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We study within the Ginzburg-Landau (GL) theory of phase transitions how elastic deformations
in a supersolid lead to local changes in the supersolid transition temperature. The GL theory is
mapped onto a Schrödinger-type equation with an effective potential that depends on local dilatory
strain. The effective potential is attractive for local contraction and repulsive for local expansion.
Different types of elastic deformations are studied. We find that a contraction (expansion) of
the medium that may be brought about by either externally applied or internal strain leads to
a higher (lower) transition temperature as compared to the unstrained medium. In addition, we
investigate edge dislocations and illustrate that the local transition temperature may be increased in
the immediate vicinity of the dislocation core. Our analysis is not limited to supersolidity. Similar
strain effects should also play a role in superconductors.

PACS numbers:

I. INTRODUCTION

Superfluids flow without resistance. The existence of
superfluidity raised the possibility of supersolids1,2- solids
in which superfluidity can occur without disrupting crys-
talline order. Long ago, Chester2 theoretically demon-
strated the possible existence of a supersolid. If super-
solids exist, a natural contender would be solid helium.3

Recent torsional oscillator experiments4 on solid 4He
pointed to supersolid type features and have led to a
flurry of activity. In the simplest explanation of the
experiments4 a portion of the medium becomes a su-
perfluid at low temperatures that decouples from the
measurement apparatus and the moment of inertia as-
sociated with the normal part of the system is reduced.
Such a “Non Classical Rotational Inertia” (NCRI) effect
is known to exist in superfluid liquid helium5,6 which was
probed with similar techniques.6,7 Experimental results
suggest the absence of superfluid features in ideal crys-
tals with no grain boundaries.8 Currently, it is not clear
if an NCRI lies at the core of the recent experimental
findings in solid 4He. For instance, the required con-
densate fraction adduced from a simple NCRI-only ex-
planation does not simply conform with thermodynamic
measurements.9 Rittner and Reppy10 discovered that the
putative supersolid type feature is acutely sensitive to
the quench rate for solidifying the liquid. Aoki, Keider-
ling, and Kojima reported rich hysteresis and memory
effects11 similar to those occurring in glasses.12

Relaxational dynamics in torsional oscillators has also
been reported by the Cornell group of Davis.13 The tor-
sional oscillator findings can arise from material char-
acteristics alone.14–21 In particular, the thermodynamics
and transient dynamics of distributed processes in amor-
phous or general non-equilibrated solids can currently
fit9,14 observed results. Indeed, later numerical results
point towards such a possibility.22 Notably, recent exper-

imental results13 agree with an earlier suggested theory
concerning such transient dynamics.14 The presence of
non-uniformity in 4He is also suggested by a criterion
comparing the change in dissipation vs. relative period
shift in torsion oscillator.16 It may well be that these
glassy and superfluid effects are present in solid helium.23

An interesting question concerns the coupling between
elastic defects such as dislocations and superfluid type
features.24 The coupling of the supersolid transition to
impurities was discussed in Ref. 25. The coupling be-
tween superfluidity and elasticity in supersolids and how
this may lead to a strain-dependent critical temperature
was discussed in Refs. 26,27.

Supersolids constitute a fascinating state of matter and
appear in a host of systems. The viable existence of su-
persolid phase is not confined to solid helium. Other
contenders for the supersolid state include cold atoms in
a confining optical lattice.28 There has been much work
examining supersolidity in spin systems as well, see for
example, Ref. 29.

This article focuses on the coupling between nanoscale
structure and supersolidity.26,27 As is well appreciated,
elastic strain may fundamentally affect local and meso-
scopic electronic, magnetic and structural properties.
There is ample evidence for significant coupling amongst
the electronic degrees of freedom with the lattice distor-
tions in cuprates, manganites, and ferroelectrics.30,31 The
central thesis of this work is that elastic distortions may
alter the supersolid behavior. As we will elaborate later
on, in, e.g., a cylindrical torsional oscillator geometry in
which the boundary of the solid is elastically deformed
so that it undergoes a supersolid transition at a higher
temperature than the bulk, a fraction of the boundary
will become a supersolid leading to a partial decoupling
of the bulk from the torsional oscillator chassis and a
consequent reduction in the period.

In this work, we will employ a Ginzburg-Landau (GL)
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theory to study the influence of elastic strain on superso-
lidity. As we will show, the Euler-Lagrange equations for
the GL free energy result in an effective Schrödinger type
equation. We find the lattice distortion acts as an effec-
tive potential for the supersolid order parameter. Solv-
ing the resulting effective Schrödinger–type equation, we
find our main results: (1) a contraction (expansion) of
the lattice edges leads to an increase (decrease) in the lo-
cal supersolid transition temperature; (2) elastic defects,
such as dislocations, lead to similar effects.

Although our motivation is the analysis of super-
solids, all of our calculations within the GL frame-
work are identical for non-uniform elastically strained
superconductors31,32 and lead to the same general con-
clusions, which we will derive in this work. The case
of uniformly strained superconductors has been investi-
gated in detail in myriad experiments, starting from Ref.
33 and many works since.34 It was found in these works
that uniform hydrostatic pressure can increase the su-
perconducting transition temperature. The influence of
pressure on the superconducting temperature has also
been investigated in numerous theoretical treatments,
e.g., Refs. 35,36. Our GL formulation and Schrödinger-
type equation give rise to an increase of the supercon-
ducting transition temperature under applied pressure.

