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Using numerical simulations, we examine a simple model of two or more coupled one-dimensional
channels of driven particles with repulsive interactions in the presence of quenched disorder. We find
that this model exhibits a remarkably rich variety of dynamical behavior as a function of the strength
of the quenched disorder, coupling between channels, and external drive. For weaker disorder,
the channels depin in a single step. For two channels we find dynamically induced decoupling
transitions that result in coexisting pinned and moving phases as well as moving decoupled phases
where particles in both channels move at different average velocities and slide past one another.
Decoupling can also be induced by changing the relative strength of the disorder in neighboring
channels. At higher drives, we observe a dynamical recoupling or locking transition into a state with
no relative motion between the channels. This recoupling produces unusual velocity-force signatures,
including negative differential conductivity. The depinning threshold shows distinct changes near the
decoupling and coupling transitions and exhibits a peak effect phenomenon of the type that has been
associated with transitions from elastic to plastic flow in other systems. We map several dynamic
phase diagrams showing the coupling-decoupling transitions and the regions in which hysteresis
occurs. We also examine the coexistence regime for channels with unequal amounts of quenched
disorder. For multiple channels, multiple coupling and decoupling transitions can occur; however,
many of the general features found for the two channel system are still present. Our results should be
relevant to depinning in layered geometries in systems such as vortices in layered or nanostructured
superconductors and Wigner or colloidal particles confined in nano-channels; they are also relevant
to the general understating of plastic flow.

PACS numbers: 83.50.-v,81.40.Lm,62.20.fq

I. INTRODUCTION

A collection of interacting particles on an ordered or
disordered substrate undergoes a depinning transition
under an applied drive from a pinned state with immobile
particles to an elastic or plastic sliding state1–10. In an
elastic sliding state, each particle keeps the same neigh-
bors over time1–3, while in a plastic sliding state, the
particles do not keep the same neighbors4,5,10–14. Many
systems show a transition from elastic depinning for weak
substrates to plastic depinning for strong substrates that
is associated with changes in the velocity force curves and
the depinning threshold as well as the onset of strong hys-
teretic effects5,11,15,16. For example, the peak effect phe-
nomenon for the transport of superconducting vortices,
where a peak in the critical depinning force or critical
current appears as a function of temperature or mag-
netic field, has been associated with a transition from
elastic to plastic depinning and is known to be related
to the disordering of the vortex lattice5,11. Although the
peak effect is primarily associated with superconductors,
it can in principle appear in other systems that undergo
a transition from elastic to plastic depinning. Several re-
cent studies of colloidal systems and frictional systems
have revealed peak effect-like behavior9,15,16.
Plastic depinning transitions exhibit a wide variety

of characteristics depending on whether the substrate is
random4 or periodic6,9,17,17–20. The resulting plastic flow
ranges from motion in winding channels to avalanche
behaviors with strong fluctuations, coexistence of large

pinned and flowing regions, or transitions from two-
dimensional (2D) mixing phases to one-dimensional (1D)
decoupled channel phases. For higher drives, many sys-
tems undergo a transition from plastic flow to a more
ordered flow state, such as a moving smectic state where
the particles organize into 1D channels that can slide past
one another14,15,21 or partially ordered moving crystal
states6,7,13,21.

Due to the complexity of plastic depinning phenom-
ena in 2D and three-dimensional (3D) systems, numer-
ous simpler systems have been proposed that still ex-
hibit plastic depinning, such as particles flowing in a se-
ries of simple coupled layers. Many systems with de-
pinning transitions can be modeled effectively as layered
systems, including sliding charge density waves1,22 and
vortices in strongly layered superconductors23,24. Ad-
vances in fabrication techniques have made it possible to
create nanostructured systems in which particles such as
vortices move through effectively 1D coupled channels25.
Marchetti et al. considered a mean field anisotropic slip
model of coupled channels of particles oriented parallel
to a driving force26. Along each channel, the particle in-
teractions are elastic, but slip can occur between neigh-
boring channels. In this model, when the depinning is
elastic the channels show no slip or hysteresis, but for
plastic depinning there is both slip and hysteresis. Fur-
ther theoretical work on systems with only two layers
demonstrated that a transition from non-hysteretic elas-
tic depinning to hysteretic plastic depinning occurs as a
function of disorder27. For 3D layered sliding charge den-
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sity wave systems, a transition from elastic depinning to
plastic hysteretic depinning has also been predicted22,
along with a second coupling transition at higher drives
when the charge density waves begin to flow coherently.
Numerical work on 3D layered superconducting vortex
systems has shown a similar disorder-induced transition
from elastic to plastic flow marked by a large increase in
the depinning threshold when the layers decouple, which
is typical of a peak effect behavior23,24,28. We note that
although the transition to plastic depinning is marked
by an increase in the depinning threshold, in real super-
conductors the depinning threshold decreases as the su-
perconducting critical temperature or field is approached
due to the changing penetration depth. This feature is
generally not included in most simulations.

In this work we consider a simple depinning model con-
sisting of two or more coupled 1D channels of repulsively
interacting particles, all of which are subjected to a driv-
ing force and quenched disorder. This system could be
experimentally realized using colloidal particles in cou-
pled 1D channels with a disordered substrate and driven
by an external electric field29–32, coupled 1D wires con-
taining Wigner crystal phases33–36, or vortices on corru-
gated substrates driven parallel to the corrugation. Our
simulations of this model include much more detail than
can be captured in mean field studies26,27,37. In addition
to confirming many of the predictions from the theoret-
ical studies, we find a rich variety of new features. We
induce decoupling transitions by changing the relative
strength of the disorder from channel to channel, some-
thing that has not been considered in previous work on
the depinning of layered systems. We also study com-
mensuration effects by varying the particle density in
one channel relative to the density in other channels.
We drive all of the layers of particles; previous studies
of this type of model considered transformer geometries
with the drive applied to only one layer38,39. Despite the
apparent simplicity of our model, we find that even the
two layer system has a wide variety of dynamical phases
and exhibits all the salient features found for elastic and
plastic depinning phenomena, including a peak effect at
the transition between the two types of depinning. We
also show that the transport signatures of the dynami-
cal coupling and recoupling transitions can be enhanced
in systems where the channels do not all have the same
amount of disorder, suggesting that experimental realiza-
tions of this geometry may be an excellent way to probe
these dynamical states.

The paper is organized as follows. In Section II we
describe our model and simulation technique. Section
III discusses decoupling transitions in a two channel sys-
tem as the spacing between channels is varied, as well
as a peak effect appearing at the transition from elas-
tic to plastic depinning. In Section IV, we consider two
channel samples in which the strength of the disorder dif-
fers in the two channels, where we observe drag-induced
pinning as well as hysteretic velocity-force signatures.
In Section V, we find commensuration effects when the
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FIG. 1: Schematic of the system. The particles (filled circles)
are constrained to move along 1D channels that are separated
by a distance d. Each channel contains Nj particles as well as
nj randomly placed pinning sites (open circles) that each have
a maximum pinning force of F p

j . A uniform drive FD is ap-
plied to all particles in the positive x direction. The particles
interact via a repulsive Yukawa potential with other particles
in the same channels and in neighboring channels. (a) A two
channel system with N1 = N2 and n1 = n2. (b) Two channels
with an equal number of particles in each channel, N1 = N2,
but with more pinning in the upper channel, n1 > n2. (c)
Two channels with equal pinning in each channel, n1 = n2,
but more particles in the upper channel, N1 > N2. (d) Mul-
tiple channels each containing the same number of particles,
Nj = N1, and pins, nj = n1.

number of particles in each channel is varied for a two
channel system, and we also study the effect of changing
the particle-particle interaction prefactor. We introduce
an eight channel system in Section VI and show that as
disorder strength and channel coupling is varied, the be-
havior resembles that of the two channel system. We also
study representative examples of eight channel systems
in which not all channels contain the same number of
particles. We conclude with a summary in Section VII.

II. SIMULATION

We model an array of M coupled 1D channels sep-
arated by a distance d where channel j contains Nj

particles38. The total number of particles in the system

is N =
∑M

j=1 Nj. The particle-particle interactions are
repulsive, and each particle interacts both with particles
in the same channel as well as with particles in nearby
channels. The number of randomly placed pinning sites
in channel j is given by nj . All of the particles in the
system are subjected to a uniform external driving force
FD. We apply periodic boundary conditions in the x di-
rection, along the length of the channels, and the total
length of our system is L = 72a0, where a0 is our unit
of length that is typically a micron in colloidal systems.
The boundaries are open along the y direction transverse
to the channels. Fig. 1 shows a schematic of our system
in several different configurations.
The particles interact via a Yukawa or screened
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Coulomb potential that is appropriate for charged col-
loids or for charge transport in the presence of screening.
We show later that the same general dynamic phases also
occur for repulsively interacting vortices in type-II super-
conductors. For the colloidal system, the dynamics of a
particle i at T = 0 is determined by integrating the fol-
lowing overdamped equation of motion:

η
dRi

dt
= F

pp
i + F

s
i + F

D . (1)

Here Ri is the location of particle i and η is the damping
coefficient that is set equal to one. The particle-particle

interaction force is F
pp
i = −

∑N

j 6=i ∇V (Rij)R̂ij where

V (Rij) = (q2E0/Rij) exp(−κRij), Rij = |Ri − Rj|,

R̂ij = (Ri − Rj)/Rij , E0 = Z∗2/4πǫǫ0, ǫ is the sol-
vent dielectric constant, Z∗ is the effective charge of a
colloidal particle, and q2 is the dimensionless squared
colloid charge that is taken to be q2 = 2.0 unless oth-
erwise noted. We take the screening length 1/κ =
4a0 and choose the distance between channels in the
range d ≤ 3a0 (equivalent to d/κ ≤ 2) to ensure
that particles in neighboring channels interact with each
other. In the absence of pinning, the particles in an
isolated channel would adopt a lattice spacing of aj =
Nj/L. The substrate pinning force is given by F

s
i =

∑nj

k=1 F
p
j (R

p
ik/Rp)Θ(Rp−Rp

ik)R̂
p
ik. Here particle i sits in

channel j, nj is the number of pinning sites in channel j,
Θ is the Heaviside step function, Rp

k is the location of pin-

ning site k, Rp
ik = |Ri −R

p
k|, and R̂

p
ik = (Ri −R

p
k)/R

p
ik.

