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Recently, neutron scattering spin echo measurements have provided high resolution data on the
temperature dependence of the linewidth Γ(q, T ) of acoustic phonons in conventional superconduc-
tors Pb and Nb.1 At low temperatures the merging of the 2∆(T ) structure in the linewidth with a
peak associated with a low lying ~ωqKA Kohn anomaly suggested a coincidence between 2∆(0) and
~ωqKA in Pb and Nb. Here we carry out a standard BCS calculation of the phonon linewidth to
examine its temperature evolution and explore how close 2∆(0)/~ωqKA must be to unity in order
to be consistent with the neutron data.

PACS numbers:

I. INTRODUCTION

Using resonant spin echo neutron scattering tech-
niques, Aynajian et al.1 have recently measured the
linewidth of transverse acoustic phonons in high purity
single crystals of Pb and Nb. At low temperatures, which
are however above the superconducting transition tem-
perature Tc, a plot of the phonon linewidth Γ(q, T ) as a
function of the phonon wavevector q exhibits peaks which
arise from Kohn anomalies.2 When the temperature de-
creases below Tc and the superconducting gap opens, one
sees an expected decrease in the linewidth Γ(q, T ) for
phonons having energy ~ωq less than twice the super-
conducting gap ∆(T ). As ~ωq approaches 2∆(T ), there
is a rapid increase in Γ(q, T ) associated with the peak in
the quasiparticle density of states at the gap edge and
the fact that the BCS coherence factor for a phonon to
break a Cooper pair and decay into two quasiparticles
approaches 1 at threshold.3 However, as Aynajian et al.
note, what is surprising is that as T goes to zero, the
feature in Γ(q, T ) that is associated with ~ωq = 2∆(T )
appears to merge with a Kohn anomaly peak. This be-
havior is seen in both Pb and Nb, posing the question of
why should the energy of a transverse acoustic phonon
associated with a normal state Kohn anomaly coincide
with twice the limit of the low temperature supercon-
ducting gap 2∆(0)?

Motivated by this experimental result, we have carried
out a standard BCS calculation of the temperature de-
pendence of the transverse acoustic line width and exam-
ined what happens if 2∆(0) is near the energy associated
with a normal state Kohn anomaly in Γ(q, T ). In partic-
ular, we are interested in the evolution of Γ(q, T ) as the
temperature is lowered and 2∆(T ) approaches the energy
of the Kohn anomaly ~ωqKA

. How close to ~ωqKA
does

the low temperature limit of 2∆(T ) need to be for it to
appear that the 2∆(0) structure in Γ(q, T ) merges with
the Kohn anomaly structure as T goes to zero?

II. FORMALISM

We begin by first examining the matrix elements for
the electron coupling to the transverse acoustic modes.
In clean materials, the coupling of the electrons to the low
frequency transverse phonons occurs through Umklapp
scattering processes.4 As one knows, this is because the
polarization ε̂λ(q) of a transverse phonon is orthogonal to
q. In Fig. 1a,b we show Fermi surface sections for Pb and
Nb, respectively, obtained from Density Functional The-
ory (DFT) calculations (ABINIT).5 In the top figure for
Pb, an Umklapp scattering process is shown in which an
electron is scattered from k to k′ = k+Kn+q with q the
wavevector of the transverse phonon and Kn a reciprocal
lattice vector. In this case, the phonon wavevector qKA
that is shown connects two parts of the Fermi surface
that have parallel tangents leading to a Kohn anomaly
in the scattering rate and the phonon linewidth. A sim-
ilar process for Nb is illustrated in the lower part of Fig.
1.

In the following calculations, we use an electron-
phonon vertex gλ(k,k′)

gλ(k,k′) = −i

√
~

2MNωλ(k− k′)
ε̂λ(k− k′) ·∑

Km,Kn

(k + Km − k′ −Kn)a†Km
(k)aKn

(k′)×

〈k + Km|U |k′ + Kn〉 (1)

for a transverse acoustic mode λ which has a frequency
~ωλ(q) and a polarization vector ε̂λ(q). Here M is the
ion mass, U is the lattice pseudo-potential, and N is
the number of lattice sites. As discussed, for transverse
phonons one needs an Umklapp process to couple the
electrons to the direction of the ionic vibration given by
ε̂λ=T . The momentum dependence of the coupling then
varies as gT (k,k′) ∝ (K + q) · ε̂T ∼ K · ε̂T times a func-
tion that is slowly varying for values of k and k′ that
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FIG. 1: (Color online) The Fermi surfaces of (a) Pb and (b)
Nb. The short black arrows indicate the qKA wavevectors
(r.l.u.) qKA = 0.295 in Pb and qKA = 0.196 in Nb. The long
arrow indicates the reciprocal lattice vector Kn associated
with the Umklapp scattering process. The location of the
Bragg planes are indicated by thin dashed lines.