The outline of the paper is as follows: in Section II, we
set up the general GL framework for our investigations.
We illustrate the connection between the Euler-Lagrange
equation and the Schrödinger equation. In the sections
thereafter, we focus on particular lattice distortion pro-
files to determine the change in the local supersolid tran-
sition temperature. In Section III, we examine the influ-
ence of a boundary edge contraction, and in section IV,
we study the opposite case of a boundary edge expansion.
In section V, we analyze the case of an edge dislocation.
We summarize our findings in section VI.

II. GENERAL FRAMEWORK

We study the GL free energy density

F (~r) = a(T )|ψ|2 +
1

2
b|ψ|4 + c|∇ψ|2 + λ(~r)|ψ|2, (1)

where T is the temperature, b and c being positive con-
stants, ψ the (complex) supersolid order parameter, and
λ(~r) a position dependent function that captures the cou-
pling of the order parameter to elastic strain as we elab-
orate on below. The prefactor b in Eq. (1) is positive and
depends only on the density of the crystal, as well as on
defect densities.37 For temperatures T < Tc, the coeffi-
cient a(T ) is negative enabling a non-zero ψ to minimize
the free energy.38 The condition a(Tc) = 0 determines
the transition temperature T = Tc below which superso-
lidity onsets.37 The third term in Eq. (1) relates the free
energy with the magnitude of the gradient of ψ, as in a
domain wall.38 The difference between the free energy of
a normal crystal and a displaced crystal appears in the

last term. For a crystal whose constituents i undergo a

distortion from an ideal unperturbed configuration ~R to

a shifted configuration ~R′ due to the application of strain,

we set ~ui = ~R′i− ~Ri and take the continuum limit wherein
we replace i by the continuous coordinate ~r. In the up
and coming, the Greek indices γ, δ will denote the spa-
tial components (e.g., uγ=1,2,3 will denote the Cartesian
components of the displacement ~u at site ~r). In general,
a linear coupling of the form aγδuγδ|ψ|2 is allowed be-
tween the linear order strain tensor uγδ = 1

2 (∂γuδ+∂δuγ)

(where ~u is the elastic displacement)39 and the supersolid
order parameter ψ.26,40 In what follows, we will consider,
for simplicity, the case in which the displacement occurs
only along one Cartesian direction. Allowing for general
displacements does not change our conclusions. For uni-
directional displacements, the coefficient of the last term
in Eq. (1) can be expressed as a dilatory strain

λ(~r) = d~∇ · ~u(~r), (2)

where d is a positive constant and ~u(~r) is the displace-
ment field. The sign of d is chosen such that the free en-
ergy of Eq. (1) is lowered on introducing vacancies. The

vacancy density scales with [−(~∇·~u)] (whereas the inter-

stitial density scales with [(~∇ · ~u)]). Ions in the vicinity
of a vacancy will have an inward displacement towards
its location whereas ions in the vicinity of an interstitial
will be pushed outwards. Eq. (2) and the free energy are
functions of the strain tensor and thus symmetric under
spatial reflections under which ~r → −~r and ~u → −~u. In
bulk linear elasticity, the local strains scale, as in Hooke’s
law, as the pressure divided by the elastic moduli. In the
following sections, we will consider the strain fields asso-
ciated with various cases.

A. Local strain coupling in supersolids

It follows from Eq. (2) that the last term in Eq. (1)
is a general isotropic coupling between the strain and
the supersolid (superconducting) order parameter. In the
cases that we will examine the displacement ~u will occur
along one Cartesian direction (~u will have only one com-
ponent). Furthermore, in the first two cases that we will
detail below (contraction and expansion along an edge),
this displacement field will vary only along one Cartesian
direction and will be uniform along all other orthogonal
directions. Consequently, the coupling λ will depend only
on one Cartesian direction: λ = λ(z). In the last case
discussed in this work, that of an edge dislocation, the
displacement field (and consequently the coupling λ) will
depend on two directions.

To find the ground state of such crystal, we want to
minimize the free energy. The variational derivative of F
with respect to ψ∗ leads to the Euler-Lagrange equation

δF

δψ∗
= a(T )ψ + b|ψ|2ψ − c∇2ψ + λ(~r)ψ = 0, (3)
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with an identical (complex conjugated) equation for
δF/δψ = 0. In situations in which a weakly first- or
second-order supersolid transition occurs, we may, in the
vicinity of the transition (where ψ is small) omit the cu-
bic term in Eq. (3),42 and the variational equation may
be recast as

−c∇2ψ + λ(~r)ψ = −a(T )ψ. (4)

Eq. (4) is a Schrödinger type equation with c = ~2/2m
and a(T ) = −E with E the energy andm a mass. Solving
for the eigenvalue E = −a(T ) enables us to extract the
transition temperature. Generally, a shift in the transi-
tion temperature results from the coupling to the elastic
displacements.