The pinning site radius is Rp and the maximum strength
of the pinning sites in channel j is F p

j . Within each
channel the pins are placed in randomly chosen non-
overlapping positions that are different for each channel.
This pinning model has been used in previous simulations
to represent quenched disorder for colloidal systems, clas-
sical electron systems, and vortices in superconductors.
The external drive F

D = FD
x̂ is applied in the pos-

itive x-direction. The drive is increased in increments
of δFD = 0.001, and after each increment FD is held
fixed for 105 simulation time steps to ensure that any
transient effects have subsided. We measure the average
particle velocity in each channel for every force incre-

ment, Vj = 〈N−1
j

∑Nj

i=1 vi〉, where vi = (dRi/dt) · x̂.
We also measure the net velocity of all the channels,

V =
∑M

i=1 Vi.

III. DECOUPLING TRANSITIONS FOR TWO

LAYER SYSTEMS

We first consider a two layer system in which we vary
the interlayer distance d. We can effectively decrease
the coupling between the layers by increasing d since the
interaction between Yukawa particles becomes weaker for
increasing interparticle distance. In Fig. 2 we plot the
velocity force curves for channels 1 and 2 in a system with
equal numbers of particles in each channel (N1 = N2), in-
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FIG. 2: The velocity of each channel, V1 (dark line) and V2

(light red line), in a two channel (M = 2) system versus
applied drive FD with fixed quenched disorder for varied dis-
tance d between the channels. Each channel has the same
number of particles, N1 = N2, and pinning sites n1 = n2.
Here n1/N1 = 0.25, F p

1 = F p
2 = 6.0, Rp = 0.23a0, and the

in-channel lattice constant a1 = a2 = L/N1 = 1.5a0. (a) For
d/a1 = 1.133, there is an elastic depinning transition and both
channels depin simultaneously. (b) At d/a1 = 1.47, channel 1
depins first while channel 2 remains pinned. Once channel 2
depins, the channels become dynamically locked. The locking
transition is associated with negative differential conductivity
(NDC) in V1, as illustrated in the inset where dV1/dF

D < 0.0
at FD = 0.36. (c) For d/a1 = 1.57 near FD = 0.39 there
is a region where both channels are depinned but V1 6= V2,
indicating that the channels are sliding past one another. Dy-
namical locking occurs for FD > 0.415. (d) At d/a1 = 1.64,
the recoupling transition is shifted to much higher FD. In-
set: The sum of the velocities V = V1 + V2 for d/a1 = 1.47
(dark line) and d/a1 = 1.64 (light green line) shows the oc-
currence of two step depinning; there is no NDC in V for the
d/a1 = 1.47 sample.

channel lattice constant a1 = a2 = 1.5a0, equal numbers
of pins in each channel (n1 = n2), n1/N1 = 0.25, F p

1 =
F p
2 = 6.0, and Rp = 0.23 for varied d measured in terms

of d/a1. For small d or strong coupling, the two channels
depin simultaneously without any slipping between the
channels, as shown in Fig. 2(a) for d/a1 = 1.333. All the
particles keep the same neighbors, indicating that the
depinning is elastic. The value of FD at which depinning
first occurs is termed the critical depinning threshold, Fc.

As d increases there is a transition to a state where
the channels depin individually, as shown in Fig. 2(b)
for d/a1 = 1.47. Here channel 1 depins at FD = 0.32
while channel 2 remains pinned until FD = 0.36. Since
both channels have equal numbers of pins, equal num-
bers of particles, and experience the same driving force,
the difference in depinning threshold arises due to the
random placement of the pinning sites in the two chan-
nels, which differs from channel to channel. As soon as
channel 2 depins, the system transitions directly into a
state where the moving channels are dynamically locked
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with each other and move at the same velocity, V1 = V2,
without any slipping. As the inset in Fig. 2(b) shows,
the dynamic locking transition coincides with a drop in
V1 indicative of negative differential conductivity (NDC),
where a system of particles shows a decrease in the ve-
locity under increasing drive, dV1/dF

D < 0.0. The NDC
occurs only in channel 1 at FD = 0.36 when V2 jumps
from zero to a finite value, which also corresponds to a
peak in dV2/dF

D.

Fig. 2(c) shows the velocity force curves for d/a1 =
1.57, where the depinning threshold for channel 1 is
again lower than that for channel 2. In this case, af-
ter channel 2 depins the system does not immediately
enter the moving locked phase. Instead, we find a re-
gion 0.39 < FD < 0.415 with V1 6= V2, V1 > 0, and
V2 > 0. Here both channels are moving but at different
average velocities, indicating that the particles in channel
1 are sliding past the particles in channel 2. The chan-
nels become dynamically locked for FD > 0.415, where
V1 = V2. As d/a1 is further increased, the dynamical
locking transition shifts to larger values of FD. For ex-
ample, in Fig. 2(d) for d/a1 = 1.64, the channels are only
dynamically coupled for FD > 0.742.

In the inset of Fig. 2(d) we plot the overall velocity
V = V1+V2 versus FD for the samples with d/a1 = 1.47
and d/a1 = 1.64 from Fig. 2(b) and Fig. 2(d), respec-
tively. These are the curves that would be obtained in an
experimental measurement of net transport rather than
individual channel transport. For d/a1 = 1.47, where
NDC of V1 appeared in Fig. 2(b), the inset of Fig. 2(d)
shows that there is no NDC in the overall velocity V .
This is because the decrease in V1 at FD = 0.36 is ex-
actly compensated by the increase in V2, so there is no
net drop in V at the second depinning transition. For
both d/a1 = 1.47 and d/a1 = 1.64, V shows a character-
istic step feature that indicates the presence of a two-step
depinning transition. On the lower step in V , only chan-
nel 1 is depinned, while on the upper step, both channels
are flowing. For this particular set of parameters, we
find only a weak signature in V of the relocking transi-
tion that occurs at higher drives; however, for other pa-
rameters, we will show below that the onset of dynamical
locking produces much more pronounced effects in V . We
note that in the absence of any pinning, the particles in
the two channels adopt a zig-zag arrangement that keeps
the particles in the lower channel as far away as possible
from the particles in the upper channel. The angle of the
zig-zag depends on the value of d/a1

39. In the decoupled
phase, the pinning disorders the lattice configuration, the
zig-zag structure is absent, and the particles in the two
rows slide past one another. In the locked phase the sys-
tem regains the zig-zag ordering found in the absence of
pinning since it lowers the repulsive interactions between
the layers.

By conducting a series of simulations we map the dy-
namic phase diagram for FD vs d/a1 for the sample from
Fig. 2 with F p

1 = F p
2 = 6.0 in Fig. 3(a) and for a sample

with F p
1 = F p

2 = 3.0 in Fig. 3(b). In the pinned (P)
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FIG. 3: Dynamic phase diagrams FD vs d/a1 for the M = 2
system from Fig. 2 with N1 = N2, n1 = n2, n1/N1 = 0.25,
Rp = 0.23a0, and a1 = a2 = 1.5a0. P: pinned phase with V1 =
V2 = 0; C: coexistence phase where one channel is moving
but the other is pinned; S: sliding phase where both channels
are moving but V1 6= V2; L: dynamically locked phase where
V1 = V2 > 0. (a) The sample from Fig. 2 with F p

1 = F p
2 = 6.0.

For d/a1 < 1.43 the system depins directly into the locked
phase, while for d/a1 > 1.43, dynamically induced locking
occurs at a value of FD that increases with increasing d/a1.
Inset: A blowup of the main panel illustrating that the P
phase reaches its maximum value of FD at the transition from
elastic to plastic depinning. (b) A sample with F p

1 = F p
2 = 3.0

has the same features but the onsets of the S and C phases
fall at higher values of d/a1 > 1.6.

phase, both channels are pinned, V1 = V2 = 0. In the
coexistence (C) phase, one channel is pinned while the
other is moving. The sliding (S) phase has both channels
moving but not locked, V1 > 0 and V2 > 0 but V1 6= V2,
while in the locked (L) phase both channels move to-
gether without slipping, V1 = V2 > 0. In Fig. 3(a), for
d/a1 > 1.43 the layers decouple at depinning and the
width of region S grows with increasing d/a1. The width
of the coexistence phase saturates as d/a1 increases due
to the decoupling of the particles, which causes the de-
pinning thresholds of each channel that mark the borders
of the C phase to be determined only by the quenched
disorder configuration and the interactions among parti-
cles within the channel, and to be insensitive to the po-
sitions of the particles in the neighboring channel. The
recoupling that marks the transition between the S and
L phases rapidly shifts to higher FD with increasing d/a1
for d/a1 > 1.613. In Fig. 3(b) we show that in a sample
with weaker pinning of F p

1 = F p
2 = 3.0, the transition

directly from P to L persists out to the higher value of
d/a1 = 1.6 but that the same general features found for
higher F p in Fig. 3(a) still occur and are shifted to higher
d/a1 and lower FD.

