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We simulate the ultrafast dynamics of laser-induced coherent phonons in single wall carbon nan-
otubes (SWNTs). In particular, we examine the radial breathing mode (RBM) coherent phonon
amplitude as a function of excitation energy and chirality. We find that the RBM coherent phonon
amplitudes are very sensitive to changes in excitation energy and are strongly chirality dependent.
We discuss how the SWNT diameter changes in response to femtosecond laser excitation and under
what conditions the diameter of a given SWNT will initially increase or decrease. An effective-mass
theory for the electron-phonon interaction gives a physical explanation for these phenomena.

PACS numbers: 78.67.Ch,78.47.J-,63.20.kd

I. INTRODUCTION

Single wall carbon nanotubes (SWNTs), with their unique physical properties, have been an exciting material
for study.'® In particular, SWNTs provide a one-dimensional (1D) model system for studying the dynamics and
interactions of electrons and phonons, which strongly depend on the SWNT geometrical structure as characterized by
their chiral indices (n,m).! With rapid advances in ultrafast pump-probe spectroscopy, it is now possible to monitor
photoexcited SWNT coherent phonon lattice vibrations in real time.5

In pump-probe spectroscopy, femtosecond laser pump pulses rapidly generate photoexcited electron-hole pairs (exci-
tons) in the excited states of the SWNT sample. The electron-hole pairs couple to phonons causing the SWNT lattice
to vibrate. The vibrations are coherently driven by electron-phonon (or more precisely exciton-phonon) interactions.!!
The coherent phonon vibrations are observed as oscillations in either the differential transmission or differential reflec-
tivity (AT /T or AR/R) in the delayed probe pulse as a function of the probe delay time. After Fourier transformating
AT/T or AR/R with respect to time, we obtain the coherent phonon spectra as a function of phonon frequency. Sev-
eral peaks found in the coherent phonon spectra correspond to specific coherent phonon modes. Typical SWNT
phonon modes observed in coherent phonon spectra are similar to those found in Raman spectra since the electron-
phonon interaction plays a role in both coherent phonon excitation and Raman spectroscopy. For example, using
coherent phonon spectroscopy we can observe both the radial breathing mode (RBM) and the G mode which have
also been seen in Raman spectroscopy.® 3

Recent experiments have given us some hints that the coherent phonon intensity for a particular SWNT strongly
depends on the excitation energy, although a systematic behavior related to the SWNT types is not yet well-
understood.”!? In a previous study, Sanders et al.!® calculated coherent phonon intensities for the RBM phonons
of two nanotube families, namely the type-I (mod(2n + m,3) = 1) and the type-II (mod(2n + m,3) = 2) semicon-
ducting SWNTs, and found that the coherent phonon intensity in type-I nanotubes was generally larger than that in
type-II nanotubes. However, the results were limited to a small number of SWNT chiralities. It is thus necessary to
verify the trends by examining more SWNT species. A detailed physical reason for the chirality-dependent coherent
phonon intensity is also missing. Moreover, it was recently noticed that some SWNTs start their coherent RBM
vibrations by initially expanding their diameters, while others start their RBM vibrations by initially shrinking their
diameters.'?14 Since this phenomenon depends on the nanotube types, it is important to examine the k-dependent
electron-phonon interaction. We take this issue as the main focus of the present paper.

We focus on the coherent phonon amplitude instead of its intensity because the amplitude can give phase information
that is not obtainable from the intensity. For instance, from the amplitude we can tell whether the diameter of a
specific SWNT in the coherent RBM will initially expand or contract at a given excitation energy. In Sec. II, we
explain the method adopted to calculate the coherent phonon amplitudes, where we have used and modified a computer
package developed in a previous study by Sanders et al.'® Here we mainly study the (11, 0) and (13, 0) semiconducting
zigzag nanotubes as examples for discussing the excitation and chirality dependence of the RBM coherent phonon
amplitudes. We note that the electron-phonon interaction plays an important role in determining the phase or sign of
the RBM coherent phonon diameter oscillations, and hence determines whether the SWNT diameter initially expands
or contracts. This discussion is covered in Sec. III, in which the RBM electron-phonon interaction in SWNTs is
derived in an effective-mass theory. Though the main examples studied in this work are semiconducting SWNTs, the
theory is also valid for metallic SWNTs'®, since it is shown in Sec. IV that the chirality dependence of the coherent
phonon amplitude between different nanotube types has the same origin. As a guide for experimentalists, in Sec. IV



