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We study a model of a two-dimensional repulsive Fermi gas with Rashba spin-orbit coupling αR,
and investigate the superconducting instability using renormalization group approach. We find that
in general superconductivity is enhanced as the dimensionless ratio 1

2
mα2

R/EF increases, resulting
in unconventional superconducting states which break time reversal symmetry.

There is a growing interest in materials whose inter-
faces support a two-dimensional (2D) electron gas and
display superconductivity, because of their novel, and
potentially technologically useful properties such as elec-
tronic transport, magnetism and interplay between struc-
tural instabilities1–3. Due to the intrinsic breaking of the
inversion symmetry, spin-orbit coupling is expected to
play a role in determining the nature of the superconduct-
ing state. For example, experimentally the enhancement
of transition temperature at LaAlO3/SrTiO3 interfaces
tracks the enhancement of Rashba spin-orbit coupling4.
And while the mechanism of superconductivity here is
likely related to the electron-phonon mechanism of the
bulk materials5, such considerations motivate us to in-
vestigate the effect of spin-orbit coupling on the super-
conducting transition.

For attractive interactions the question has been ad-
dressed in Ref.6–8. In contrast, here we consider a model
of repulsive fermions moving in 2D and analyze the na-
ture of the unconventional superconducting state in weak
coupling. For a strictly parabolic dispersion in 2D, with-
out spin-orbit coupling, it is known that repulsive inter-
actions do not induce superconductivity to second order
in the interaction, unlike in 3D where p-wave supercon-
ductivity is found at this order. In 2D one has to go
to third order9 for the Kohn-Luttinger effects to appear.
Our motivation is to understand the role of the spin-
orbit coupling in this process, to determine whether it
can enhance superconductivity, and to study the nature
of the superconducting state. Since we treat the Rashba
spin-orbit coupling αR non-perturbatively, we can ana-
lyze the relative values of the mean-field transition tem-
peratures Tc for an arbitrary value of the dimensionless
ratio Θ = 1

2mα
2
R/EF , where m is the (bare) fermion

mass and EF is the Fermi energy. In the strictest sense
the transition in 2D is of Kosterlitz-Thouless type and
at TKT < Tc. However, since we are working in the
weak coupling limit, the pairing energy scale is much
smaller than the zero temperature phase stiffness energy
and 1 − TKT /Tc ∼ Tc/EF ≪ 1, justifying the approach
presented here.

Due to the spin-orbit interaction, the pair states can-
not be chosen to be pure spin singlet or triplet, but ap-
pear as linear superposition thereof7. Nevertheless, since
the Rashba model (2), as well as the short range repul-
sion (3), commute with the z−component of the total

angular momentum Jz = Lz + Sz, we can label the pair
states according to ℓ, the eigenvalue of Jz. For small val-
ues of Θ we find that states with high values of relative
angular momentum ℓ condense first, with ℓ decreasing as
Θ increases. For intermediate values of Θ we find broad
regions of stability for ℓ = 4, with dome-like dependence
of Tc on Θ, while in the limit of large Θ, we find ℓ = 2.
In weak coupling we show that all of these states sponta-
neously break time-reversal symmetry. While we formu-
late our calculation within more modern renormalization
group (RG) approach, our results can be rederived dia-
grammatically by summing the leading logarithms to all
orders in perturbation theory, as has been done tradition-
ally in treating Kohn-Luttinger effect10,11. Also, while
our approach is similar to that of Ref.12 (see also13), we
use a single step RG instead of a two step RG, which we
find more economical.
Our starting point is the Hamiltonian for Fermions

moving in 2D

H = Hkin +Hint (1)

where in momentum representation the kinetic energy
(including spin-orbit coupling) is

Hkin =
∑

k,αβ

c†kα

(

k2

2m
δαβ + αR(σαβ × k) · n̂

)

ckβ(2)

and the short-range interaction energy term is

Hint =
u

2

1

L2

∑

k1...k4,σσ′

δk1+k2,k3+k4c
†
k1σ

c†k2σ′ck3σ′ck4σ.(3)

As usual, the components of k belong to the Born-von
Karman set {2πn/L} where n is an integer and L is the
linear size of the system. Unlike in Ref.7, we consider su-
perconductivity for repulsive interactions, i.e. for u > 0,
in the weak coupling limit uν2D << 1, where the density
of states per spin in 2D for αR = 0 is ν2D = m

2π . The
kinetic energy term is diagonalized using the following
transformation

(

ck↑
ck↓

)

=
1√
2

(

1 1
ieiφk −ieiφk

)(

ak+
ak−

)

