-spin correlation function [12, 13]. On the otherP -1y L9 o a6 80081 - O, Bl
hand, the composite operat@®?)?, which is of our central fonr N> Irilfﬁgnlea((jﬁ%ng nlén\i,anishi;’g ordel; v%/,e find "
interest, has been less studied. Since it is proportional to™  ~ ™ '

(n?)? and even under the reversal— —n, the leading con- r 2Nz N A0 ixor sinhov

tribution to the FFE comes from the two-particle form factor (=1)}0S()SH0)0) ~ Z 4r € ’ 6)

F (61, a1; 62, @2). Including the renormalization factors for N2z 4
spin operators, which are undetermined at this point, we hav QIS (S10))10) ~ 9

do,do
N 2 1002
Fsa(61, 1) = VZ6aa,, 3) ~32 | G

Fiove(01, 81162, 2) = ~122 8ay.22(3000 = Lpalb1 = 62). (4) Z = 1.26 was given in Ref. [16] by comparing numerically
The two-particle form factor (4) receives contributionsrfr obtained spin-spin correlation function with the LG model.
higher-order terms in the FFE 8f, and cannot be determined Concerning the spin-spin correlation function, the LG mode
by eq. (3) alone. Thug; is a parameter independentaf is equivalent to the lowest-order FFE (6); our iTEBD caleula

We have the ConstrairEazlyzyg(Sa)z = 2 on the compos- tion also confirms the result of Ref. [16]. On the other hand,
ite operator. From this constraint and the O(3) symmetry, iZ2 has not been determined previously.
follows that Y1 5.3 F(se2(61, 3;62,3) = (011, 3;62,3) = 0, As shown in Fig. 1, the lowest order of FFE (7) shows an
which is satisfied by (4). Integral representation/aft) is excellent agreement with the numerical data; the fit also de-
given in Ref. [14], for ON) NLSM with general integeN. termines
ForN = 3, it reads

|w2(91 _ 92)|2eiA0r(sinh91+sinh02)/v. (7)

Z, = 0.24. 8
Ya(6) = sinhg exp f d—we"”“’ COSh[Q_TEIH)w] -1 Since we used the known values of the Haldane &gp=
o @ sinhw) 0.41J and the spin-wave velocity = 2.49J [17] for S = 1,
This integral can be analytically carried out to give the renormalization factdf; is the only fitting parameter.

In contrast to the FFE (7), the LG model, which ignores
5) interaction among magnons, shows discrepancy with the nu-

i 0
0) = =(0 — ni) tanh=. . - .
v2(0) 2( i) 2 merical data, as also shown in Fig. 1. To illustrate tffect
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) ) ) ) o Figure 3. (color online): Magnetic field dependence of ESR sh
Figure 2. (color online): Numerically determined excioatigaps  v,(T,H) for T = 0.1J (circles) andT = 0.2J (triangles). The solid

A (circles) andA, (triangles) are plotted for0.4 < D/J < 0.6 curve is (18) which is exact il — 0. The dashed and dotted curves
andE = 0. Deviation of numerical data from the 1st order FFPT gre (19) aff = 0.1J andT = 0.2J respectively.

(solid and dashed lines) is attributed to higher-orderypbetions.
Inset: The ratiaS*(r, A;)/S**(r, Ax) obtained by Lanczos method
(symbols) and (14) (solid curve) are compared. The extedjonl to
L = oo is done by fitting the finite-size data far= 12,14, 16, 18 and
20 with a polynomial of 1L. Zov 3Z,v

Therefore, (9) reads

- _ = p_ 22t
A= iD= S E (10)
of the interaction, let us discuss the asymptotic longatise A = —%D + :;ZTZVE, (11)
behavior of egs. (6) and (7). When— +co, only the be- . 0 0
havior of y»(f) at® ~ 0 is relevant in (7). Here we can AN = A (12)
expand (6) and (7) as-0)"(0|S?(r)S%0)|0) o« e /¢/\/8nrr/& Ao

and(0|(S%(r))?(S%0))?0) — 4/9 o« e /¢ /(4nr /&), In a rel-
ativistic field theory, the inverse correlation length isizq-
lent to the lowest excitation energy created by the operator
facté = v/Ag. Furthermore, in the LG model [4f, = £/2
should hold. This is because the composite fiefj(creates
two particles, and O(3) NLSM does not contain any bound
states [18]. Thus the excitation energy for the two-pagticl Which has the identical form to the DSF of a system of free
creation would be twice the magnon masadR implying  particles. This is natural because the population of magnon
& = £/2. However, the actual numerical data are inconsisten@pproaches zero in the — 0 limit, and thus interactions
with this relation:&, = 2.75 < £/2 = 3.01. This discrepancy are negligible. Nevertheless, we emphasize that the change
is attributed to the interaction between magnons. Singg (  of the masses a&, (10)-(12) due to the SIA isfeected by
creates two magnorat the same pointhe actual excitation the magnon-magnon interaction. Eq. (13) implies that the
energy is larger than/, resulting in&, < &/2. magnon masses, can be identified with the peak frequency
With the full determination of the two-particle form factor Of DSF at the antiferromagnetic wavevectps . In Fig. 2,
(4), we turn to discussion of dynamical structure factorps We compare the magnon masgesextracted from thd = 0
atT = 0 in Haldane chains with a SIA. The peaks in the DSFDSF peak obtained numerically by Lanczos method [21] for
reflect the energy of magnon at a given momentum. Triplyvarious values ob (while settingE = 0). For smallD, the
degenerate magnon dispersions in the isotropic chain &ite sphumerical data agree very well with the FFPT (10)-(12).
due to the SIA. We determine the first-order perturbation to The formof thelT = 0 DSF (13) leads to another prediction:
the massesagl) = Aa — Ao, in the form-factor perturbation the ratio of the DSF intensities should obey

theory (FFPT) [19]: fda) S, A) A
s BAZ, — _x
Jdo 8, A) A

The leading contribution to the = 0 DSFS?3(r, w) corre-
sponds to creation of a single magnon. Therefore we find