we also present the RBM coherent phonon amplitudes for 31 SWNTs with diameters in the range of 0.7 — 1.1 nm.
The RBM coherent phonon amplitudes are mapped as a function of (n, m) for optical transition energies F1; or Fay
found within 1.5 — 3.0eV, where ¢ in F;; denotes the optical transitions between the i-th valence and i-th conduction
subbands.'® Mapping the coherent phonon amplitudes and initial phases as a function of tube diameter should be
a useful guide for predicting the initial direction of the SWNT coherent RBM lattice vibrations. A summary and
perspectives for future research are given in Sec. V.

II. COHERENT PHONON AMPLITUDES

A. Calculation method

To calculate the SWNT coherent phonon amplitudes, we use a computer program developed in previous work,!?
which obtains coherent phonon amplitudes by solving a driven harmonic oscillator equation derived from the Heisen-
berg equations of motion.'” In this program, we incorporate SWNT electronic energies and wave functions obtained
from an extended tight-binding (ETB) calculation,'® the phonon-dispersion relations and corresponding phonon
modes,'® the electron-phonon interaction matrix elements,?® the optical matrix elements,?' and the interaction of
carriers with an ultrafast laser pulse.

As noted in Sanders et al.'?, only ¢ = 0 phonon modes are coherently excited if the pump laser spot size is large
compared with the size of the nanotube. For coherent phonons to be excited, it is necessary for the pump pulse to
have a duration shorter than the phonon period (so that the pump pulse power spectrum has a Fourier component at
the phonon frequency). In a simple forced oscillator model neglecting oscillation decays, the coherent RBM phonon

amplitude Q with frequency w satisfies a driven oscillator equation,'?
%Q(t
90 4w = s0), (1)

subject to the initial conditions Q(0) = 0 and Q(0) = 0. Here S(t) is the driving function which depends on the
photoexcited carrier distribution function and is given by!'?

2w
S(t) = —5 > M (k) 5" (k. ), (2)
pk
where M/, (k) is the k-dependent RBM electron-phonon matrix element for the u-th cutting line (1D Brillouin zone

of a SWNT)1?2:23 and § f# is the net photogenerated electron distribution function with a pump pulse pumping at the
E;; transition energy as obtained by solving a Boltzmann equation for the photogeneration process. The photogenera-
tion rate in the Boltzmann equation depends on the excitation laser energy!'® and it also contains the electron-photon
matrix element M, for the case of light polarized along the tube axis, so that we have the proportionality

SF" o ML (3)

In a typical calculation, the necessary inputs are the excitation energy, Flaser and the chiral index (n, m). For a given
excitation energy, we solve Eq. (1) for a specific SWNT to obtain the coherent RBM phonon amplitude oscillating
at the RBM frequency. Unless otherwise mentioned, we use the same common input parameters for the pump-probe
setup as those used in Ref. 8, i.e., we excite the RBM phonons with a single 50 fs laser pulse, where the pump fluence
is taken to be 107° J/ch, and the FWHM spectral linewidth is assumed to be 0.15eV. Here we do not have to
consider excitonic effects because we will not discuss the peak positions or line shapes of the coherent phonon spectra.
For such discussions, the excitonic effects cannot be neglected since the E;; energies are shifted from those calculated
within a single particle picture'"*%. Tn the present paper, however, we can plot M|, (k) as a function of k and show
that our treatment is reasonable. Considering only the electron-phonon interaction instead of the exciton-phonon
interaction is acceptable because the exciton size in k-space is much smaller than the width of the electron-phonon
matrix elements. For example, based on a calculation from our exciton program,?? the exciton size in k space for the
(11,0) nanotube at the Eso transition is about 0.043 /T, while the width of the electron-phonon matrix element at
the same energy is about 0.4 w/T where T is the unit cell length. The exciton size in k space is only about 10% of
the width of the electron-phonon interaction. The exciton-phonon interaction is given by integrating M, c*Lph(k) in
k-space weighted by the exciton wavefunction.2® Therefore, the electron-phonon interaction is approximately constant
as a function of 1D k for this small £ region, i.e. the size of the exciton wavefunction. In fact, the value of the
exciton-phonon interaction is on the same order as the electron-phonon interaction.?>