The dynamical phase diagrams in Fig. 3 have many
similarities to the dynamical phase diagrams obtained
for 2D and 3D driven vortex systems14,15,24,26,37. The
2D vortex system exhibits pinned, plastic, and dy-
namically ordered phases, with the vortex lattice or-
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dering into either a moving smectic or moving crystal
configuration13–15. Our system has the same pinned
phase, while the coexistence phase that contains a mix-
ture of moving and pinned channels corresponds to the
plastic flow regime for the vortex system. The sliding
phase we observe resembles the moving smectic phase
found for vortices, while our locked phase is equivalent
to the 2D dynamically reordered phase or, for 3D vor-
tex systems, to the transition from decoupled layers to
coupled 3D vortex lines23,28,40. In the vortex system, as
the pinning strength increases or the vortex-vortex in-
teractions are weakened, the reordering transition shifts
to higher drives14. The dynamical reordering occurs be-
cause the pinning is effectively weakened when the vor-
tices are moving rapidly. In our system, in the locked
phase the effectiveness of the quenched disorder is dra-
matically reduced. As the inter-channel particle-particle
interaction strength decreases for increasing d/a1, the
quenched disorder becomes more effective, the recoupling
transition shifts to higher FD, and the additional C and
S phases appear between the P and L phases.

In the inset of Fig. 3(a) we plot a blowup of the re-
gion near d/a1 = 1.4 for the F p

1 = F p
2 = 6.0 sample

where the transition between elastic depinning directly
into the locked phase and plastic depinning into the co-
existence phase occurs. The critical depinning threshold
Fc reaches a peak at d/a1 = 1.43 at the transition, while
for d/a1 > 1.43, Fc decreases and then saturates with
increasing d/a1. The Fc peak has all the hallmark fea-
tures of the peak effect phenomenon found for vortices
and other systems where a peak in the critical depinning
threshold occurs near the transition from elastic to plas-
tic depinning5,11,15,16. In many of these studies the Fc

peak occurs inside the plastic depinning regime just be-
yond the transition point, while Fc for the elastic depin-
ning is always lower than for the plastic depinning5. In
our two layer system, the Fc peak falls right at the transi-
tion out of the elastic depinning regime, and Fc decreases
with increasing d/a1 within the plastic depinning regime.
We note that when d/a1 becomes sufficiently small, the
channels are increasingly decoupled and the transition
directly from elastic depinning to a locked phase is lost
since one of the channels depins before the other channel.
For different realizations of disorder, each channel has an
equal chance of being the channel that depins first; how-
ever, since the pinning strength is equal in each channel,
the difference in the critical depinning forces is small and
therefore the coexistence phase is small. There is also an-
other sliding phase that diverges with FD as d/a1 goes
to zero. For the parameters we consider, the velocity
drop at the onset of the locked phase always occurs in
the channel that depins first. When the first channel de-
pins, it moves at a higher velocity since it is not dragging
any of the particles in the second channel. The particles
in the second channel move at a lower velocity once they
depin due to the stronger or more effective pinning in
that channel; however, when locking occurs both chan-
nels must move at the same velocity so the particles in
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FIG. 4: The summed velocity V = V1 + V2 for the M = 2
system in Fig. 3(a) with N1 = N2, n1 = n2, n1/N1 = 0.25,
Rp = 0.23a0, a1 = 1.5a0, and F p

1 = F p
2 = 6.0 at FD = 0.2,

0.25, 0.3, 0.35, 0.4, 0.45, and 0.5, from bottom to top. Open
circles: dynamically locked phase; filled diamonds: pinned
phase; open triangles: coexistence phase; filled squares: slid-
ing phase. The value of V in the decoupled regime is always
lower than in the coupled regime, and the dip in V at the
decoupling transition gradually fades away as FD increases.

the faster moving channel (the first to depin) slow down
while the particles in the slower channel move faster.

Determining whether the effectiveness of the pinning
in the plastic or decoupled phases is higher than in the
elastic phase can be ambiguous when different quanti-
ties are measured5,11. If we consider only the overall
velocity V at a fixed value of FD as we vary d/a1, we
find that V drops in the decoupled regime, suggesting
that the pinning is more effective in the decoupled state.
This contrasts with the behavior of the depinning thresh-
old Fc, which drops in the decoupled regime, suggesting
that the pinning is less effective in the decoupled state.
In Fig. 4, we plot V versus d/a1 for the sample from
Fig. 3(a) with F p

1 = F p
2 = 6.0 for fixed FD values rang-

ing from FD = 0.4 to FD = 1.0. For FD ≤ 0.8, V
drops or becomes zero at the decoupling transition, and
for 0.6 ≤ FD ≤ 0.8 the value of V for d/a1 above the de-
coupling transition is smaller than the value of V for d/a1
below the decoupling transition. For FD > 0.8, the size
of the dip in V at the decoupling transition gradually di-
minishes. This behavior is very similar to that observed
across the peak effect for vortices in type-II supercon-
ductors, and indicates that for the moving particles, the
pinning is more effective in the decoupled phase than in
the coupled phase. The behavior of V differs from that
of Fc because V is associated with moving particles while
Fc is determined by the static configuration of the pinned
particles.

In Fig. 5(a) we plot Fc versus d/a1 for a range of Fp

values in the system from Fig. 3(a) to illustrate that the
decoupling transition is associated with a peak in Fc.
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FIG. 5: (a) The critical depinning threshold Fc vs d/a1 for
the M = 2 system in Fig. 3(a) with N1 = N2, n1 = n2,
n1/N1 = 0.25, Rp = 0.23a0, and a1 = 1.5a0 for varied F p

1 =
F p
2 = 15.0, 12.0, 9.0, 6.0, and 3.0, from top to bottom. In

each case the peak in Fc falls at the transition from elastic to
plastic depinning. (b) F ep

p , the value of F p
1 and F p

2 at which
a transition from elastic to plastic depinning occurs, vs d/a1

in the same system.
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FIG. 6: V1 (dark line) and V2 (light red line) vs FD for the
M = 2 system in Fig. 5(a) with N1 = N2, n1 = n2, n1/N1 =
0.25, Rp = 0.23a0, a1 = 1.5a0, and F p

1 = F p
2 = 15.0 for

(a) d/a1 = 1.147, (b) d/a1 = 1.2, (c) d/a1 = 1.27, and (d)
d/a1 = 1.47. Inset of (d): The dV1/dF

D and dV2/dF
D vs

FD curves both peak at the dynamical coupling transition at
FD = 2.0; for FD > 2.0 above the transition, the fluctuations
in both curves show increased correlation.

On average, Fc increases with increasing F p and with in-
creasing d/a1. The decoupling transition, and with it the
peak in Fc, shifts to lower values of d/a1 with increasing
F p and becomes more prominent. In all cases the peak
in Fc falls exactly at the transition from elastic to plastic
flow. For a given value of d/a1, it is possible to induce a
decoupling transition by increasing F p; the value of F p

1

and F p
2 at the decoupling transition is termed F ep

p . In
Fig. 5(b) we plot F ep

p versus d/a1, where we find that
as d/a1 decreases and the coupling between the channels
increases, F ep

p increases faster than linearly.

The velocity force signatures illustrated in Fig. 2 are
generally robust against changes in pinning strength. For
samples with stronger pinning, F p

1 = F p
2 > 6.0, many

of the features become more prominent. For sufficiently
strong F p, the system can depin directly into the slid-
ing state with no intermediate coexistence state, as illus-
trated in Fig. 6(a) for F p

1 = F p
2 = 15.0 and d/a1 = 1.147.

Here both channels depin simultaneously at FD = 0.915,
and for 0.915 < FD < 1.025 the channels move at dif-
ferent velocities with V1 6= V2. We also find a larger
number of jumps in the velocity force curves for higher
F p, as shown in Fig. 6(a) near FD = 1.08. The jumps
are indicative of the soliton like nature of the particle
motion in channels with strong pinning below the recou-
pling transition. Due to the random spatial placement
of the pinning sites, the individual pins vary in their ef-
fectiveness at trapping particles. As the driving force
is increased below depinning, particles escape from the
least effective pins only to pile up behind particles that
are trapped in the more effective pins. Since the channel
is 1D, flowing particles cannot pass trapped particles.
As the driving force further increases, particles in the
pileup regions approach each other more closely and exert
a greater force on the trapped particle that produced the
pileup. At depinning, the trapped particle escapes from
the pin and is immediately replaced by another particle
that becomes pinned in its place. The trapped parti-
cle travels across the system and rejoins the pileup; the
extra force it exerts on the particles ahead of it causes
the trapped particle at the front of the pileup to depin
and repeat the process. This picture is oversimplified; in
actuality, each channel contains multiple trapping sites
that create pileups and particles jump from one pileup
to another above depinning. Each of the trapping sites is
associated with some local depinning threshold F loc

c . As
FD increases, one trapping site after another reaches the
condition F loc

c < FD and ceases to trap particles. The
resulting enhancement of the mobility of all the particles
in the channel manifests itself as a jump in channel ve-
locity Vj . As F p increases, there is a greater spread in
F loc
c , producing a larger number of steps in V1 and V2

above depinning. We note that such velocity force jumps
are often called switching events in sliding charge den-
sity wave systems1. For vortex systems, near the peak
effect regime a series of jumps and dips in the current-
voltage curves and dV/dI curves can appear. These have
been termed a fingerprint phenomenon since the same
features repeat upon cycling the IV curves, indicating
that the features result from the detailed configuration
of the pinning sites41,42. The curves in Fig. 6(a) are ob-
tained for a specific pinning realization. For a different
pinning realization, the general features of the velocity
force curves remain the same but the location and height
of the velocity jumps will change. In Fig. 6(b), a sample
with the same disorder configuration and strength but
with d/a1 = 1.2 has separate depinning thresholds for
channels 1 and 2 along with a sharp transition into the
locked phase at FD = 1.2. In the d/a1 = 1.27 sample of
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FIG. 7: (a) The instantaneous velocity of each channel V1(t)
and V2(t) versus time in simulation steps for channels 1 (dark
black line) and 2 (light red line) for the M = 2 system in
Fig. 2(c) with N1 = N2, n1 = n2, n1/N1 = 0.25, Rp = 0.23a0,
a1 = 1.5a0, d/a1 = 1.57, and F p

1 = F p
2 = 6.0 at FD = 0.395.