7
8%, w) ~ ”A—Va(w ~ A, (13)
a

(0, alH’|0, a) (14)

A
a (0,20, a)

9)
This is also confirmed by the Lanczos data as shown in the

In fact, both the numerator and the denominator are propoinset of Fig. 2.

tional to 6(6), and eq. (9) should be understood as the ratio Let us extend our discussion to the system under a finite

of the codficients of5(0). Furthermore, the numerator equals magnetic field. Now our Hamiltoniat? = Ho + Hz + H’

to F4 (0, &; 6 — 7i, @) because of the crossing symmetry [20]. consists of three termg, is the SU(2) symmetric exchange



interaction/Hz = —geusH-S= —geusH - X; Sj is the Zeeman
interaction, and”’ is the SIA, which is assumed to be small.
Oe is Landég-factor of electrons ands is Bohr magneton. We
setgeus = 1 unless otherwise stated. ESR is a very powerfu
tool to study éects of anisotropies on spin dynamics. One of
the fundamental quantities in ESR is the resonance fregquent
shift (ESR shift). The ESR shiftis generally given, in thetfir
order of the anisotropy{’, as [22—-24]

([[H",S"].S7]ho
2(S%o ’

1500 24

1000-] ~

”
] ol O QMC (L =230, T/ = 0.05)
500 -~ A experiments (H // c)
1 P — 1st order FFPT
-~ = 0= gelgH

Resonance frequency [GHZz]

dw = (15) o+ ; ; ; ; ;

0 10 20 30 40 50 60
Magnetic field [T]

(--+) denotes the average with respect to the unperturbed
iltoni 0 -
Hamiltonian #{ Ho + Hz. For the SIA, (15) reads Figure 4. (color online) Comparison of the resonance fraque, =

ow =-n2f (6, ®) Yp(T, H), wheref(®, ®) = D(1 - 3co$ ©) - etsH +6w by QMC (circles) with experimental data [28] (triangles).
3E sin” © cos 2> and We performed QMC calculations with = 30 sites. We use® =
Z'<3(SZ)2 ~2) 0.25J andH || ¢ (® = ® = 0). The solid curve is obtained from
) i 0 (19) and the dashed line represents the paramagnetic resana
. (16)
2(S%)0 GetsH.

(®, @) is the polar coordinate of the magnetic field axis.

To apply the results of the FFPT, first we consider the limit
T,H <« Ap. Here we could project the numerator to one-z = 2 free fermion theory well describes the low-energy be-
magnon subspace, ignoring the multi-magnon contributionshavior near the quantum critical poikt = Ag [26, 27]. The
The projection operator iBy = [ % 3. . 10,a)0,al. Note — magnetization igS?*) = m(T,H) = [ $[f,(K) - f_(K)] and
that we introduce a new set of indicas= 0, + representing  Yp(T,H)is
magnons with dispersioB,(6) = Ao coshd—aH. The projec-

Yo(T,H) =

tion leads to 37, dk v
Yo(T.H) = 5/ | 5= 5—=[2fo(k) — f.(k) - f_(K)].
DY ECH ’ 2m(TH) J 27 20009 19)
i
de 372,V

|216.0%6.01 = 16 +X6. +1 = 16.-)0.~I]. " This reduces to eq. (18) in the lintit, T — 0. We emphasize
(17)  that there is no free parameter in our theory since renormal-
ization factorZ, in the overall coéficient of (19) has been al-
Its thermal expectation value can be given in terms of thgeady determined in (8). As shown in Fig. 3, the free fermion

~ ) 4 2Ao cosh¥

(classical) distribution function. Thus we find approximation (19) explains the extremum of ESR shift ob-
f 4 __v__gocosh/T served numerically around the critical fidhl= Ao.
47 Ag coshy

(18) Fig. 4 shows the ESR shift observed experimentally in
Ni(CsH14N2)2N3(PFRs) [28], which possesses the SIA, and the

Fig. 3 shows the magnetic field dependencersfT, H), corresponding numerical result by the QMC.method. Our
comparing (18) from the FFPT with numerical results ob-FFPT (19) successfully accounts for the experimental ard nu

tained by (16) with quantum Monte Carlo (QMC) method in merical results, including the gradual approach to themara
ALPS software [25]. agnetic resonance lin@ = geugH in the high field region.
Detailed analysis of ESR shift in the whole rangd-bivill be

given in a subsequent publication [29].

Yo(T.H) = - 222 tanl'(%)

d0 n-Ag coshy/T
4 f4ne o

Although the agreement is good at low temperaflire-
0.1J and at low magnetic fieldsl < Ag, the discrepancy is
evidentforH > Ag. Thisis rather natural, because the magnon We thank Prof. Seiichiro Suga for giving us motivation of
population increases &$is increased, invalidating the dilute this study. This work is partly supported by Grant-in-Aid fo
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