B. Calculation results

In Fig. 1, we plot the coherent RBM phonon amplitude @, in an (11,0) nanotube at an early time, along with
the absorption coefficient as a function of Ejaser. Here @y, can be imagined by roughly defining Q(t) = Q@ coswt,
where the origin of time is now indicated by the first maximum (minimum) of Q(t) found after ¢ = 0 for a positive
(negative) coherent phonon vibration. Therefore, in this definition, @y > 0 and Qn, < 0 correspond to the tube
diameter expansion and contraction, respectively (cf. Q(t) plots in Ref. 13). From Fig. 1, we see that the pump light
is strongly absorbed at the Ej; energies. The resulting increase in the number of photoexcited carriers increases the
coherent phonon driving function S(¢) in Eq. (2) and thus enhances the coherent phonon oscillation amplitude near
the E;; transitions. Note that at Fq; the amplitude has a negative sign, indicating that the tube diameter initially
shrinks and oscillates about a smaller diameter, while at Eoo and higher energies (e.g., Fs3 or Ey4) the tube diameter
initially expands and oscillates about a larger diameter. According to a common concept based on the Franck-Condon
principle, solid lattices usually tend to expand in the presence of ultrafast carrier photoexcitation since the electronic
excited states are anti-bonding states. When an electron is excited, it will try to find a new equilibrium position at the
minimum of the excited anti-bonding state energy. This minimum energy is located at a larger coordinate than that
of the ground state, and thus the lattice expands. However, this is not always the case for RBM coherent phonons in
the SWNT system, where the tube diameter can either expand or contract depending on the excitation energy.

In order to understand this phenomenon, we consider the magnitude and phase of the oscillation amplitude Q(t)
driven by S(t) in Eq. (2). First, since df «x Mo, as in Eq. (3), the magnitude of oscillations should be proportional
to the product of the electron-phonon and electron-photon matrix elements:

|Q| X |Mclfph||Mop|- (4)

Second, according to Eq. (2) and noting that § f#(k) is usually positive for most cases of interest (i.e. no gain in the
system), the initial phase of Q(t) is only determined by the sign of M}, (k) summed over all cutting lines 4 and
all k points. The unique values of |Mei—pn| and |Mop| for a fixed selection of energy and (n,m) then determines the
excitation energy and chirality dependence of the coherent phonon amplitudes.

Let us discuss the type dependence of coherent RBM phonon amplitudes by comparing two semiconducting zigzag
nanotubes of different families and types. In Fig. 2, we plot the electron-phonon matrix elements for RBM coherent
phonons in the (11, 0) (type-I) and (13,0) (type-II) nanotubes as a function of 1D wavevector k. The k dependence of
Mg_ph(k) for the RBM phonon is shown for the first two cutting lines, for E1; and Fa. As can be seen in the figure,
both positive and negative values of Mg_ph(k) are possible. Also, according to Eq. (2), if we pump near the E;;
band edge, the electron distributions would be localized near £ = 0 in the 1D Brillouin zone of the zigzag nanotubes,
for which the k;; points for the E;; energies lie at k = 0. Therefore, the positive (negative) values of S(¢) at the
Es; (E11) transition energy are determined by the negative (positive) value of M} (k) near k = 0. For the two
nanotubes, the signs of the electron-phonon matrix elements differ at Fy; and Fs2. The reason is that for type-I and
type-II nanotubes the Fq; and Fss cutting line positions with respect to the K-point in the 2D graphene Brillouin
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FIG. 1: The coherent RBM phonon amplitude Qm for an (11,0) zigzag tube as a function of laser excitation energy Fiaser.
For clarity, Qm is plotted in units of 0.0259 A. A positive (negative) sign of the vibration amplitude denotes a vibration whose
initial phase corresponds to an expanding (shrinking) diameter. The absorption coefficient versus Eiaser is shown for comparison
with the Qm behavior.
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FIG. 2: (Color online) RBM electron-phonon matrix elements of (a) (11,0) and (b) (13, 0) zigzag nanotubes within the ETB
approximation.