The system is in the S phase and both channels are moving at
different velocities. (b) S(ω) for the time series in panel (a)
shows that channel 2 has greater spectral power at the lowest
frequencies compared to channel 1. ω is reported in inverse
simulation time steps. (c) V1(t) and V2(t) for the same system
with FD = 0.47 where the channels are locked. (d) S(ω) for
the time series in panel (c) shows nearly equal spectral weight
in each channel at the fundamental frequencies.

Fig. 6(c), we observe a strong negative differential con-
ductivity signature in V1 at the transition between the
sliding and locked phases. There is also a change in the
rate at which V1 and V2 increase with FD in the locked
phase, with a more rapid increase for 1.25 < FD < 1.365
and a slower increase for FD > 1.365. For d/a1 = 1.47 in
Fig. 6(d), the channels do not lock until FD = 2.03, and
V1 shows additional structure within the sliding phase.
For increasing F p beyond what we show here, we find
similar features in the velocity force curves; however, the
number of jumps and anomalies in the curves further in-
creases as the microscopic configurations of the pinning
sites begin to dominate the behavior completely.
We next compare the velocity fluctuations in the indi-

vidual channels in the unlocked and locked state. Fig. 7
shows the instantaneous velocities V1(t) and V2(t) for
channels 1 and 2 as a function of time measured in sim-
ulation steps for the system in Fig. 2(c) at d/a1 = 1.57
with F p

1 = F p
2 = 6.0. At FD = 1.395 in Fig. 7(a), the

system is in the S phase and both channels are moving
with different average velocities V1 > V2 > 0. Both chan-
nels show a periodic response but channel 1 has a higher
frequency and higher average velocity, while V2(t) drops
nearly to zero during each cycle. In Fig. 7(b) we plot the
corresponding power spectra S(ω) of the velocity signals,
with ω measured in inverse simulation time steps. Chan-
nel 2 has greater spectral weight at the low frequency
of ω = 1.1 × 10−4 corresponding to its fundamental fre-
quency, while the peak at this frequency for channel 1 is
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FIG. 8: The dynamic phase diagram FD vs d/a1 for the M =
2 system in Fig. 2 with N1 = N2, n1 = n2, n1/N1 = 0.25,
Rp = 0.23a0, a1 = 1.5a0, F

p
1 = 0 and F p

2 = 15.0. P: pinned
phase; C: coexistence phase where only one channel is moving;
S: sliding phase where V1 6= V2 > 0; L: locked phase. As d/a1

increases, the depinning threshold for channel 1 goes to zero
and the system immediately enters region C for small nonzero
FD. Inset: A blowup of the main panel near the transition
from elastic to plastic depinning.

orders of magnitude smaller in height. Channel 1 shows a
response at this frequency due to its coupling with chan-
nel 2. Near ω = 1.62× 10−4, the fundamental frequency
of the faster moving channel 1, the peak in S(ω) is higher
for channel 1 than for channel 2. This result shows that
the two channels each have a periodic velocity signal cor-
responding to a different washboard frequency; however,
since the channels are interacting, both velocity signals
contain both washboard frequencies. In Fig. 7(c) we plot
V1(t) and V2(t) for the same system at FD = 0.47 in
the locked regime where the channels have the same av-
erage velocity. Here both channels exhibit the same fun-
damental frequency even though the shapes of V1(t) and
V2(t) do not completely overlap. The corresponding S(ω)
in Fig. 7(d) shows that both channels have nearly the
same spectral weight at the fundamental frequency of
ω = 1.48 × 10−4 and its harmonics, unlike the unequal
peaks which appeared in the unlocked phase in Fig. 7(b).

IV. VARIED RELATIVE DISORDER

STRENGTH AND HYSTERESIS

We next consider the effects of varying the pinning
strength from channel to channel in order to create one
channel with high pinning strength and one channel with
low pinning strength. Figure 8(a) shows the dynamic
phase diagram of FD versus d/a1 for a two channel sys-
tem with F p

1 = 15.0 and F p
2 = 0, while the inset il-

lustrates a blowup of the area near the onset of plastic
depinning. The strongly pinned particles in channel 1
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FIG. 9: V1 (dark line) and V2 (light red line) vs FD under a
cycled drive for the M = 2 system in Fig. 8 with N1 = N2,
n1 = n2, n1/N1 = 0.25, Rp = 0.23a0, a1 = 1.5a0, F

p
1 = 15.0

and F p
2 = 0.0. (a) At d/a1 = 1.27 we find hysteresis in

V2 near the transition to the pinned phase but there is no
hysteresis in V1. The arrows indicate the V2 curves obtained
for sweeping FD up and down. (b) For the weaker coupling
of d/a1 = 1.33, there is no hysteresis and dynamic coupling
occurs at FD = 1.43.

are able to effectively pin the particles in channel 2 via
particle-particle interactions alone, allowing the pinned
regime to persist for finite values of FD in spite of the fact
that the pins in channel 2 have zero strength. For low
d/a1 when the interactions between particles in neigh-
boring channels are strong, the depinning of both chan-
nels occurs simultaneously in a single step at Fc from
the pinned state to the moving locked state. As d/a1
increases, Fc increases and reaches a maximum value
at d/a1 = 1.16 corresponding to the decoupling tran-
sition. For d/a1 above the decoupling transition, the de-
pinning force Fc for channel 2 decreases monotonically
with increasing d/a1, unlike the saturation that occurred
in Fig. 3 for samples with F p

1 = F p
2 . As d/a1 increases,

the coupling between the channels decreases monoton-
ically, and since the particles in channel 2 are pinned
only due to their interactions with the pinned particles
in channel 1, Fc for channel 2 decreases with increasing
d/a1. The transition line between the C and S phases,
which corresponds to the depinning force Fc for channel
1, grows more rapidly above the decoupling transition
with increasing d/a1 in Fig. 8 than it did for samples
with F p

1 = F p
2 in Fig. 3. This is because the particles

in channel 2 produce relatively little effective drag for
the particles in channel 1 when there is no pinning in
channel 2, and this drag rapidly becomes nearly zero as
d/a1 increases and the coupling between the channels de-
creases. The transition from the S to L phases also grows
more rapidly with increasing d/a1 in Fig. 8 than for the
samples with F p

1 = F p
2 . Our results show that coupling-

decoupling transitions can persist even when the pinning
in one channel is completely absent.

For the parameters examined so far in this work we
observe only weak hysteresis in the velocity-force curves
occurring near the sharp jumps in V1 or V2. Hystere-
sis is often absent in 1D systems, as shown with the no-
passing rule43; however, in studies using phase-field mod-
eling, hysteresis has been observed in 1D systems6. In
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FIG. 10: Dynamic phase diagram FD vs F p
1 /F

p
2 for an M = 2

system with N1 = N2, n1 = n2, n1/N1 = 0.182, Rp = 0.35a0,
a1 = 1.5a0, d/a1 = 1.7, and fixed F p

2 = 0.75. P: pinned
phase; C: coexistence phase; S: sliding phase; L: locked phase.
Near F p

1 /F
p
2 = 1.0, where the pinning strength is the same in

both channels, the system depins elastically. The depinning
becomes plastic once F p

1 /F
p
2 moves sufficiently far away from

1 in either direction.

our system we never find hysteresis when the depinning
is elastic, but hysteresis can occur for plastic depinning,
as illustrated in Fig. 9(a), for a system with the same
parameters as in Fig. 8 at d/a1 = 1.27. Here hysteresis
occurs at the depinning transition only for the pin-free
channel 2 but not for channel 1. The summed velocity
V = V1+V2 also exhibits hysteresis at depinning, but by
examining the separate velocity signals we can determine
that the hysteresis originates from only one of the chan-
nels. Figure 9(a) also shows that there is no hysteresis
across the S-L transition at FD = 0.526 in spite of the
discontinuous jump in both V1 and V2 that occurs at this
transition. In Fig. 9(b) we plot V1 and V2 for cycled FD

in a more weakly coupled sample with d/a1 = 1.33, fur-
ther from the value of d/a1 = 1.16 where the transition
from elastic to plastic depinning occurs. In this case we
find dynamic locking of the channels above FD = 1.43;
however, there is no hysteresis across any of the transi-
tions.