The gradients of ~u as embodied in λ(~r) take on the role
of a potential energy in the effective quantum problem for
the “wavefunction” ψ. We briefly comment that the case

of uniform pressure corresponds to a constant strain ~∇·~u
and thus to a constant effective potential λ(~r) = const.
Applied to the analysis to be presented below for more
complicated cases, such a uniform shift of the potential
energy (and thus to the eigenvalues E) leads to a con-
stant shift in the value of a(T ) at the transition point.
As a(T ) is monotonic in temperature, for d > 0 (d < 0),
this leads to an increase (decrease) in the transition tem-

perature for a uniform contraction (~∇ · ~u < 0) as it may
indeed occur under uniform applied pressure in supercon-
ductors for which for an increase or decrease of the su-
perconducting Tc appear for different systems.33,34 The
case of a spatially uniform dilatory stress is a particu-
lar simple limiting form of the more general non-uniform
elastic deformations that we discuss in this work.

In the remainder of this work, we will examine the
solutions of Eq. (4) for various non-uniform elastic dis-
placements ~u. In particular, we will examine the strain
fields associated with a contraction of the sample bound-
aries, an expansion of a boundary edge, and the strain
profile associated with an edge dislocation.

B. Local strain coupling in superconductors

As noted earlier, our GL theory of Eq. (1) also de-
scribes a (singlet) superconductor with an order param-
eter ψ in the presence of elastic strains. In a charged
crystal (of unit cell volume when undeformed) under ap-
plied or internal elastic strains the electric field couples to
the local charge density, which deviates from that of the

undeformed crystal by an amount [−(~∇ · ~u)] and whose

volume trivially scales as (1+ ~∇·~u)). Such an interaction
is known in the literature as electro-elastic or acousto-
optical coupling. It is quite natural to see that for super-
conductors the Coulomb potential plays the role of the
coupling parameter λ(~r) → e∗φ(~r) with φ the electro-
static potential and e∗ an effective charge.24,41
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Figure 1: (Color online.) The displacement corresponding
to a contraction near the edges. For clearly illustrating the
contraction, we depict large displacements. In this sketch,
the displacement (black solid) is given by Eq. (5) with L =
20, u0 = 0.1, d = 1, and k = 1 where the lattice constant
set to unity. The effective potential (red dashed) is given by
Eq. (6). The large value of the displacement uo is chosen to
vividly illustrate the contraction.

III. CONTRACTION OF BOUNDARY EDGE

Consider a crystal with a side of length L along one
of the Cartesian directions (the coordinate values corre-
sponding to this side are in the range L/2 ≥ z ≥ −L/2).
We consider a contraction in which near the two edges,
the lattice sites are most displaced from their equilib-
rium positions, see Fig. 1. Such a contraction may, e.g.,
be brought about by applying stress (along opposite di-
rections) on the two edges of the system. Alternatively,
a shock wave or generation of coherent phonon propaga-
tion by ultrafast pump-probe spectroscopy may be used
to create local density modulations resulting in nonuni-
form strain near the edges of the sample.43 Albeit trivial,
we mention in passing that all such contractions (includ-
ing more uniform ones such as those brought about by
thermal contractions at low temperatures) will lead to
a reduced moment of inertia about the z = 0 axis. As
we will now show, a displacement in the vicinity of the
edges triggers a change in the local supersolid transition
temperature. Following our earlier discussions in subsec-
tion II B, similar results will apply mutatis mutandis to
the local transition temperatures in superconductors. A
displacement field describing a contraction along the z
direction is given by

uz =

{
u0[e−(z+L/2)2/k2 − e−(z−L/2)2/k2 ] for |z| ≤ L/2
0 for |z| > L/2

.

(5)
The displacement thus occurs in some finite region of

scale k about the edges. u0 is the maximum displace-
ment, and with no displacement along the x or y direc-
tions, ux = uy = 0.

The corresponding effective potential of Eq. (2) is given
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by

λ =
2u0d

k2

[
(z − L

2
)e−(z−L

2 )2/k2 − (z +
L

2
)e−(z+ L

2 )2/k2
]
.

(6)
For |z| > L/2 (points outside the crystal), the supersolid
order parameter ψ = 0 and in Eq. (4) the effective po-
tential λ = ∞. For small deformations, this attractive
potential leads to the appearance of a weak bound state.
For z > 0 with L/2� (L/2−z)� k, the effective poten-
tial tends to zero, and the bound state wavefunction is of
the form ψ ∼ exp[κ(z−L/2)]. A similar form is attained
near the point z = −L/2. The value of κ and thus of
the bound state energy E = −cκ2 can be computed in
the standard way by integrating the Schrödinger equa-
tion once in a region of width ε across the point z = L/2
in an extension of the problem to z > L/2 in which the
potential is symmetrized about the point z = L/2.