contribute to the Kohn anomaly and which we take as
a constant. Then, as we will see, the linewidth of the
transverse phonons will exhibit a peak as q approaches
the Kohn anomaly wavevector qKA.

Before proceeding further we note that the small q
limit is not properly captured by this approximation. On
physical grounds one expects g(k,k′) → 0 as q → 0 as
this limit corresponds to a rigid uniform displacement
of the lattice and therefore does not couple to the elec-
trons in the periodic potential. As discussed, without
Umklapp scattering (Kn − Km = 0) this limit is sat-
isfied since g(k,k′) for the transverse modes is identi-
cally zero due to momentum conservation. However,
once the Umklapp scattering processes are included the
coupling constant has a q → 0 dependence given by
g(k,k′) ∼ K · ε̂T (q)/

√
ω(q) times the matrix element

appearing in Eq. 1. In this case, a self-consistent deter-
mination of the matrix element cancels the 1/q depen-
dence arising from the phonon dispersion such that the

proper limit is obtained. However, since our focus is on
the phonon lifetime for q ∼ qKA we proceed with the
constant coupling approximation and restrict ourselves
to momentum transfers where this approximation is ex-
pected to be valid.

To capture the essence of the Kohn-Umklapp scatter-
ing, we first consider the expression for the transverse
acoustic phonon linewidth Γ(q, T ) in the normal state
for the case in which the Fermi surface spanned by qKA
is approximated by a cylinder of radius kF (Fig. 2a). In
this case, Γ(q, T ) is given by

Γ(q, T ) =
π|gK|2

N

∑
k

[f(εk)− f(εk+q)]

×δ(ωq − εk+q + εk) (2)

with f the Fermi factor and εk the electronic band dis-
persion. From here on we choose ~ = 1. For simplic-
ity, we have set gλ=T (k,k′) = gK, the phonon mode
energy ωq = cT |q|, with cT the transverse speed of
sound, and assumed a simple 2D free-electron dispersion
εk = k2/2m−µ. Taking the T = 0 limit and making the
change of variables x = k/kF , Eq. (2) reduces to

Γ(q, T = 0) =
mkF |gK|2

4πq

1∫
0

xdx

2π∫
0

dφ (3)

× [δ (α−(q)− x cos(φ))− δ (α+(q)− x cos(φ))]

where α±(q) = cT
vF
± q

2kF
and kF and vF are the Fermi

momentum and velocity, respectively. After a little alge-
bra we then obtain

Γ(q, T = 0) = NF |gK|2
2kF
q

[√
1− α2

−(q)Θ(1− α2
−(q))

−
√

1− α2
+(q)Θ(1− α2

+(q))

]
(4)

where NF is the single-particle density of states per spin
at the Fermi level and Θ(x) is the usual step function.

Γ(q, T = 0) is plotted in Fig. 2a for cT /vF = 0.01.
While the overall magnitude of the linewidth is deter-
mined by the ratio of cT /vF , the momentum dependence
comes from simple phase space considerations. One can
see that the phonon linewidth grows rapidly for mo-
mentum transfers approaching 2kF in this example and
quickly falls to zero for larger momentum transfers as no
phase space is available for scattering. This strong en-
hancement of the phonon linewidth in the normal state
at q corresponding to the Kohn anomaly will also be
present in the superconducting state, with an additional
kinematic constraint imposed by the breaking of Cooper
pairs.