We can also examine the effects of varying the relative
pinning strength in the two channels by altering F p

1 /F
p
2

for a system with N1 = N2, n1 = n2, n1/N1 = 0.182,
Rp = 0.35a0, and d/a1 = 1.7 as shown in Fig. 10. Here
F p
2 = 0.75 and F p

1 is varied. For this particular set of
parameters at F p

1 /F
p
2 = 1.0 the depinning is elastic. For

0 < F p
1 /F

p
2 < 0.6, the system depins plastically into the

coexistence state where channel 1 is moving and chan-
nel 2 is pinned, and for higher FD the system enters the
locking regime without passing through the sliding phase.
At F p

1 /F
p
2 = 0 the depinning threshold of channel 1 is

nonzero due to the strong interaction of the particles in
channel 1 with the pinned particles in channel 2. As F p

1
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sample with F p
2 = F p

1 , N1 = N2, n1 = n2, n1/N1 = 0.25,
Rp = 0.23a0, a1 = 1.5a0, and d/a1 = 1.7. P: pinned phase;
C: coexistence phase; S: sliding phase; L: locked phase. The
depinning is elastic for Fp < 0.8. Inset: dFc/dF

p
1 for the

same system shows a pronounced dip near the transition from
elastic to plastic depinning.

increases from zero the width of the pinned region grows
as the depinning threshold of channel 1 rises; however, for
0 < F p

1 /F
p
2 < 0.6 the depinning threshold of channel 2 re-

mains constant since F p
2 is fixed. For 0.6 < F p

1 /F
p
2 < 1.0

the depinning is elastic and both channels depin simul-
taneously; further, within this regime the pinned region
has the most rapid growth for increasing F p

1 /F
p
2 . For

F p
1 /F

p
2 > 1.0 the depinning becomes plastic again and

each channel depins separately; however, channel 2 now
depins first since F p

1 > F p
2 . As F

p
1 /F

p
2 increases above 1,

the width of the pinned phase passes through a small dip
but remains nearly constant since the depinning thresh-
old of channel 2 is determined by F p

2 which is held fixed.
Near F p

1 /F
p
2 = 1.2 we find the onset of the sliding phase,

which grows rapidly in width with increasing F p
1 /F

p
2 .

The sliding phase is followed at higher FD by the dy-
namically locked phase. If we increase the fixed value of
F p
2 and sweep F p

1 /F
p
2 , the extent of the elastic depinning

window diminishes as F p
2 becomes larger until for suffi-

ciently large F p
2 there is no longer an elastic depinning

regime. Instead, the sliding phase appears for all values
of F p

1 /F
p
2 . In Fig. 10, in order to sweep F p

1 /F
p
2 we held

F p
2 fixed and varied F p

1 . It would also be possible to vary
F p
2 for fixed F p

1 ; however, this would produce a signifi-
cantly different phase diagram, with the C and S phases
both diverging as F p

1 /F
p
2 goes to zero. We have also con-

sidered samples with F p
1 = F p

2 but with different pinning
densities n1 6= n2, and we find the same general features
as a function of n1/n2 as we have shown here for varying
F p
1 /F

p
2 .

In Fig. 11 we plot the dynamic phase diagram for FD

versus F p
1 in a sample with equal pinning strength in both

channels, F p
2 = F p

1 , and with d/a1 = 1.7. For F p
1 < 0.7,

the depinning is elastic and the depinning force Fc drops
to zero as F p

1 drops to zero. For F p
1 > 0.8, the depinning

is plastic and all of the dynamical transition lines shift
to higher FD for increasing F p

1 , with the S to L transi-
tion increasing the most rapidly. In the inset of Fig. 11
we plot dFc/dF

p
1 versus F p

1 where we find a roughly lin-
ear increase in the regime 0 < F p

1 < 0.55. This implies
that Fc ∝ (F p

1 )
2, which is consistent with elastic depin-

ning in the collective regime14. Just above the transition
to plastic depinning, dFc/dF

p
1 passes through a strong

drop and then recovers to a nearly constant value near 1,
consistent with Fc ∝ F p as expected for the single par-
ticle limit. This result indicates that the transition from
elastic to plastic depinning is associated with clearly ob-
servable features in the transport curves. If we fix F p

1 and
instead increase the density of pinning sites while hold-
ing n1 = n2, we find dynamical phases with tendencies
similar to those shown in Fig. 11.
For the range of parameters considered here, we find

hysteretic responses in the system with equal amounts
of pinning in each layer only when one layer has very
strong pinning and the other layer has very weak or zero
strength pinning, but not when the pinning is of equal
strength in the two layers. In the case of no pinning in
one layer and strong pinning in the other, the hystere-
sis occurs due to the fact that the pin-free layer is able
to form an equally spaced structure in the moving state.
As the driving force is decreased, this ordered structure
persists down to drives below that at which it originally
formed since the particles in the pin free layer experi-
ence no direct fluctuations from pinning sites and only
slowly varying fluctuations due to the pinned particles in
the other layer. It may be possible that additional hys-
teresis could arise for pinning parameters not considered
here. For example, in our system the pinning sites are
not allowed to overlap and the pinning sites all have the
same strength, but it would also be possible to introduce
pinning sites of varied strength.

V. DENSITY DEPENDENCE AND DYNAMIC

COMMENSURATION EFFECTS

We next consider the effect of holding the distance d
between channels fixed while varying the density of the
particles which changes the lattice constants a1 and a2.
In Fig. 12 we plot the dynamic phase diagram as a func-
tion of FD and density 1/a1 for varied a1 = L/N1 in a
system with an equal number of particles in each channel,
N1 = N2, F

p
1 = F p

2 = 3.0, and with fixed d = 2.75. The
depinning threshold Fc generally decreases with increas-
ing density due to the increase in the particle-particle in-
teractions relative to the pinning strength as the particles
get closer together within each channel. For intermediate
densities of 0.305 < 1/a1 < 0.47, the depinning is elastic,
while for 0.07 < 1/a1 < 0.305, the depinning is plastic
and the sample enters either the coexistence phase C, the
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FIG. 12: Dynamic phase diagram FD vs density 1/a1 for an
M = 2 sample with N1 = N2, n1 = n2, a1 = a2, n1/N1 =
0.25, Rp = 0.35a0, d = 2.75a0, and F p

1 = F p
2 = 3.0. P: pinned

phase; C: coexistence phase; S: sliding phase; L: locked phase.
For 0.07 < 1/a1 < 0.305, the system transitions from a pinned
phase into a pulsed coexistence phase PC.

sliding phase S, or a pulsed coexistence phase PC. Each
channel is alternately pinned or moving in the PC phase,
so that this phase resembles the C phase except that the
stationary and moving channels keep switching places.
At lower densities 1/a1 < 0.305, the system no longer
depins elastically due to the increase of the effectiveness
of the pinning, which induces a decoupling of the chan-
nels. For 1/a1 < 0.07, we have N1 > n1. Since there are
more pinning sites than particles, the depinning occurs
in the single particle limit and it is no longer meaning-
ful to describe the pinning as plastic or elastic since the
particles in the channels are essentially noninteracting at
depinning. Additionally, since F p

1 and F p
2 are held fixed,

at these low densities all the particles in each channel
depin simultaneously and move at the same velocity so
the C and S phases cannot occur.

Figure 12 shows that for 1/a1 > 0.47, the depinning is
plastic again and the S-L transition shifts to higher FD

with increasing 1/a1. This might seem surprising since
at higher densities the interactions between particles in
the same channel become stronger; however, it is known
from studies of layered vortex systems that increasing the
field can reduce the coupling between layers for fields well
below Hc2

40. As the density increases, the interactions
between particles in the same channel become stronger
more rapidly than the interactions between particles in
neighboring channels. This enhances the S phase since
it becomes more difficult for the channels to lock. In or-
der to minimize energy, the moving particles adopt a zig
zag configuration with the particles in one channel offset
relative to the particles in the other channel. This ap-
proximates a triangular lattice configuration. As 1/a1 in-
creases, the lattice spacing along the channels shrinks but

the lattice spacing perpendicular to the channels is fixed,
producing an effectively increasingly anisotropic triangu-
lar lattice configuration. Eventually the spacing becomes
so anisotropic that there is very little energy difference
between an alternating configuration and one in which
the particles are adjacent to each other, so the channels
decouple.

The phase diagram in Fig. 12 exhibits a number of
features found in phase diagrams for strongly layered su-
perconductors containing disordered pinning sites. For
example, the superconducting system undergoes a low
field decoupling transition when the pancake vortices in
each layer are far apart and only weakly interacting, while
at higher fields there is a field induced decoupling40. In
experiments, samples show both a low field disordering
transition and a high field decoupling transition44. It
was argued that the low field transition is pinning in-
duced and occurs when the pinning energy overwhelms
the weak vortex-vortex interactions at low vortex density,
while the higher field disordering transition indicates the
onset of the peak effect44. In our system, as we increase
F p the lower and upper endpoints of the elastic depin-
ning regime approach each other until the elastic depin-
ning disappears completely. Conversely as we decrease
F p the elastic depinning region becomes more extended.
Although there is a small increase in Fc at the lower tran-
sition from plastic to elastic depinning, we find no feature
in Fc at the upper transition from elastic to plastic depin-
ning; however, if we measure the average particle velocity
for fixed drive, the velocity drops across the higher den-
sity transition, similar to the effect illustrated in Fig. 4.

We next examine the effects of varied particle ratio for
a sample with F p

1 = F p
2 = 6.0, n1 = n2, d/a2 = 1.33, and

n2/N2 = 0.167. We fix N2 and vary N1. In Fig. 13(a)
we plot 2V1/N and 2V2/N versus FD for a sample with
N1/N2 = 1/2. Here the velocities are normalized byN/2,
where N = N1 + N2. In this case, channel 2 contains a
larger number of particles and depins at lower FD than
channel 1. The slope of 2V2/N is also greater than that
of 2V1/N . We replot the same curves in Fig. 13(b) with
the normalizations V ∗

1 = V1/N1 and V ∗
2 = V2/N2. Under

this normalization the curves have almost the same form
as the velocity force curves in samples with an equal num-
ber of particles in each channel, and it is now possible to
distinguish the transition into a locked phase, which also
appears as a signature in the dV ∗

1 /dF
D and dV ∗

2 /dF
D

curves shown in Fig. 13(b). At other fillings such as
N1/N2 = 0.375 shown in Fig. 13(c), there is no dynam-
ical locking within this range of FD. For lower fillings,
dynamical locking appears again as shown in Fig. 13(d)
for N1/N2 = 0.292. We find dynamical locking only for
N1/N2 = 1.0, N1/N2 = 1/2, and N1/N2 < 0.333.