Such an attractive potential leads to the appearance of
a weak bound state with the bound state wavefunction
ψ ∼ exp[κ(z − L/2)], where

−2κ =

[
dψ

dz

]L/2+ε/2

L/2−ε/2
=

1

c

∫ L/2+ε

L/2−ε
λ(z)dz. (7)

Specifically, the minima of Eq. (6) are for L � k,

approximately, given by z = ∓L/2 ± k/
√

2. We may
then approximate the potential of Eq. (6) by

λ = −du0

[
δ[z − (

L

2
− k√

2
)] + δ[z + (

L

2
− k√

2
)]

]
. (8)

For L� c/(du0) we may solve the problem as that of two
decoupled delta function potentials with exponentially
small corrections. The standard solution to the delta
function potential leads to a bound state energy

E = −d
2u2

0

4c
. (9)

We will now employ the value of E to determine a change
in the transition temperature. Within the GL theory,
a(T ) ' α(T−T 0

c ) near the transition temperature, where
T 0
c is the unaltered transition temperature and α > 0 is

a constant. Writing a+ E = α(T − T effc ) where T effc is
the effective transition temperature, we have

T effc = T 0
c + ∆Tc, (10)

with

∆Tc =
d2u2

0

4αc
. (11)

In other words, the region near the contracted edges has
a higher transition temperature into the supersolid state
than the bulk. Generally, the maximal displacement in
Eqs. (5) and (14) can be of order u0 ∼ 0.1 lattice con-
stants as set by the Lindemann criterion of melting in
most materials (or of u0 ∼ 0.2 in solid 4He and poten-
tially other quantum solids).44 In Eqs. (1) and (2), the

parameters c, d = O(1). We estimate a small enhance-
ment of the transition temperature in the surface region.
For parameters α = 1/T 0

c , d = 1, u0 = 0.1, and c = 1, we
find from Eq. (11) a small enhancement compared to the
bulk transition, ∆Tc = 2.5× 10−3T 0

c .
The effect of this shifted transition temperature is that,

when a sample of contracted 4He is cooled down, the
region near the edges would turn into supersolid at a
higher temperature than the bulk of the crystal. Perusing
the localized form of the supersolid order parameter ψ
and Eqs. (7) and (9), we see that ψ drops exponentially
away with the boundary with a penetration depth ` =
1/κ = 2c/(du0). Combined with our previous estimates
for parameters in Eq. (11), we find that the penetration
depth ` ∼ 20 lattice constants.

We now expand on the relation between the local value
of the supersolid order parameter ψ and the local effective
transition temperature. Eq. (4) holds for all locations
−L/2 ≤ z ≤ L/2 (and trivially, of course, on any local
segment within this region). We earlier solved Eq. (4)
to find a surface supersolid wherein the supersolid order
parameter decays exponentially with a decay distance `
away from the boundary points z = ±L/2. Thus, deep
within the bulk, the supersolid order parameter was zero.
We may examine Eq. (4) locally (with a local effective
potential λ(z)) in order to see when we may attain a finite
supersolid order parameter ψ(z) at general locations z
away from the boundary.

As the displacement only occurs near the edges, and
since the change in transition temperature is the result
of the displacement, it is reasonable to assume that the
change in transition temperature can only be detected
in the region near the edges. For the region inside the
crystal (far from the edge), the transition temperature
should remain unaltered. Based on the observation, the
transition temperature as a function of the z-axis (the
axis parallel to the length of the crystal) could be de-
scribed as

T effc (z) = T 0
c + f(z)

d2u2
o

4αc
, (12)

where f(z) is a function that rapidly varies from 1 at the
boundaries z = ±L/2 to zero for positions removed from
the boundaries. An example is provided by

f(z) = e−(z−L/2)2/k2 + e−(z+L/2)2/k2 (13)

when L� k.
A plot of T effc (z) is depicted in Fig. 4. A large value

of the displacement u0 is chosen to illustrate the effects
of a contraction as in Fig. 1.

Thus far, we discussed the system with open bound-
ary conditions. In an analogous fashion we can analyze
the system with periodic boundary condition (a ring)
for which a uniform contraction is performed (i.e., the
ring shrinks in its diameter). In this case, a state ψ
which is constant everywhere on the ring experiences an
energy change of size E = −2du0/L with u0/L denot-
ing the uniform inward dilation along the chain. This
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leads to an elevation of the transition temperature by
∆Tc = 2du0/(Lα).

It is clear that any contraction will elevate the local
Tc. This is so as λ < 0 by comparison to the undistorted
lattice. Thus, for any contraction and within any state
the energy 〈ψ|(−c∇2 + λ)|ψ〉 is lower than that in its
undeformed counterpart (with λ = 0). By our analysis
above, a lower value of the energy translates into a change
∆Tc > 0.

Returning to the NCRI4–7 briefly discussed in the in-
troduction, if the entire sample is rotating before the
transition to a supersolid phase occurs, at some temper-
ature higher than the normal transition to supersolid of
bulk helium, but low enough to make the edges become
supersolid, the supersolid component in the edges will
partially decouple from the bulk rotation. This situation
is depicted schematically in Fig. 2.

Figure 2: Under compression of the edges of the torsional os-
cillator, the rim attains a supersolid component at a higher
temperature than the bulk does. On cooling down to this
temperature, the supersolid fraction of the rim partially de-
couples from the bulk and outer chassis.