The kinematic constraint of phonon decay in the super-
conducting state brings the energy scale 2∆ directly into
play. This is shown in Fig. 3, which sketches quasiparti-
cle scattering across the gap edge 2∆. Due to the disper-
sion of the phonon, vertical scattering processes having
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FIG. 2: The normal state T = 0 phonon linewidth of the
transverse acoustic branch with cT /vF = 0.01 evaluated for
free electrons with (a) a cylindrical Fermi surface and (b) con-
cave Fermi surface. In both cases Γ(q) has been normalized
to its value at qKA/2.

no net wavevector transfers are kinematically forbidden.
In order to bridge the gap the energy of the phonon must
be at least 2∆. In other words, a finite wavevector trans-
fer must occur where q = 2∆/cT . In addition, the domi-
nant Kohn-Umklapp process k′−k = Kn+qKA involves
a momentum transfer of qKA, which in this sketch is 2kF .
Thus we have two conditions that lead to the conclusion
that when ω(q) of the transverse acoustic phonon branch
equals twice the superconducting gap, or in other words
when q = qKA = 2∆/cT , an enhancement of the phonon
decay will occur.

We next consider the transverse acoustic phonon de-
cay rate in the superconducting state for this cylindrical
model using conventional BSC theory.4 As is well known,
the phonon self-energy can be obtained by evaluating the
electron-hole bubble.6–8 In the superconducting state the
phonon self-energy Π(q, iωm) is then given by

Π(q, iωm) =
1

Nβ
Tr
∑
n,k

|gK|2τ̂3Ĝ(k, iωn)×

Ĝ(k + q, iωn + iωm)τ̂3 (5)

where ωn = (2n + 1)π/β and ωm = 2mπ/β are Fermion
and Boson Matsubara frequencies, Tr denotes the trace,

εf

-kf kf

2Δ

qKA

qKAcT > 2Δ

qKAcT < 2Δ

FIG. 3: (Color online) A schematic of the kinematic con-
straint for the decay of an acoustic phonon in the supercon-
ducting state.

and Ĝ is the electron propagator

Ĝ(k, iωn) =
iωnτ̂0 + εkτ̂3 + ∆kτ̂1

(iωn)2 − E2
k

. (6)

Here τ̂i are the usual Pauli matrices and Ek =√
ε2k + ∆2

k is the quasiparticle energy.

After analytic continuation, the phonon self-energy is given by

Π(q, ωq) =
1

2N

∑
k

|gK|2
{
A+(k,q)[f(Ek)− f(Ek+q)]

[
1

~ωq − Ek + Ek+q + iδ
− 1

~ωq + Ek − Ek+q + iδ

]
+ A−(k,q)[f(−Ek)− f(Ek+q)]

[
1

~ωq + Ek + Ek+q + iδ
− 1

~ωq − Ek − Ek+q + iδ

]}
(7)

with the coherence factors defined as

A±(k,q) = 1± εkεk+q −∆k∆k+q

EkEk+q
. (8)

The q-dependent phonon linewidth Γ(q, T ) is then determined from the imaginary part of Π(q, ωq).

The first two terms in Eq. 7 describe quasiparticle scat- tering processes. For these processes, the BCS coherence
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factor A+ vanishes at the threshold where ω = 2∆0 and
εk = εk+q. This, along with the depletion of the thermal
quasiparticle populations as the gap opens, suppresses
their contribution to the phonon linewidth. The fourth
term in Eq. 7 corresponds to a process in which a phonon
breaks a pair, creating two quasiparticles with wavevec-
tors k + q and −k. This requires that the phonon en-
ergy ωq be greater or equal to 2∆(T ). In this case, the
BCS coherence factor A− goes to 1 at threshold where
E(k + q) = E(k) = ∆(T ) and there is a sudden increase
in the linewidth.

Before turning to the results for the linewidth in Pb
we first consider two simplified cases at T = 0, shown
in Fig. 4. Here we have set the phonon energy ωq =
cT q and plotted Γ(q, T = 0) versus q/qKA. The ∆ = 0
curve is identical to Fig. 2. As the superconducting gap
opens Γ(q, T = 0) is suppressed for cT q < 2∆(0) due
to the loss of phase space for electron-phonon scattering.
This produces an onset (or “knee”) in Γ(q, T = 0) at
an energy corresponding to the gap edge. Note that in
this case one expects a knee rather than a peak because
qξ ∼ vF /cT � 1.7 (The knee is also somewhat smeared
here due to the finite broadening δ = cT /40 used.)

The height of the onset is controlled by the momen-
tum q for breaking a Cooper pair into two quasiparticles
carrying momenta k and k− q respectively.6,7 As ∆ is
made larger, the onset at cT q = 2∆ associated with pair-
breaking in the superconducting state moves out towards
the Kohn anomaly at qKA. For a cylindrical Fermi sur-
face, the Kohn anomaly occurs at qKA = 2kF and when
2∆(0) = cT qKA, the pair-breaking onset coincides with
the Kohn anomaly peak. If 2∆(0) exceeds cT qKA, the
Kohn anomaly peak is suppressed by kinematics as the
energy to break a pair is greater than cT qKA.