. (4)

Next, we rewrite the Hamiltonian in terms of these helic-
ity eigenmodes. The partition function associated withH



|k|

ǫkλ

0

µF

−mα2
R/2

+−

1

FIG. 1: (Left) The dispersion relation. (Right) First order
(tadpole) correction to self-energy.

can be expressed in terms of the coherent state Feynman
path integral over Grassman variables14 as

Z =

∫

D[a∗λ(τ)aλ(τ)]e
−S0−Sint (5)

where

S0 =

∫ β

0

dτ
∑

k,λ=±
a∗kλ(τ)

(

∂

∂τ
+ ǫkλ − µF

)

akλ(τ),

Sint =
∑

1,2,3,4

U(1, 2, 3, 4)a∗(1)a∗(2)a(3)a(4), (6)

where the single particle energies are (see Fig.1)

ǫkλ =
k2

2m
− λαRk. (7)

In the above expressions β = 1/(kBT ), µF is the ex-

act chemical potential whose value depends on temper-
ature T and interaction u, in such a way as to pre-
serve average particle density. We adopt a shorthand
expression for the multiple summations

∑

1,2,3,4(. . .) ≡
∫ β

0 dτ1 . . . dτ4
∑

k1...k4

∑

µνλρ(. . .),

U(1, 2, 3, 4) = − u

16L2

∫ β

0

dτ

4
∏

j=1

δ(τ − τj)δk1+k2,k3+k4

×
(

µe−iφk1 − νe−iφk2

) (

λeiφk3 − ρeiφk4

)

, (8)

and a(j) = akjαj
(τj) where αj = {µ, ν, λ, ρ} and φk is an

azimuthal angle in the momentum plane.
We proceed by integrating out the high energy modes

between the energy cutoff A and Ω ≪ A about the two
Fermi surfaces at T = 0. The expansion is organized
by the powers of the dimensionless parameters uν2D and
Ω/A. At first order in the cumulant expansion, we find
a correction to the chemical potential µF from the tad-
pole diagram shown in Fig.1. This correction is δµF =

− 1
2u(〈ρ̂+〉 + 〈ρ̂−〉), where ρ̂± =

∫

d2k
(2π)2 a

†
k±ak±. Such

negative interaction correction must be absorbed in the

chemical potential counterterm, µF − µ
(0)
F = 1

2u(〈ρ̂+〉 +
〈ρ̂−〉) + O(u2), which is positive, and which guarantees
that the average particle density remains fixed. In gen-
eral, we are not aware of any argument why interactions
should not renormalize the areas of the individual Fermi
surfaces, while of course maintaining their sum fixed, but
to first order we find no such renormalization.

FIG. 2: (First row) 2nd and 3rd order corrections to the 4-pt
scattering amplitude. (Second row) 4th order correction. For
the 3rd and 4th order terms, we display only the diagrams
which contain logarithmic enhancement.

Superconducting instability comes from second and
higher order terms in cumulant expansion. We first find
the renormalization of the general four fermion term and
then we place the pairs on the two Fermi surfaces, which
are the only processes with logarithmic enhancements.
To second order in u, and in the Cooper channel, we
have the following correction to the effective interaction
action δSint =

u2

64L2

∫ β

0

dτ
∑

kk′

∑

µλ

Vµλ(k,k
′)a∗kµ(τ)a

∗
−kµ(τ)a−k′λ(τ)ak′λ(τ)

where the sum over k,k′ is restricted to a small window
near the Fermi surfaces defined by indices µ and λ within
the energy Ω above and below µF . We write

Vµλ(k,k
′) = V pp

µλ (k,k
′) + V ph

µλ (k,k
′), (9)

where the two qualitatively different contributions, aris-
ing from the two 2nd order diagrams shown in Fig.2 are

V pp
µλ (k,k

′) = −8µλ(N+ +N−)e
−iφkeiφk′ ln

A

Ω
(10)

V ph
µλ (k,k

′) = Πµλ(k,k
′)−Πµλ(−k,k′). (11)

The density of states on the two Fermi surfaces are

N± = ν2D

(

1±
√
Θ√

1+Θ

)

. In the second ”particle-hole”

contribution

Πµλ(k,k
′) =

∑

α,β=±

∫

d2p

(2π)2
nF (ǫpα)− nF (ǫp+k−k′β)

ǫpα − ǫp+k−k′β

×
(

µe−iφ−k − βe−iφp+k−k′
) (

λeiφ−k′ − αeiφp
)

×
(

αe−iφp − µe−iφk
) (

βeiφp+k−k′ − λeiφk′
)

, (12)

where the Fermi occupation factor nF (x) =

1/(e(x−µ
(0)
F

)/T + 1), evaluated in the limit T → 0.