IV. EXPANSION OF EDGE BOUNDARIES

The situation of the expansion near the edge bound-
aries is schematically shown in Fig. 3. As in the case
of contraction, this may be physically brought about by
applying opposite stresses (e.g., shear stresses) on the
two boundaries of the system. In an annular geometry
similar to that in Fig. 2, an expansion may result by a
difference in pressures between the inner and outer parts
of the cylinder. A typical displacement field ~u is, in this
case, given by

uz =

{
u0[e−(z−L/2)2/k2 − e−(z+L/2)2/k2 ] for |z| ≤ L/2
0 for |z| > L/2

,

(14)
and ux = uy = 0. The variational equations give rise to
a Schrödinger equation. The sign of λ is flipped relative
to the case of the contraction. In this case, λ is every-
where positive reflecting a repulsive effective potential.
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Figure 3: (Color online.) The displacement field correspond-
ing to an expansion near the edges. Plotted is the displace-
ment field (black solid) given by Eq. (14) with L = 20, u0 =
0.1 and d = k = 1. The effective potential (red dashed) is
given by Eq. (17). The large displacement highlights the ex-
pansion near the boundaries.

This difference in sign gives rise to an important differ-
ence between expansion and contraction. In the case of
expansion, the effective potential displays two peaks in-
stead of two wells. In the presence of the two peaks, the
problem reduces to that of a particle in an infinite poten-
tial well model. The wavefunction for the unperturbed
ground state is now given by

ψ =

√
2

L
cos
(π
L
z
)
. (15)

The energy of such a bound state in a box of size L is

E =
π2c

L2
. (16)

Now, consider the perturbed state with the potential

given by λ = d~∇ · ~u which reads

λ =
2du0

k2

[
(z +

L

2
)e−(z+ L

2 )2/k2 − (z − L

2
)e−(z−L

2 )2/k2
]
.

(17)
As in our discussion of contractions in Section III, we

may approximate λ near its maxima by delta functions.
When L� k, the maxima occur at z = ∓L2 ±

k√
2
. Similar

to Eq. (8) yet with opposite sign, we explicitly approxi-
mate λ as

λ = du0

[
δ[z − (

L

2
− k√

2
)] + δ[z + (

L

2
− k√

2
)]

]
. (18)

The first order approximation to the perturbed ground
state energy trivially yields

E′ = E +

∫ L/2

−L/2
ψ∗λψdz = E +

4du0

L
sin2 kπ

L
√

2
. (19)

Replicating the steps of Section III, we find that the effec-
tive transition temperature T effc for the case of expansion
is
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T effc (z) = T 0
c − f(z)

[
π2c

αL2
+

4du0

αL
sin2 kπ

L
√

2

]
. (20)

In this case, as the system is cooled down, the faces would
become supersolid after the bulk crystal. A plot is given
in Fig. 4 for illustrative parameters u0 = 0.1, α = c =
d = k = 1 and L = 20. As in our prior analysis of the
contraction, the value of u0 in Fig. 3 is chosen to illustrate
the elastic distortion associated with an expansion.
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Figure 4: (Color online.) The effective transition temperature
for an undeformed crystal is T 0

c . We show results of the local
transition temperature Tc(z) for compression and expansion
at its boundaries. We set the lattice constant to unity and
use parameters u0 = 0.1, α = c = d = k = 1 and L = 20.

Along similar lines as was discussed at the end of Sec-
tion III, a uniform expansion in a periodic ring will lower
the transition temperature by 2du0/L.

It is worth highlighting the origin of the difference be-
tween the cases of edge contraction and expansion. Both
cases have different divergences of the displacement field
(and thus different local density profiles). The local mass
or equivalently, the vacancy density is what couples to
the supersolid order parameter. Note, in case of a su-
perconductor it is the charge density that couples to the
order parameter. Both the displacement field and the
spatial gradient are odd under spatial reflection. In our

case, ~∇ · ~u is even under spatial reflection (it reflects the
scalar mass density) and the two cases are physically very
different even though the spatial profile of the displace-
ment fields in both cases are related by a minus sign (see
Eqs. (5) and (14)).

Similar to our earlier discussion in Section III, any local
expansion will have λ(~r) > 0 and thus elevate the energy

〈ψ|(−c∇2 + λ)|ψ〉 > 〈ψ|(−c∇2)|ψ〉, (21)

and lead to a local change in the transition temperature
∆Tc < 0 causing a suppression.

V. DISLOCATIONS

Below, we will present calculations of the local tran-
sition temperature due to an edge dislocation using the
formalism that we have employed thus far in this work.
For a discussion of dislocations in the quantum arena
see, e.g., Ref. 24. As further discussed in Ref. 24, dis-
locations can screen applied shear stress and lead to a
finite shear penetration depth- an effect that may have
experimental consequences including that in torsional os-
cillators as we will briefly on remark later. An analy-
sis analogous to ours below was done by Toner27 who
reached similar conclusions as we have. Some time af-
ter we first discussed this phenomenon,45 Ref. 46 consid-
ered the problem of dislocation line filaments which be-
come supersolid while the bulk is non-supersolid. This is
markedly different from our perturbative approach where
both the bulk and the dislocation core become supersolid
at transition temperatures that differ by small amounts.
The small change in the ordering temperature is imper-
ative in our perturbative approach of linearly expanding
a(T ) in Eq. (1) about the bulk supersolid transition tem-
perature and in neglecting the cubic terms in Eq. (3)
when solving the effective Schrödinger type equation of
Eq. (4).