FIG. 3: (Color online) Electron and hole components of the ETB Me1_pn shown by solid and dashed lines, respectively, for (a)
(11,0) and (b) (13,0) zigzag nanotubes, as a function of k. The matrix elements for E1; and Ej2 are shown in black and red,

respectively.

zone are opposite to each other.?? Depending on the cutting line positions relative to the K-point, the corresponding
M ﬁfph(k) for a given cutting line is negative in the region to the right of the K-point and positive in the region to the
left.26 This will be proved in the next section using an effective-mass theory developed by Sasaki et al.2” From this
argument, we predict that the type-I (type-11) zigzag nanotubes would start their coherent RBM phonon oscillations
by initially decreasing (increasing) the tube diameter at E7;, while at Ea9 the behavior is just the opposite, as shown

in Fig. 2.

III. ANALYSIS OF THE ELECTRON-PHONON INTERACTION

Since the electron-phonon matrix element determines the initial lattice response of the SWNTs, we further decom-
pose Me_ph into its electron and hole components for each SWNT in order to understand which component gives
a significant contribution to the ETB matrix element M _pn. This electron-phonon matrix element for the photo-
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FIG. 4: (Color online) Cutting lines for (a) (11,0) and (b) (13,0) zigzag nanotubes near the graphene K-point. Black and red
solid lines denote the E11 and Fa2 cutting lines, respectively, while the dotted lines correspond to higher cutting lines. The
angle ©(k) is measured counterclockwise from a line perpendicular to the cutting lines, where the positive direction of the line
is to the right of the K-point. Here ©(k) is shown for a k point on the F22 cutting line for both SWNTs. The difference between
the type-I and type-1I families can be understood from the position of the E11 or Fos cutting lines relative to the K—point.zz.
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FIG. 5: (Color online) RBM electron-phonon matrix elements of (a) (11,0) and (b) (13,0) nanotubes calculated within the
effective-mass theory using gog = 6.4€eV. In panels (a) and (b), the matrix elements near k = 0 are comparable with the results
in Fig. 2. Panel (c) shows the matrix elements of an (11,0) nanotube calculated within the ETB model for interactions up to
the fourth nearest-neighbors. The results including fourth nearest neighbors exactly reproduce the results in Fig. 2(a).

excited electron is basically a sum of conduction band ¢ and valence band v electron-phonon matrix elements, which
represent the electron and hole contributions, respectively,?%26:28

— C v
Mclfph - M l—ph - M l—ph

e e

= (c[Her—pnlc) = (V[Hei—pn|v), (5)

where He_pp is the SWNT electron-phonon interaction Hamiltonian.

In Fig. 3, we plot the electron and hole components of M¢j_pn in the ETB model as a function of the 1D wavevector k.
If we compare the contributions from each component, we see that in the (11,0) tube the electron (hole) component
gives a larger contribution to Me_pn at E11 (Ea2). On the other hand, in the (13,0) tube, the hole (electron)
component gives a larger contribution to Me_pn at Eq11 (E22). We can analyze these results within an effective-mass
theory.?” Using the effective-mass theory, we can obtain a simple analytical expression explaining the sign of the
SWNT electron-phonon matrix elements, which can then be compared with the ETB results.

In a nearest-neighbor effective-mass approximation, the RBM He_pp, for an (n,m) SWNT with a chiral angle 0
and diameter d; can be written as?”