After a somewhat tedious, but otherwise straightforward
analysis we find that we can write

Πµλ(k,k
′) = 2me−iφkeiφk′Λµλ(Θ, cos(φk − φk′))(13)

where Λµλ(Θ, cos(φk−φ′k)) is real. Note that under time
reversal the helicity basis creation and annihilation op-

erators transform as K̂ak± = ∓ieiφka−k± and K̂a†k± =

±ie−iφka†−k± respectively, where we used φ−k = φk + π.
The above relation means that the Cooper channel po-
tential Vµλ(k,k

′) pairs time reversed states, as it should8.
Inspecting the form of the remaining terms in (10) as well

as the combination Λ
(S)
µλ (Θ, cosφ) = 1

2Λµλ(Θ, cosφ) +
1
2Λµλ(Θ,− cosφ) appearing in (11), shows that they are
invariant under operations of the 2D rotation group. Ad-
ditionally, since the remaining terms in the scattering
amplitude are even under k → −k, and independently
under k′ → −k′, they can be decomposed into sum over
even angular momentum channels

V ph
µλ (k,k

′) = 4me−iφkeiφk′

∑

ℓ=0,2,4,...

V
(ℓ)
µλ cos(ℓ(φk − φk′))(14)

where the dimensionless Fourier coefficients V
(ℓ)
µλ are

functions of Θ and represent intra- and inter-band pair-
ing amplitudes.

In order to determine V
(ℓ)
µλ , we need to evaluate

Λµλ(Θ, cosφ) in Eq.(13) from Eq.(12). We shift p →
p − 1

2Q where Q = k − k′, and transform from the
polar coordinates to elliptical coordinates x ∈ [1,∞),
ψ ∈ [0, 2π) by substituting p‖ = 1

2 |Q|x cosψ and p⊥ =
1
2 |Q|

√
x2 − 1 sinψ. In the resulting expression ψ appears

only in cosψ, so we can substitute y = cosψ. For α = β
we then perform the integral over y first, which can be
done in terms of elementary functions. Similarly, for
α = −β we perform the integral over x first. Our anal-
ysis is based on numerical integration of the remaining
integral, which can be done quite fast to any desired ac-
curacy. The final result for the antisymmetrized combi-

nation Λ
(S)
µλ (Θ, cosφ) is shown in the Fig.3.

Next, we consider 3rd and 4th order terms in u which
renormalize the Cooper channel. These terms can be rep-
resented by diagrams shown in Fig 2, and used to derive
the RG equations governing the flows of Cooper chan-
nel couplings, which decouple in the angular momentum
basis. For ℓ 6= 0 we find that the renormalized coupling

V r(ℓ)
µλ =

u2m

25
V

(ℓ)
µλ − u4m2

29

∑

α=±
NαV

(ℓ)
µα V

(ℓ)
αλ ln

A

Ω
+ . . .(15)

where . . . represents term of order u4 which do not con-
tain (large) logarithm as well as terms of higher or-
der in u. If we define a dimensionless coupling ma-

trix g
(ℓ)
µλ = 1

25 u
2m

√

NµNλV
(ℓ)
µλ and take the logarithmic

derivative of the right hand side in (15), then to, and
including, O(u4), we find

dgr
(ℓ)
µλ

d lnΩ
= 2

∑

α=±
gr(ℓ)µαg

r(ℓ)
αλ. (16)

FIG. 3: Relative angle φ = φk − φk′ and Θ = 1
2
mα2

R/EF

dependence of the interaction function Λ
(S)
µν Eqs.(11-13) and

text below. Λ
(S)
++ (left) and Λ

(S)
+− (right) start from ±

4
π

at

Θ = 0 and develop φ dependence for finite Θ, while Λ
(S)
−−

remains 4
π
for any Θ.