Many displacement fields can correspond to a given

“Burgers vector”~b describing a dislocation. Each compo-
nent of the Burgers vector is defined by a circuit integral

around a dislocation core,39 bγ = (
∮
K
d~s·~∇uγ), for a large

contour K around the dislocation core describing a dis-
location. We will analyze one such particular set of dis-
placement fields. All of these displacement fields are re-
lated to one another via a smooth deformation ~u→ ~u+~v.
Here, ~v is a non-singular vector field with a vanishing as-

sociated circulation:
∮
C
d~s · ~∇vγ = 0 around any closed

contour C. As we saw in the earlier sections, a smooth
displacement field (corresponding to, e.g., a contraction
or an expansion) can, on its own, raise or lower the effec-
tive local supersolid transition temperature. Thus, the
effective change in Tc, which we turn to next, will gen-
erally depend on the detailed form of the displacement
fields ~u corresponding to a given dislocation. In what
follows, we consider a particular minimal displacement
field form that corresponds to symmetric unidirectional
displacements about a lattice direction of an unstrained
crystal. With x and y denoting the horizontal and ver-
tical Cartesian directions, we consider a particular dis-
placement field in Figs. 5(a) and 5(b) that corresponds

to a dislocation with a Burgers vector ~b = bêx. In what
follows, the spatial extent of the dislocation core will be
set by k.

The following displacement field describes such an edge
dislocation

~u(~r) = − b

2π
e−r

2/k2sgn(x) cos−1

(
−y
r

)
êx, (22)

where ~r = (x, y) and sgn(x) is the sign function of x, i.e.,
sgn(x) = [2θ(x) − 1] with θ(x) the Heavyside function
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(a)An edge dislocation
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(b)The displacement field corresponding to an edge dislocation

Figure 5: (Color online.) A schematic of an edge dislocation. Shown at left (a), are rows of atoms. The presence of an
edge dislocation is manifest in the appearance of a different number of vertical rows of atoms above and below the terminal
dislocation point. The corresponding displacement field ~u(~r) of Eq. (22) with contour lines is shown at right (b). We set
b = d = 1 and k = 10.

and we employ the principal branch of cos−1 (that with
0 ≤ cos−1 w ≤ π). We re-iterate that many other disloca-
tion displacement fields that share the same Burgers vec-

tor ~b may be written down. In Eq. (22) the magnitude of
the Burgers vector b cannot exceed the inter-atomic lat-
tice spacing. Furthermore, realistically the radius over
which the dislocation is unscreened, may be of order of
k ∼ 10 lattice constants. Screening is induced by anti-
dislocations [or, in the continuum, a background of an
opposite dislocation (or Burgers vector) density]39. We
may derive an effective potential from the displacement
in the same way we did for the above two cases (Eq. (2)).
In this case, an analytical solution to the Schrödinger
equation is not possible and we will resort to variational
estimates. In Figures 5(a) and 5(b) we plot the corre-
sponding displacements. Using Eqs. (2) and (22) the
effective potential energy becomes

λ(~r) =
bd

2π
e−r

2/k2
[

2|x|
k2

cos−1

(
−y
r

)
+

y

r2
− 2πδ(x)θ(y)

]
.

(23)

The regular part (without the delta function) is plotted
in Fig. 6.

The Hamiltonian H = [−c∇2 + λ] corresponds to the
Schrödinger equation of Eq. (4). Along the half-line
x = 0 and y > 0 there is a compression leading to
an effectively attractive potential. Elsewhere in the top
half-plane (y > 0), there is an expansion. As evident in
Figs. 5(a) and 5(b), in the upper half-plane the perfect
lattice sites deviate away from the dislocation core less
and less as |x| is increased (leading to a local expansion).
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Figure 6: (Color online.) The regular part (without delta
function) of the effective potential energy λ(~r) of a single edge
dislocation given in Eq. (23) corresponding to the displace-
ment function of Eq. (22). We set b = d = 1 and k = 10. The
maximum regular strain is 0.158. A projection of the contour
is shown in the xy plane.

In the lower half-plane (y < 0), there is a region of local
contraction near the inserted half-plane of atoms. Thus,
we will find both an increase (contraction) or a decrease
(expansion) in the effective transition temperatures, see
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Fig. 7. We briefly comment on the transition tempera-
ture of the entire system or that of a region Σ that is
centered about the dislocation core. Considering, e.g.,
the trivial variational wavefunction ψvar = const., it is
seen that the corresponding variational energy

Evar = 〈ψvar|H|ψvar〉

= d

∫
Σ

d2r (~∇ · ~u) = d

∫
∂Σ

ds n̂ · ~u, (24)

where n̂ is normal to the boundary ∂Σ of the surface
Σ and Gauss’ theorem has been invoked. Eq. (24) is the
energy of a uniform state ψ in the case of a general elastic
deformation field ~u. In line with our earlier results, when

the system is contracted, wherein ~∇ · ~u < 0, the energy
of this state is negative. As by the variational theorem
the variational ground state energy is an upper bound for
the true ground state energy, Evar ≥ E, and for d > 0
the variational energy Evar < 0. We see that the energy
of any system with contraction must be negative, E < 0
and thus ∆Tc > 0. Similarly, for an expansion, Evar > 0
and thus ∆Tc < 0. We reiterate that by Eq. (21), for
d > 0, the energy of any state ψ under expansion is
elevated relative to that of the system in the absence of
deformations and thus ∆Tc < 0 under all expansions.