257" Gon _MeiBO
HC]*Ph = d _go_ffefiBG 2 3 (6)
t ) Yon

where gon (gofr) is the on-site (off-site) coupling constant. Here s, = \/h/2Mwgrpnm is the phonon amplitude for the
RBM, where wrpwm is the phonon frequency and M is the total mass of the carbon atoms within the unit cell. To
obtain Me_pn in Eq. (5), we adopt the following two wavefunctions,

ok /o—i0(k)/2 cikr [ o—i0(k)/2
Ve = /25 <e+i(—)(k)/2) Uy = /55 (_e+i(—)(k)/2) ; (7)
for conduction and valence states, respectively, which are suitable near the graphene K-point.?” In Eq. (7), S is the
surface area of graphene and ©(k) is an angle at the K-point measured from a line perpendicular to the cutting lines
(see Fig. 4).
By inserting the wavefunctions in Eq. (7) into Eq. (5), we obtain

el Har-pnle) = 7 (~gort cos(O(k) +36) +20n) (82)
(vl Harpulv) = 7 (~gorr cos(O(k) +36) — 2gon). (8b)

and thus
Mapn = 7 (=20 cos(O(k) +36)) (9)

From Egs. (8a) and (8b), it is clear that the electron and hole contributions to Me_pn are simply distinguished by the
off-site and on-site interactions. These equations are thus qualitatively consistent with the results in Fig. 3. According
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FIG. 6: (Color online) The lattice response of SWNTs with diameters in the range 0.7 — 1.1 nm is mapped onto the unrolled
graphene lattice specifiying the tube chiralities (n,m). In this map Q.. is expressed in terms of \/fi/2Mwrem. Red and blue
colored hexagons denote the SWNT's whose vibrations start by increasing or decreasing their diameter, respectively. The laser
excitation energies are selected within the range 1.5 — 3.0eV. For each (n,m) tube, the corresponding E;; (in eV) found within
this energy region is listed on each hexagon with the label E;;. The calculated results for the (7,4) and (6,6) nanotubes are
not shown in this figure because their EY; > 3.0V and the (6, 6) tube gives a negligibly small Qy,.

to the density-functional calculation by Porezag et al.,2’

on-site coupling constant gon = 17.0eV, which are calculated for the first nearest-neighbor carbon-carbon distance.
However, gon has no effect on the electron-phonon matrix element since it vanishes in Eq. (9). The more accurate
treatment for the effective-mass theory should consider the asymmetry between the valence bands and the conduction
bands.?0. Within the present model, we do not consider such an asymmetry since the chirality dependence of the
electron-phonon matrix element can readily be described by the cos(©(k)) term, which will give a positive or negative
sign in front of gog.

In Fig. 5, we then plot the matrix elements of Eq. (9) for the (11,0) and (13,0) nanotubes, where the on-site term
(gon) disappears and only the off-site term (gom) contributes to Mej_pn. It can be seen that the effective-mass theory
(see Figs. 5(a) and (b)) nicely reproduces the ETB calculation results near k;; = 0 (see Figs. 2(a) and (b)). However,
the first nearest-neighbor effective-mass model cannot reproduce the ETB matrix element results at k far from k;; = 0.
We can see this since at E1; and Eay Me_pn are almost symmetric around Me—pn = 0 in Figs. 5(a) and (b) but
the M _pn are not symmetric in Figs. 2(a) and (b). In Fig. 5(c), we show Mc_pn for the (11,0) tube within the
ETB model considering interactions up to the fourth nearest-neighbors. Based on this figure, we consider that the
exact Mq—ph analytical expression at k far from the k;; should take into account the longer-range electron-phonon
interactions. Nevertheless, the first nearest-neighbor effective-mass theory has already given physical insight into the
k-dependent M1_pn, and considering the approximation up to the fourth nearest-neigbors is sufficient to converge
the Me1—_pn values.