For a cylindrical Fermi surface with 2∆(0) > cT qKA,
Γ(q) is suppressed due to phase space considerations pre-
viously discussed for the normal state. However, if the
Fermi surface has some degree of curvature along the kz
direction such a sharp cut-off will not occur. To illustrate
this, in Fig. 4b we plot Γ(q, T = 0) for a Fermi surface
that has a concave warping along the z direction (see Fig.
2b). The electronic band dispersion has again been mod-
eled by a free electron dispersion but with mx = my = m
and mz = −5m.9 For such a dispersion qKA corre-
sponds to the spanning condition across the narrowest
portion of the Fermi surface (kz = 0). As can be seen in
Fig. 4b, the concave curvature of the Fermi surface pro-
vides phase space for scattering with momentum trans-
fers q > qKA and the sharp cutoff in Γ(q, T = 0) is
no longer present. With the opening of the supercon-
ducting gap, Γ(q, T = 0) is suppressed for cT q < 2∆(0),
just as in the previous case. For 2∆(0) = cT qKA a rem-
nant of the Umklapp-Kohn peak remains. As the gap is
increased further (2∆(0) > cT qKA) the phase space as-
sociated with the Kohn peak is gapped out and the peak
in Γ(q, T = 0) is thus suppressed.
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FIG. 4: (Color online) The transverse acoustic phonon
linewidth in the superconducting state at T = 0 for vari-
ous values of the superconducting gap 2∆ = AcT qKA. Each
curve has been normalized by the corresponding normal state
value at qKA/2, T = 0. (a) Γ(q) for a perfectly cylindrical
Fermi surface. (b) Γ(q) for a cylindrical Fermi surface with a
concave warping along the kz direction (see text).

III. RESULTS FOR LEAD

With the simple examples of the previous sections we
are now ready to turn to the phonon linewidth in Pb. To
obtain the electron dispersion the DFT bandstructure for
Pb was calculated on a regular grid of 100 × 100 × 100
momentum points per quadrant of the first Brillouin zone
and a linear interpolant was used to obtain energies at
intermediate momenta. For the phonon dispersion we
again assume a linear phonon dispersion ω(q) = cT |q|,
with cT = 7.9 meV/[r.l.u.]. The transition temperature
Tc = 7.2 K sets the temperature scale and we use an in-
trinsic broadening δ = 0.01 meV throughout. Finally, we
note that an explicit evaluation of the matrix element for
Umklapp scattering gk,k′ given by Eq. (1) adds a com-
putationally intensive layer to the problem due to the
dense momentum grid involved. However, as previously
discussed, the momentum dependence of g(k,k′) is ex-
pected to be weak. Therefore, for simplicity, we approxi-
mate the matrix element with a constant gK and restrict
the momentum sum to the region near the orange (light)
Fermi surfaces shown in Fig. 1a while neglecting the
contribution from the blue (dark) Fermi surfaces. These
cylinder-like orange (light) sections have a large nesting
connected by the Umklapp wavevector K and therefore
are expected to give the main contribution to the Kohn
anomaly due to the large phase space for this scattering
process.

The results are shown in Fig. 5 as a function of temper-
ature for gap sizes ranging from 2∆(T = 0) = 0.8cT qKA
to 1.1cT qKA. The qualitative behavior of Γ(q, T ) is sim-
ilar to that which was found for the simplified models
considered in the previous section. Above Tc the phonon
linewidth is finite for all values of q = (q, q, 0) and has a
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FIG. 5: (Color online) The linewidth of a transverse acoustic
phonon in Pb as a function of reduced temperature t = T/Tc

for various values of 2∆(T = 0) as indicated. Each curve has
been normalized to the value of the linewidth in the normal
state (T = Tc) at q = qKA/2