Returning to the problem of the dislocation, we triv-
ially see that when ~u → 0 on the boundary ∂Σ, the en-
ergy Evar = 0 for the variational state ψvar = const. The
variational energy (with the above very bad variational
ansatz of a uniform wavefunction) is an upper bound on
the ground state energy. The energy can clearly be low-
ered and made negative by choosing other (non-uniform)
states ψ which have large amplitudes at regions of the
low effective potential and become small when the effec-
tive potential is high. For E < 0, the local Tc is enhanced
by ∆Tc > 0 as shown in Fig. 7. A notable feature within
the uniform variational state, evident in Fig. 7, is the
presence of a long filamentary region with a considerably
elevated Tc. We see directly from Fig. 5(b) that in the up-
per half-plane, i.e., above the dislocation core with y > 0,
where the deformation field is largest, contraction occurs
along the line x = 0. In the lower half-plane, we find
regions of suppressed and enhanced transition temper-
atures similar to the upper half-plane, except that the
region of contraction (Tc increase) occurs over a larger
distance away from the inserted half-plane of atoms sit-
uated at x = 0. From this variational estimate we find
that the local increase in transition temperature extends
far beyond the core of the dislocation line and may be
rather complex.

Throughout, we have assumed that the coupling con-
stant d was positive. If d < 0, then the average change
in transition temperature over a large region containing
the dislocation core results in a suppression of Tc, that
is, ∆Tc < 0.

For an anti-dislocation with b→ (−b) in Eq. (22), the
location of the regions of local compression and expansion
is reversed by comparison to that of a dislocation. Thus,
in the case of dislocation-anti-dislocation pairs with well
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Figure 7: (Color online.) Contour map of the variational
energy Evar as approximated by calculating a square path
integral of unit-cell size around each lattice site. Negative
regions correspond to an increase in the effective transition
temperature T effc , while positive regions signal a decrease in
T effc compared to the bulk value.

separated cores, irrespective of the sign of d, the average
transition temperature will be elevated, ∆Tc > 0. De-
pending on the sign of d, this will occur either next to
either the dislocation core, d > 0, or the anti-dislocation
core, d < 0.

VI. CONCLUSIONS

In summary, we find that elastic deformations in super-
solid lead to local changes in the transition temperature.
For a positive coupling constant d in Eq. (2) we obtain
the results:

1. Edge contraction increases the supersolid transition
temperature at and near the edges.

2. Edge expansion decreases the supersolid transition
temperature at and near the edges.

3. The local supersolid transition may be enhanced or
suppressed near a dislocation core.

This implies the observation of interesting effects. For
example, for edge contractions, we would find that, be-
low a certain temperature that is higher than the su-
persolid transition temperature, a sample of supersolid
would have its supersolid edges partially decouple from
its bulk crystal. Of course, the effects of elastic deforma-
tions on the supersolid transition are not limited to the
few selected cases studied here. For example, the same
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physics applies to point defects like interstitials and va-
cancies, as well as to extended defects like grain bound-
aries and inclusions or voids. The above conclusions were
based on the assumption of a positive coupling constant
d in Eq. (2). Formally, for negative d, our conclusions
would have been inverted- an expansion would enhance
the local supersolid transition while a contraction would
reduce the supersolid transition temperature.

Similar effects are found elsewhere in regions that lo-
cally expand or contract. In Ref. 24 it was shown how a
dislocation condensate may generally enhance and trig-
ger superfluid behavior via a Higgs type mechanism. In
the context of torsional oscillator anomalies, we wish to
briefly note that aside from dislocation dynamics14–21

and an NCRI effect that may result from extended super-
solid regions such as the ones that we find may accom-
pany a dislocation core, yet another possible mechanism
that will lead to a reduced torsional oscillator period is
that of finite shear penetration depths24 wherein disloca-
tions screen applied external shear and thus lead to an
effective reduced moment of inertia.

The presented GL approach of elastic deformations on
the supersolid transition temperature is quite general.
In fact, dislocation defects and lattice-mismatched in-
terfaces in superconductors are known to create nonuni-
form strain and changes to the superconducting transi-
tion temperature, which have been studied extensively.47

Thus, our calculations of the changes in the local transi-
tion temperature due to a nonuniform elastic strain cou-
pling in a Ginzburg-Landau approach are not limited to
supersolidity and may as well apply to superconductivity.
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28 H. P. Büchler and G. Blatter, Phys. Rev. Lett. 91, 130404

(2003); V. W. Scarola and S. Das Sarma, Phys. Rev. Lett.
95, 033003 (2005); A. Koga, T. Higashiyama, K. Inaba, S.
Suga, and N. Kawakami, J. Phys. Soc. Japan 77, 073602
(2008); T. Keilmann, I. Cirac, and T. Roscilde, Phys. Rev.
Lett. 102, 255304 (2009).