Fig. 14(a) shows the dynamic phase diagram for FD

versus N1/N2 for the system in Fig. 13. The solid line
at N1/N2 = 1.0 indicates that at this ratio the depin-
ning is elastic and the system passes directly from the
pinned to the moving locked phase. For N1/N2 < 1.0,
channel 2 depins first since it contains a larger number
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FIG. 13: Channel velocities vs FD for an M = 2 system with
F p
1 = F p

2 = 6.0, n1 = n2, n2/N2 = 0.167, Rp = 0.23a0, and
d/a2 = 1.33 for fixed N2 and varied N1. (a) 2V1/N (lower
dark line) and 2V2/N (upper light red line) for N1/N2 =
1/2. The velocities are normalized by N/2, where the total
particle number N = N1 + N2. Channel 2 contains a larger
number of particles than channel 1 and therefore V2 increases
more rapidly than V1. (b) The same curves plotted as V ∗

1 =
V1/N1 (lower dark line) and V ∗

2 = V2/N2 (upper light red
line). Here a clear dynamical locking transition appears. Also
shown are the corresponding dV ∗

1 /dF
D (heavy green line) and

dV ∗

2 /dFD (light blue line) curves. (c) V ∗

1 (lower dark line)
and V ∗

2 (upper light red line) for N1/N2 = 0.375. Here no
dynamical locking occurs within this range of FD. (d) V ∗

1

(lower dark line) and V ∗

2 (upper light red line) for N1/N2 =
0.292 where dynamical locking occurs.

of particles, and the depinning threshold of channel 1
grows with decreasing N1/N2 until reaching a maximum
value of Fc = F p

1 = 6.0 at the lowest values of N1/N2.
The dotted line at N1/N2 = 1/2 in Fig. 14(a) indicates
a transition from the S to the L phase at FD = 4.5 as
illustrated in Fig. 13(b). For lower fillings N1/N2 ≤ 0.33
the system enters the locked state above FD = 7.0. For
N1/N2 > 1.0, channel 1 depins first since it now contains
a larger number of particles than channel 2, and the de-
pinning threshold for channel 2 remains nearly constant
as N1/N2 increases. We note that there could be a dy-
namical locking at external drives much higher than the
range of FD we consider here.

In Fig. 14(b) we plot a blowup of the phase diagram
from Fig. 14(a) near the depinning transition. Clear local
minima in Fc appear at N1/N2 = 1.0 where the depin-
ning is elastic and at N1/N2 = 0.5 where the depinning
is not elastic but where the dynamical locking occurs at
a much lower drive than for nearby fillings. The behav-
ior at these two fillings can be viewed as a commensu-
ration effect, where the coupling between the layers is
enhanced at integer and certain fractional ratios of the
filling factors. Commensuration effects have been stud-
ied in a variety of solid-on-solid systems where there is
matching between the number of particles and the num-
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FIG. 14: (a) Dynamic phase diagram FD vs N1/N2 for the
M = 2 system in Fig. 13 with n1 = n2, n2/N2 = 0.167, Rp =
0.23a0, d/a2 = 1.33 and F p

1 = F p
2 = 6.0. P: pinned phase; C:

coexistence phase; S: sliding phase; L: locked phase. The line
at N1/N2 = 1.0 indicates that for this filling only the system
depins elastically directly into the L phase. The dashed line at
N1/N2 = 0.5 indicates a transition from the S phase into the
L phase at this filling. (b) A blowup of panel (a) in the region
near the depinning line shows dips in the depinning force Fc

at N1/N2 = 0.5 and 1.0. (c) Dynamic phase diagram FD

vs q2, where q2 is the dimensionless squared colloid charge,
for a sample with n1 = n2, n2/N2 = 0.167, N1/N2 = 1,
Rp = 0.23a0, F p

1 = F p
2 = 6.0, and d/a1 = 1.33. PC: the

pulsed coexistence phase described in Fig. 12. For strong
interactions (high q2) the depinning is elastic. For small q2

the depinning threshold is high. Inset: dFc/dq
2 vs q2 for the

same sample shows that at q2 = 1.15 at the transition from
plastic to elastic depinning there is a peak corresponding to
a change in the slope of the depinning curve.

ber of potential minima45. An example of such a sys-
tem is vortices in type-II superconductors with periodic
pinning sites where peaks in the critical depinning force
occur at integer46 and rational47 matching fields. In our
system commensuration occurs not between the number
of particles and the number of pinning sites but between
the number of particles in the different channels. The
depinning force is reduced at the commensurate fillings
due to the enhanced coupling between the layers. The
strongest dip in Fc occurs when the depinning is elastic
at N1/N2 = 1.0, while for fillings just above and be-
low this value Fc passes through local maxima. At the
incommensurate fillings, there are geometrically neces-
sary topological defects that enter the zig-zag structure
formed by the particles in the two channels. These de-
fects effectively soften the structure and reduce the cou-
pling between the layers. This is similar to what occurs
in the peak effect where the depinning force is higher for
plastic depinning than for elastic depinning. We find no
apparent anomaly atN1/N2 = 2.0 in Fig. 14(b); however,
we expect that for other parameter values, more commen-
suration effects would be observable and that additional
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dynamical locking regimes would also appear at other
fillings. Commensuration effects are also observed in two
layer and three layer systems without pinning when only
one layer is driven39. In these systems the commensura-
tion effects occur at fillings where the channels are more
strongly coupled, so that the drive at which relative slip
begins to occur between the channels is much higher than
for incommensurate fillings. Our results indicate that a
distinct commensuration effect can occur in layered sys-
tems that differs from commensuration effects observed
for particles moving over fixed substrates. At the in-
commensurate fillings in the moving phases, the particles
attempt to form an equilibrium zig-zag structure of the
type that appears at commensurate fillings. Away from
commensurability, however, the zig-zag structure is de-
fected or unable to form and the lattice structure does
not lock the channels together, causing the loss of the
locked phase at incommensurate fillings.
It is also possible to change the overall particle-particle

interaction strength by varying q2. This can be achieved
for colloidal systems by altering the effective charge on
the particles or by changing the screening length. For
vortex systems the vortex-vortex interactions can also
change significantly due to thermal effects near Tc. In
Fig. 14(c) we plot the dynamic phase diagram for FD

versus q2 for the system in Fig. 14(a) with N1/N2 = 1,
F p
1 = F p

2 = 6.0 and d/a2 = 1.33. For q2 > 1.23 or
strong particle-particle repulsion the system depins elas-
tically and as q2 increases Fc gradually decreases. Un-
like the case for constant q2 but increasing density 1/a1
shown in Fig. 12, we find in Fig. 14(c) that there is no
elastic-plastic transition at high q2 since the zig-zag par-
ticle configuration is not affected by increasing q2. When
q2 is lowered, Fc increases and a transition from elastic to
plastic depinning occurs at q2 = 1.15. For q2 < 1.15, the
system depins into the pulsed coexistence (PC) phase de-
scribed earlier in Fig 12. The transition into the L phase
also shifts to higher FD as q2 decreases. The overall fea-
tures of the phase diagram in Fig. 14(c) resemble those
of the dynamic phase diagrams constructed for 2D vor-
tex systems when the vortex-vortex interaction strength
is varied15,48. In the vortex case, Fc increases as the
vortex-vortex interactions become weaker while the dy-
namical ordering transition shifts to higher values of the
driving force. In the inset of Fig. 14(c) we plot dFc/dq

2

versus q2, showing more clearly the change in the slope
of Fc at the transition from plastic to elastic depinning
at FD = 1.15.

VI. MORE THAN TWO CHANNELS

We next consider the case of M > 2 coupled driven
channels and in general find many of the same effects for
the two channel system. Figure 15 shows the velocity-
force curves V1 through V8 versus FD for an M = 8
channel system with Nj = N1, nj = n1, d/a1 = 1.33, and
n1/N1 = 0.17. In Fig. 15(a) at F p

j = F p
1 = 3.0, the de-
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FIG. 15: Vj vs FD for an M = 8 system with Nj = N1,
nj = n1, n1/N1 = 0.17, Rp = 0.23a0, a1 = 1.5a0, and
d/a1 = 1.33. (a) At F p

j = F p
1 = 3.0, the depinning is

elastic and all channels depin simultaneously into the locked
state. (b) At F p

j = F p
1 = 5.0, plastic depinning occurs and

groups of channels lock together with each group depinning
at a different value of FD. At high drives all the channels
lock. P: pinned phase; C: coexistence phase, defined as be-
ginning when the first channel depins and ending when the
final channel depins; L: locked phase. (c) At F p

j = F p
1 = 7.0,

more channels depin individually. A window of the sliding
(S) phase appears where all channels are moving but groups
of channels are separately locked. (d) At F p

j = F p
1 = 11.0, the

same four dynamical phases appear but are shifted to higher
values of FD.

pinning is elastic and the system immediately enters the
locked phase upon depinning. All the channels depin si-
multaneously and the velocity curves overlap completely.
In Fig. 15(b) at F p

j = F p
1 = 5.0 the depinning is plastic.