As usual, we have replaced the bare couplings by renor-
malized couplings to the order we are working. For ℓ 6= 0,
the initial condition for the above (matrix) differential

equation is gr
(ℓ)
µλ|Ω=A = 1

25u
2m

√

NµNλV
(ℓ)
µλ . This equa-

tion can be readily integrated by transforming into the

orthonormalized basis for gr
(ℓ)
µλ(Ω) with eigenvalues

gr
(ℓ)
± (Ω) =

g
(ℓ)
±

1 + 2g
(ℓ)
± ln A

Ω

(17)

where the initial eigenvalues of gr
(ℓ)
µλ|Ω=A, for ℓ 6= 0, are

g
(ℓ)
± =

u2m

25

(

1

2
(N+V

(ℓ)
++ +N−V

(ℓ)
−−)

±
√

1

4
(N+V

(ℓ)
++ −N−V

(ℓ)
−−)

2 +N+N−V (ℓ)2
+−

)

(18)

If g
(ℓ)
± < 0 for some ℓ or Θ, then the associated renormal-

ized coupling (17) diverges at a scale

T (ℓ)
c ∼ Ω∗(ℓ) = Ae−1/|g(ℓ)

eff,±
| (19)

where g
(ℓ)
eff,± = 2g

(ℓ)
± . While the assignment between Tc

and Ω∗ cannot reliably determine the prefactor of the ex-
ponential term, the relative dependence on αR is in the
exponential factor, which we can determine. This allows
us to compare the dependence of the ratio of (mean-
field) transition temperatures on αR. For ℓ = 0 the
equation (16) holds as well, provided that we modify

the initial condition to gr
(ℓ=0)
µλ |Ω=A = u

4µλ
√

NµNλ +
1
25u

2m
√

NµNλV
(ℓ=0)
µλ , and use the eigenvalues of this

matrix in the Eq.(17).
To within our numerical accuracy, we find that

V
(ℓ=0)
−− = 4

π , while V
(ℓ 6=0)
−− = 0, for any Θ. In addi-

tion, for Θ & O(0.01) most dominant angle dependence is
in V++, while there is only very weak angle dependence

in V+− < 0. To O(u), g
(ℓ=0)
+ > 0, meaning no pair-

ing instability, and g
(ℓ=0)
− = 0. To O(u2) we find that
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FIG. 4: The effective coupling appearing in the expression for
Tc ≈ Ae−1/|geff | as a function of Θ = 1

2
mα2

R/EF . ν2D = m
2π

.
The dashed line at 0.0187 is the Θ → ∞ asymptote.

g
(ℓ=0)
− > 0 for any Θ > 0, due to increase in both V

(ℓ=0)
++

and V
(ℓ=0)
+− , latter of which becomes less negative. This

means that superconductivity resides predominantly on

the large Fermi surface and is determined by some V
(ℓ)
++

turning negative (meaning we select − in Eq.(18)). In
Fig.4 we show the Θ dependence of the couplings for the

g
(ℓ)
− -channel which has the highest Tc. At small value of
Θ, ℓ is very high (see inset of Fig.4). For the intermediate
values of Θ, starting with ∼ 0.005, we find the sequence
ℓ = 6, 4, 6, 2, the last value of which continues to Θ → ∞.
Finally, we need to determine which linear combina-

tion of the two possible ±ℓ states has the lowest (most
negative) condensation energy as we go below Tc. Adopt-
ing the arguments of Anderson and Morel15, we study
this problem below Tc within mean-field. We replace

the full angular dependence of the pairing potential with
just its projection on the most dominant ℓ channel, an
approximation which we expect to hold away from the
boundaries separating ground states with different an-
gular momentum. The self-consistent mean-field equa-
tions are then solved near Tc and at T = 0. We find
either a solution which breaks time reversal symmetry
and fully gaps the Fermi surface(s), i.e. only one of the
two ±ℓ pairing components is finite, or a solution with
equal admixture of ±ℓ and with gap nodes. Comparing
their condensation energies we find that the time reversal
breaking solution is lower by a factor of 1.5 just below
Tc and by e/2 ≈ 1.36 at T = 0. For values of Θ & 0.005,
the gap on the larger Fermi surface is much larger than
the gap on the smaller one due to the smallness of ratio
of V+−/V++. For smaller value of Θ the two gaps may
be comparable.
In summary, we have studied the superconducting in-

stability of a 2D repulsive Fermi gas with Rashba spin-
orbit coupling. We find that due to the polarizable
fermion background, the repulsion turns into attrac-
tion on the large Fermi surface but not on the small
one, giving rise to pairing there. Additional Joseph-

son tunneling, V
(ℓ)
+−, induces pairing on the small Fermi

surface by (weak) proximity effect. The resulting un-
conventional superconducting states are found to break
time reversal symmetry. While the transition tempera-
ture is not strictly monotonic in the dimensionless ratio
Θ = 1

2mα
2
R/EF , the general trend is that it grows with

increasing Θ. This experimentally falsifiable feature, may
provide means for enhancement of superconductivity in
a larger class of 2D electron systems.
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