29 P. Sengupta and C. D. Batista, Phys. Rev. Lett. 98, 227201
(2007).

30 For a review, see Lattice Effects in High-Tc Super-
conductors, eds. Y. Bar-yam, T. Egami, J. Mustre-de
Leon, and A. R. Bishop (World Scientific, Singapore,
1992); Nanoscale Phase Separation and Colossal Magne-
toresistence, ed. E. Dagotto (Springer, New York, 2003);
Instrinsic Multiscale Structure and Dynamics in Complex
Electronic Oxides, eds. A. R. Bishop, S. R. Shenoy, and S.
Sridhar (World Scientific, Singapore, 2003).

31 Jian-Xin Zhu, K. H. Ahn, Z. Nussinov, T. Lookman, A. V.
Balatsky, and A. R. Bishop, Phys. Rev. Lett. 91, 057004
(2003).

32 A. V. Gurevich and E. A. Pashitskii, Low Temp. Phys. 24,
794 (1998).

33 G. J. Sizoo and H. K. Onnes, Commun. Phys. Lab. Univ.
Leiden, No. 180b (1925).

34 D. H. Bowen, in R.S. Bradley(ed.), High Pressure Physics
and Chemistry I, Academic Press, New York, 353 (1963); J.
S. Schilling, Proceedings of the NATO Advanced Research
Workshop Frontiers of High Pressure Research II: Applica-
tion of High Pressure to Low-Dimensional Novel Electronic
Materials, 345 edited by H. D. Hochheimer, B. Kuchta,
P. K. Dorhout, and J.L. Yarger (Kluwer Academic Pub.,
Boston,2001).

35 M. Ozaki et al., Prog. Theor. Phys. 75, 442 (1986)
36 J.J. Betouras, V.A. Ivanov, and F.M. Peeters, Eur. Phys.

J. B 31, 349 (2003)

37 L. D. Landau and E. M. Lifshitz, Statistical Physics Part
2, Butterworth-Heinemann, Boston (1999).

38 M. Tinkham, Introduction to Superconductivity, 2nd edi-
tion, McGraw-Hill, New York (1996).

39 J. Friedel, Dislocations, Pergamon press, New York, 1954;
F. R. N. Nabarro, Theory of Dislocations, Clarendon, Ox-
ford, 1967; J. P. Hirth and J. Lothe, Theory of Disloca-
tions, McGraw- Hill, New York, 1968; H. Kleinert, Gauge
fields in Condensed Matter, Vol. II: Stresses and Defects,
Differential Geometry, Crystal Defects (World Scientific,
Singapore, 1989).

40 J. A. Aronovitz, P. Goldbart, and G. Mouzurkewich, Phys.
Rev. Lett. 64, 2799 (1990).

41 J-J. Su, M. J. Graf, and A. V. Balatsky. arXiv:1105.5343
(2011)

42 Eq. (3) could also be solved in the presence of the cu-
bic term, albeit not giving any new insight relative to our
linearized differential equation of Eq. (4). Throughout this
work, we will assume a system that is symmetric about the
origin, with a unidirectional axis of length L along which
the displacements occur (−L/2 ≤ z ≤ L/2). For real ψ,
with boundary condition ψ(z = −L/2) = 0, multiplying
Eq. (3) by ψ and integrating, we arrive at the general im-
plicit relation

z(ψ) = −L
2

+

∫ ψ

0

dψ̃

ψ̃

√
− c

a+ bψ̃2 + λ(z)
, (25)

for z < 0. Eq. (25) may be inverted to determine ψ(z) for
negative z. For z > 0, in a system with displacements that
are symmetric about z = 0, ψ(z) = ψ(−z).

43 D. Lim, V. K. Thormoelle, R. D. Averitt, Q. X. Jia, K. H.
Ahn, M. J. Graf, S. A. Trugman, and A. J. Taylor, Phys.
Rev. B 71, 134403 (2005).

44 H. R. Glyde, Excitations in Liquid and Solid helium (Ox-
ford: Clarendon, 1994) C. Cazorla and J. Boronat, J.
Phys.: Condens. Matter 20, 015223 (2008); D. A. Arms,
R. S. Shah, and R. O. Simmons, Phys. Rev. B 67, 094303
(2003).

45 T. Arpornthip, A. V. Balatsky, M. J. Graf, and Z. Nussi-
nov, arXiv: 0912.4787 (2009).

46 D. Goswami, K. Dasbiwas, C.-D. Yoo, and A. T. Dorsey,
arXiv:1103.0057 (2011).

47 N. Ya. Fogel, E. I. Buchstab, Yu. V. Bomze, O. I.
Yuzephovich, A. Yu. Sipatov, E. A. Pashitskii, A. Danilov,
V. Langer, R. I. Shekhter, and M. Jonson, Phys. Rev. B
66, 174513 (2002); P. P. Pal-Val, V. D. Natsik, and L. N.
Pal-Val, Low Temp. Phys. 32, 169 (2006); G. J. van Gurp
and D. J. van Ooijen, J. de Physique, Colloque C 3, Suppl.
7-8, 51 (1966).