peak at q = qKA = 0.285 [r.l.u.], which is associated with
the Kohn anomaly indicated in Fig. 1. As the tempera-
ture is lowered across Tc, the gap opens following an as-
sumed BCS temperature dependence. For cT q < 2∆(T ),
Γ(q, T ) is suppressed and the expected 2∆ onset (knee)
forms. (Here, Γ(q) has a finite value for cT q < 2∆(T )
which is exponentially suppressed as T is lowered. This
is due to the non-zero contributions of the first two terms
in Eq. (7) and corresponds to the thermal occupation of
quasiparticle states across the gap edge.) As T is low-
ered further 2∆(T ) grows and the knee in Γ(q, T ) moves
towards the Kohn peak. If 2∆(0) is smaller than cT qKA
this knee stops short of the peak at the lowest tempera-
tures (Figs. 5a) while for for 2∆(0) = cT qKA it merges
with the peak (Fig. 5b). Finally, if 2∆(0) > cT qKA (Fig.
5c), then for sufficiently low temperatures the Kohn peak
is suppressed similar to the results shown in Fig. 4b.

Thus within a BCS framework, Γ(q, T ) depends upon

2∆(0) [meV] cT [meV/r.l.u.] qKA [r.l.u.] 2∆(0)/cT qKA

Pb 2.70 7.93 0.36 0.95

Nb 3.06 21.3 0.18 0.80

TABLE I: The relevant parameters for the elemental super-
conductors Pb and Nb. The values for Pb have been esti-
mated from Ref. 1. The gap for Nb was obtained from Ref.
12. The transverse speed of sound in Nb was obtained from
Ref. 11.

the shape of the Fermi surface and qKA, the velocity
of sound for the transverse acoustic branch, and the
magnitude of the superconducting gap. The appropri-
ate parameters for Nb and Pb are summarized in Tbl.
I. For Pb we estimate 2∆(0) = 0.95cT qKA, which cor-
responds closest to Fig. 5b, while for Nb we estimate
2∆(0) = 0.8cT qKA corresponding to Fig. 5a.

Comparing our results to Figs. 3 and 4 of Ref. 1 we
find that agreement with the experimental data for Pb is
good while the agreement for the case of Nb is less clear.
For Pb we find 2∆(0) ∼ 0.95cT qKA and we therefore ex-
pect a knee to form in Γ(q, T ) which tracks out to the
Kohn peak as the temperature is lowered. This behav-
ior is similar to what is observed experimentally (Fig. 3
of Ref. 1). In the case of Nb 2∆(0) ∼ 0.80cT qKA and
we therefore expect the knee to approach the Kohn peak
but stopping short at the lowest temperatures leaving a
pronounced knee in the observed linewidth. Examining
Fig. 4b of Ref. 1 it is difficult to determine if such a
knee is present in the data. Finally, we note that our
calculations predict that the Kohn peak should be sup-
pressed when 2∆(0) > cT qKA. Therefore, one clear way
to test the conclusions of this work would be to exam-
ine the linewidth of the transverse acoustic branch in a
material where cT qKA < 2∆(0).

IV. CONCLUSIONS

We have seen that the momentum and temperature
dependence of the transverse acoustic phonon linewidth
Γ(q, T ) in the superconducting state depends on ωqKA

and 2∆(T ). While both of these energies depend upon
the bandstructure and phonon dispersion, there is noth-
ing that should lock them together in the traditional the-
ory. Thus while it is known that the Kohn anomaly
wavevector qKA shown in Fig. 1 gives rise to a small
kink in α2F (ω) associated with the energy ωqKA

at which
the transverse phonon begins to contribute to the pair-
ing interaction, this is a small feature and plays no role
in determining ∆(0).4 Therefore, within the BCS frame-
work, the fact that 2∆(0) is close to the energy of a Kohn
anomaly ωqKA

, must be viewed as a coincidence. Fur-
thermore, as noted, the fact that the wavelength of the
phonon is small compared to the coherence length leads
to a knee-like feature at 2∆(0) rather than a peak. There-
fore if ωqKA

> 2∆(0), the Kohn anomaly remains as
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the dominant feature at low temperatures. However, as
shown in Fig. 4b and 5a, if 2∆(0) is slightly less than the
Kohn anomaly phonon energy ωqKA

, the 2∆(T ) struc-
ture can appear to merge with the Kohn anomaly peak
in Γ(q, T ) as T goes to zero. Thus we would conclude
that it is an interesting coincidence that 2∆(0) is only
slightly smaller than the energies of the Kohn anoma-
lies in both Pb and Nb, but it does not necessarily mean
that the superconducting gap is determined by the Kohn
anomaly itself and does not force 2∆(0) = ωqKA

.
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