Channels 1, 2, and 3 depin first and remain locked with
each other, followed by the depinning of a group of four
additional locked channels and then by the depinning of
the final channel. At FD = 0.182 all the channels be-
come dynamically locked together. For F p

j = F p
1 = 7.0

in Fig. 15(c), the system exhibits a hierarchy of dynam-
ical locking transitions beginning at FD = 0.186 when
the first three channels to depin become locked together.
This is followed by a second dynamic locking of four dif-
ferent channels at FD = 0.25. Channel 8 dynamically
locks with these four channels near FD = 0.335, and a
final locking of all the channels with each other occurs
at FD = 0.37. As F p increases the number of distinct
dynamical locking transitions increases, as illustrated in
Fig. 15(d) for F p

j = F p
1 = 11.0, while the final tran-

sition at which all of the channels lock together shifts
to higher values of FD. Figure 15(d) also shows that
it is possible for individual channels to exhibit negative
differential conductivity at the onset of channel locking;
however, there is generally no NDC in the summed ve-

locity V =
∑M

j Vj . In order to show that the C and
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FIG. 16: The Voronoi construction for the system in
Fig. 15(c). Dots: particle positions. Small black dots in-
dicate sixfold coordinated particles, large black dots are sev-
enfold coordinated particles, and large grey dots are fivefold
coordinated particles. (a) In the S phase at Fd = 0.3, dislo-
cations appear as paired 7-5 fold coordinated particles that
are aligned with the driving direction. (b) In the L phase at
Fd = 0.5, all the particles keep their same neighbors and form
a triangular lattice.

S phases correspond to states with topological defects,
in Fig. 16 we plot the Voronoi construction of the par-
ticle positions. Figure 16(a) shows the S phase from
Fig. 15(c) at Fd = 0.3, where dislocations appear in the
form of 5− 7 pairs that are aligned with the direction of
drive. The positions and number of dislocations fluctu-
ate with time in this regime. For stronger pinning where
more channels are uncoupled, there are more dislocation
pairs. Figure 16(b) shows the locked phase at Fd = 0.5
where the channels move together and the particles form
a triangular lattice without any dislocations or slipping
between channels.

Figure 17 shows the dynamic phase diagram FD ver-
sus F p

1 for the M = 8 system in Fig. 15 with F p
j = F p

1 .

In Fig. 18 we plot the dynamic phase diagram FD versus
d/a1 for the same M = 8 system with F p

j = F p
1 = 3.0

and fixed a1 = 1.5a0. At low d/a1 the system depins elas-
tically, and a transition to plastic depinning occurs near
d/a1 = 1.4. For d/a1 > 1.4, the transition between the S
and L phases shifts to higher FD with increasing d/a1,
while the general shape of the phase diagram resembles
that of the M = 2 system shown in Fig. 3. The C and S
phases again contain multiple depinning and dynamical
locking transitions, respectively. In the inset of Fig. 18 we
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FIG. 17: Dynamic phase diagram FD vs F p
1 for the M = 8

system in Fig. 15 with Nj = N1, nj = n1, F
p
j = F p

1 , n1/N1 =
0.17, Rp = 0.23a0, a1 = 1.5a0, and d/a1 = 1.33. P: pinned
phase; C: coexistence phase; S: sliding phase; L: locked phase.
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FIG. 18: Dynamic phase diagram FD vs d/a1 for the M = 8
system in Fig. 17 with F p

j = F p
1 = 3.0, Nj = N1, nj = n1,

n1/N1 = 0.17, Rp = 0.23a0, and fixed a1 = 1.5a0. P: pinned
phase; C: coexistence phase; S: sliding phase; L: locked phase.
Inset: Blow up of the region near the transition from elastic
to plastic depinning shows that the depinning force Fc peaks
at the transition.

plot a blowup of the FD versus d/a1 phase diagram near
the depinning transition to show that Fc passes through
a peak at the transition from elastic to plastic depinning,
similar to the peak found for the M = 2 system in the
inset of Fig. 3(a).
For systems in which the number of particles per chan-

nel is allowed to vary, Nj 6= N1, the dynamic behavior
becomes more complex; however, it is possible to identify
several general features. In Fig. 19 we plot V ∗

j versus FD

for an M = 8 channel with F p
j = F p

1 = 2.0 and d = 1.7a0
where each channel contains either Nhigh particles with
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FIG. 19: V ∗

j vs FD for an M = 8 system with Nj 6= N1,

nj = n1, F
p
j = F p

1 = 2.0, nj/N
high = 0.167, Rp = 0.23a0, and

d = 1.7a0. Each channel has one of two possible densities:
d/aj = 1.33 for Nj = Nhigh or d/aj = 1.2267 for Nj = N low.
All of the velocities are normalized by V ∗

j = Vj/N
high. (a) A

sample with alternating density N1 = N3 = N5 = N7 = Nhigh

and N2 = N4 = N6 = N8 = N low. All eight channels depin
at different values of FD and undergo a series of locking and
unlocking transitions until reaching a state at higher drives
where all the low density channels are locked together and all
the high density channels are locked together. (b) A sample
with the same parameters but with segregated density N1 =
N2 = N3 = N4 = N low and N5 = N6 = N7 = N8 = Nhigh

shows a two step depinning process.

d/aj = 1.33 or N low particles with d/aj = 1.2267. The
velocities are normalized by V ∗

j = Vj/N
high, and the

number of pins in each channel is nj/N
high = 1.67. In

samples where all channels have equal numbers of parti-
cles, Nj = N1 = Nhigh or Nj = N1 = N low, the depin-
ning is elastic for this set of parameters. The depinning
becomes plastic when the number of particles differs from
channel to channel. Figure 19(a) illustrates an alternat-
ing density system with N1 = N3 = N5 = N7 = Nhigh

and N2 = N4 = N6 = N8 = N low. Here every chan-
nel has a unique depinning threshold. There are mul-
tiple locking and unlocking transitions as channels be-
come locked with a nearest neighbor channel at lower
drives only to unlock at higher drives. As FD increases,
the effectiveness of the pinning is reduced and the den-
sity within each channel becomes more homogeneous.
At the same time, the overall effectiveness of the pin-
ning in channels with Nhigh is reduced relative to that
of the pinning in channels with N low due to the stronger
particle-particle interactions in the higher density chan-
nels. The velocity V high in channels with Nhigh is there-
fore higher than the velocity V low in channels with N low,
V high > V low, which favors decoupling of adjacent chan-
nels in the alternating density system. For high enough
drives FD > 0.14, the system enters a doubly locked
phase where all channels containing the same number of
particles are locked together, V1 = V3 = V5 = V7 and
V2 = V4 = V6 = V8, but V1 > V2 by a small amount so
that the two sets of locked channels slip with respect to
each other.

There are many other possible ways to arrange the
M = 8 channels such that half of the channels contain
Nhigh particles and half of the channels containN low par-
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FIG. 20: The depinning thresholds F first
c (lower curve) and

F last
c (upper curve) vs R/M for the M = 8 sample from

Fig. 19(a) with nj = n1, F
p
j = F p

1 = 2.0, nj/N
high = 0.167,

Rp = 0.23a0, d = 1.7a0, d/aj = 1.133 for Nj = N low , and
d/aj = 1.216 for Nj = Nhigh. There are R evenly spaced
channels with Nj = Nhigh and the remaining M−R channels
have Nj = N low. When the system is commensurate with
Nj = N1 at R/M = 0 or R/M = 1, the depinning is elastic.
For other values of R/M the depinning is plastic, and the
maximum depinning thresholds appear when geometrically
necessary dislocations form in the system.

ticles. For example, Fig. 19(b) shows V ∗
j versus FD in a

density segregated system with N1 = N2 = N3 = N4 =
N low and N5 = N6 = N7 = N8 = Nhigh. Here each
group of channels with equal density acts as a unit and
depins elastically into a locked moving state; however,
the two groups of channels do not lock with each other.
The depinning occurs in two steps with a lower depin-
ning threshold for the set of channels containing N low

particles. In Fig. 19(b) we find that V ∗
1 > V ∗

5 just above
the second depinning transition but V ∗

1 < V ∗
5 at high

FD, with a crossing of the velocity curves occurring near
FD = 0.105.

In samples with an equal number of particles per chan-
nel, particles in neighboring channels can organize into a
two-dimensionally ordered state in order to minimize the
particle-particle interaction energy. This ordered con-
figuration can be perturbed by changing the number of
particles in one or more channels, which causes defects
to appear. To study this, we consider an M = 8 system
in which all channels initially contain Nj = N low par-
ticles with d/aj = 1.133. We select R channels evenly
spaced across the system with 0 ≤ R ≤ M and in-
crease the number of particles in the selected channels
to Nj = Nhigh with d/aj = 1.216. As R varies, the
system passes from a state in which all channels have
Nj = N low at R/M = 0 to one in which all channels
have Nj = Nhigh at R/M = 1. Fig. 20 shows F first

c ,
the value of FD at which the first channel depins, and
F last
c , the value of FD at which the final channel depins,
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FIG. 21: The time trace of the velocities of the individual
channels, Vj(t), for the M = 8 sample from Fig. 19(a) with
N1 = N3 = N5 = N7 = Nhigh and N2 = N4 = N6 = N8 =
N low. (a) At FD = 0.08 the system is in the coexistence
phase. Channels 3 and 4 are pinned, channel 5 flows inter-
mittently, channels 1 and 2 are locked at a low average veloc-
ity, and channels 6, 7, and 8 are locked at a higher average
velocity. (b) At FD = 0.09 there is considerably more inter-
mittency. Here channels 1, 2, 7 and 8 are locked continuously,
while channels 3, 4, 5, and 6 show intermittent locking with
the other channels. (c) At FD = 0.125 there is less intermit-
tency and a larger number of the channels are locked with
other channels. (d) At FD = 0.16, channels 1, 3, 5, and 7
are locked and due to their higher density move with a higher
velocity than the remaining channels 2, 4, 6, and 8, which are
locked together.

for different values of R/M . The geometrically necessary
dislocations that form for intermediate values of R/M are
aligned with the direction of the drive. At R/M = 0 and
1, dislocations are absent and the depinning transition is
elastic, but for other values of R/M when dislocations
are present, the depinning is plastic and the depinning
thresholds are shifted to higher values of FD. This can
also be seen in Fig. 19: the alternating filling sample in
Fig. 19(a) contains numerous topological defects and has
much higher depinning thresholds than the segregated
filling sample in Fig. 19(b), where there are only dislo-
cations along the interface between the two fillings. The
results in Fig. 19 and Fig. 20 are similar to previous work
on mixtures of particles in the presence of a weak disor-
dered substrate, which showed that the depinning force
is minimized when only one particle species is present
and there are no topological defects, but that for inter-
mediate mixtures of particle species, topological defects
appear and increase the depinning force49.