For the zigzag nanotubes, Eq. (9) also explains the dependence of Mej_ph on the cutting line (or k) position. Let us
take the examples in Fig. 4, in which we show the cutting lines for the (11,0) and (13,0) nanotubes. The Fas cutting
line for the (11,0) ((13,0)) tube is to the right (left) of the K-point, giving a positive (negative) cos(0(k)) and thus
a negative (positive) Me_pn for the Eg transition. According to Eq. (2), the negative (positive) Mei—pn corresponds
to the initial increase (decrease) of the tube diameter. In such a way, the chirality dependence of the coherent phonon
amplitude is simply determined by the electron-phonon interaction. However, we should note that this simple rule
does not work well for Fs3 and Fy44, as can be seen in Fig. 1. For instance, the coherent phonon amplitude at Fs3
has the same sign as that at Fas although their cutting line positions are opposite to each other with respect to the
K-point. The reason for the breakdown of this simple rule is that the cutting lines for F33 and E44 are far from the
K-point so that the wavefunctions of Eq. (7) are no longer good approximations. In this case, the ETB wavefunctions
are necessary for obtaining the coherent phonon amplitudes.

we adopt the off-site coupling constant gog = 6.4eV and the
27



IV. GUIDE FOR EXPERIMENTALISTS

To consider the more general family behavior of the RBM coherent phonon amplitudes, we recalculate Qy, using
the ETB program for 31 different SWNT chiralities with diameters of 0.7 — 1.1 nm and for photoexcitations at F;; in
the range 1.5 — 3.0eV. The results are shown in Fig. 6. Note that in addition to the semiconducting SWNTs, we also
give some results for metallic SWNTs. It is known that the density of states for F;; in metallic SWNTs are split into
the lower EY and higher E branches, except for the armchair SWNTs.'6 Here we consider @, in metallic SWNTs
only at Ef;. The cutting line for EY is located to the right of the K-point. We can see in Fig. 6 that all the metallic
SWNTs start vibrations by increasing their diameter at E},. The reason is the same as in type-II nanotubes, where
the cutting lines for the Ej; transitions are located to the right of the K-point, giving a negative Mej—_pn (hence a
positive Qy,) as explained within the effective-mass theory. On the other hand, at EI., the nanotubes should start
their coherent vibrations by decreasing their diameters. In the case of armchair nanotubes, for which EY = EE | we
expect that no vibration should occur because the two contributions from EY; and E} should cancel each other.

For semiconducting nanotubes, we see that most of the type-I (type-II) nanotubes start vibrating at Ey; by decreas-
ing (increasing) their diameters and at higher energies by increasing (decreasing) their diameters. In a few cases, e.g.,
(7,6), (9,5), and (10,5) nanotubes, the deviation from this rule might come from the 36 term in Eq. (9), especially
for the near-armchair nanotubes where 6 approaches 7/6. As mentioned previously, we consider that in the case of
armchair nanotubes, for example the (6, 6) nanotube, which is metallic, the coherent phonon amplitude becomes small
because of the trigonal warping effect.'® The exclusion of both excitonic effects and environmental effects may also
be a reason for this deviation because the F;; transition energies are also shifted to some extent.?4?% Nevertheless,
our results should stimulate further work by experimentalists to check for consistency with this prediction.

V. CONCLUSION

We found that the excitation and chirality dependence of the coherent phonon amplitudes in SWNTSs originate
mostly from the electron-phonon matrix elements. By examining typical tubes with chirality (n,m) of type-I and
type-II SWNTs, respectively, we found that the nanotubes can start coherent RBM vibrations by either expanding
or shrinking their diameters depending on the sign of the electron-phonon interaction in the SWNT system, where
the Mc_pn values can either be positive or negative near the K-point. The magnitudes of the coherent phonon
amplitudes are estimated to be proportional to |Mei—pn||[Mop|. In the future, the effective mass theory can be
extended to accommodate longer-range interactions so that the behavior of the coherent phonon amplitudes at the
higher transitions, e.g. E33 and Ey4, can be explained. In future studies incorporating excitonic effects, the exciton-
photon and exciton-phonon matrix elements can be used to replace the electron-photon and electron-phonon matrix
elements.
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