The locking-unlocking transition that occurs for the
alternating density sample in Fig. 19(a) can be better
characterized by analyzing the time series Vj(t) of the
velocities of the individual channels at different values of
FD. In Fig. 21(a), where we plot Vj(t) at F

D = 0.08, the

system is in the coexistence regime and channels 3 and
4 are pinned. Channel 5 switches between a temporarily
pinned state and a sliding state, with occasional jumps
to higher velocity flow. Channels 1 and 2 are locked to-
gether and have an average velocity of V1 = V2 = 0.052,
while channels 6, 7, and 8 are locked together at a slightly
higher average velocity of V6 = V7 = V8 = 0.055 and
show a pronounced modulation at a frequency which
matches the frequency at which V5 drops to zero. The
point at which V5 reaches zero corresponds to the point
at which V6, V7, and V8 reach their maximum values.
Numerous periodic oscillations appear in the velocities,
such as the washboard frequency of the particles mov-
ing over the pinning sites. Additionally, each channel
has a periodicity determined by the value of Nj , and
since this frequency differs from channel to channel, the
channels sliding past one another experience a dynamic
periodic potential caused by the periodicity of the parti-
cles. This slipping process is not completely periodic but
shows some changes over time. For lower drives, more
channels are pinned and the velocity signals become in-
creasingly periodic. We note that for the M = 2 case
illustrated in Fig. 7 the velocity time traces were domi-
nated by the fundamental frequencies which were wash-
board signals.

Figure 21(b) shows Vj(t) in the same sample for FD =
0.09. Here there is considerable intermittency and sev-
eral channels lock and unlock. Channels 1, 2, 7, and 8 are
locked and move at V1 = V2 = V7 = V8 = 0.0625. Chan-
nel 3 has the lowest average velocity and intermittently
locks with channel 4, which has the second lowest average
velocity. Channel 4 locks intermittently with both chan-
nels 3 and 6, as well as much more infrequently locking
with the group of channels 1, 2, 7, and 8. Channel 6 also
locks intermittently with the channel group 1, 2, 7, and
8 as well as with channel 4. Channel 5 has the highest
average velocity and intermittently locks to the lower ve-
locity value of the group of channels 1, 2, 7, and 8. In
Fig. 21(c) at FD = 0.125, the amount of intermittency
is reduced. Channels 2, 4, 6, and 8 are locked together
and have a lower average velocity, while channels 5 and 7
lock together and have a higher but strongly fluctuating
velocity. Channel 1, which moves independently, reaches
the highest velocity values, while channel 3, which also
moves independently, reaches the lowest velocity values.
At FD = 0.16, shown in Fig. 21(d), the high density
channels 1, 3, 5, and 7 are locked together and move at a
higher average velocity while the low density channels 2,
4, 6, and 8 also lock with each other and move at a lower
average velocity.

The multiple channel system exhibits many of the
features predicted in mean field studies of phase slip
systems37, such as the coexistence of sliding and pinned
phases. There are, however, many features of the mul-
tiple channel system that are not captured by the mean
field results, such as the multiple coupling and decoupling
transitions between pairs of channels or groups of chan-
nels or the peak effect in the depinning threshold at the
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transition from elastic to plastic depinning. Additionally,
for both the two channel and multiple channel systems,
the case where different amounts of disorder exist in each
channel has not been studied with mean field models. We
note that that there are many more parameters that can
be explored for the multiple channel systems, such as
having different densities or pinning strengths for each
channel; however, the results for the dynamic phase dia-
gram for the multiple channel system suggest that many
of the generic features observed for the two level system
will persist in the multiple channel system. We will ex-
plore this in more detail elsewhere.

VII. DISCUSSION

In our model the particles are strictly confined to 1D
channels; however, in many real systems the channels can
have a finite width and it is even possible to have a zig-
zag pattern form within a single channel when the system
becomes dense enough. To explore such issues, the first
step would be to consider a single finite width channel
and to test whether there is a change in the depinning
threshold when the particles change from a 1D line to a
buckled or zig-zag state within the channel. One might
expect the depinning threshold to increase in the buck-
led phase since large pileups behind pinned particles are
reduced when the particles can move around each other.
There is also the question of whether the phases we ob-
serve would also occur for coupled 2D layers, where again
particles can move around each other and avoid pile-ups.
We note that a series of coupled 2D layers resembles lay-
ered vortex systems in which elastic-plastic transitions
are observed along with a peak effect, suggesting that
many of the phases we find can also occur in higher di-
mensions. Another issue is that fluctuations are gener-
ally strongly enhanced in 1D systems, suggesting that in
sufficiently large systems, some rare regions containing
large fluctuations would produce early decoupling. We
found no size effects when we tested systems of different
size except for samples considerably smaller than those
presented here. Large fluctuations are reduced in our
system both because we restrict ourselves to T = 0 and
because we consider nonoverlapping pinning sites that
are all the same strength within a channel. If we allowed
overlapping pinning sites, then in sufficiently large sys-
tems we would have rare regions of very strong pinning
that would induce a decoupling transition. The same ef-
fect would occur if we considered a broad distribution of
pinning strengths. For higher dimensional systems, many
of the effects we observe could in principle persist for fi-
nite temperatures and for pinning that is more random.
Another interesting avenue to explore would be periodic
or quasiperiodic pinning where additional commensura-
tion effects could occur between the particles and the
substrates as well as between particles in adjacent layers.

VIII. SUMMARY

We have examined systems of two or multiple one-
dimensional channels of coupled particles that interact
repulsively within each channel and between the chan-
nels. The particles are uniformly driven with an exter-
nal drive and in the presence of quenched disorder show
a series of dynamic phases including a pinned phase, a
coexistence between pinned and sliding phases, a slid-
ing phase where the channels move at different average
velocities and slip past one another, and a dynamically
locked phase where the particle positions in the chan-
nels become locked and the channels move at the same
velocity. The transitions between these different phases
can be observed as clear features in the velocity force
curve characteristics. These features include a sudden
drop in the velocity or the onset of negative differential
conductivity in one of more of the channels at the dy-
namically induced locking transition. For weak pinning
or strong channel coupling, the depinning occurs elasti-
cally without any slipping between channels. When the
system parameters are varied, such as by decreasing the
coupling between channels, we find a transition to plas-
tic depinning, with the initial flow above depinning in the
coexistence regime where the channels depin separately.
At the transition between elastic and plastic depinning,
a peak in the depinning force appears which resembles
the peak effect phenomenon found in more complicated
models with transitions between elastic and plastic de-
pinning. We have also examined channels containing un-
equal numbers of pinning sites or particles and find that
even for a channel containing no pinning, there can be
a finite depinning threshold due to the coupling of the
particles in the pin-free channel with the particles in a
channel containing pinning. For unequal numbers of par-
ticles in the channels we observe commensurability effects
where the depinning threshold drops when the depinning
becomes elastic for particle number ratios at which the
coupling between particles in neighboring channels is en-
hanced, such as at 1:1 or 2:1. At the incommensurate fill-
ings the channels always depin plastically. For multiple
channels we find a hierarchy of dynamically induced cou-
pling phases in which different groups of channels couple,
while at higher drive all of the channels become coupled.
Despite the apparent simplicity of our model, we find
that even the two channel system exhibits many of the
prominent features of depinning in more complex mod-
els such as the existence of multiple dynamical phases as
well as elastic to plastic depinning transitions of the type
that have been studied for more complicated systems in-
cluding 3D layered systems.

The specific model studied in this paper could be re-
alized using colloidal particles in coupled 1D channels or
in superconductors with a one-dimensional corrugation
combined with random pinning where the vortices move
along the easy flow direction of the corrugation. Other
possible realizations include coupled channels of 1D wires
where Wigner crystallization may occur.
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erow, S. Vieira, J. Sesé, R. Córdoba, J.M. De Teresa, and
M.R. Ibarra, Phys. Rev. Lett. 106, 077001 (2011).

12 J. Watson and D.S. Fisher, Phys. Rev. B 54, 938 (1996).
13 A.E. Koshelev and V.M. Vinokur, Phys. Rev. Lett. 73,

3580 (1994).
14 K. Moon, R.T. Scalettar, and G.T. Zimányi,
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G.T. Zimányi, and N Grønbech-Jensen, Phys. Rev. B 64,
014501 (2001); C. Reichhardt and C.J. Olson Reichhardt,
Phys. Rev. B 78, 180507(R) (2008).

21 L. Balents, M.C. Marchetti, and L. Radzihovsky,
Phys. Rev. B 57, 7705 (1998); P. Le Doussal and T. Gia-
marchi, Phys. Rev. B 57, 11356 (1998).

22 V.M. Vinokur and T. Nattermann, Phys. Rev. Lett. 79,
3471 (1997).
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