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Abstract 

We employ helium atom scattering (HAS) and density functional theory (DFT) based on 

the ultrasoft pseudopotential scheme and the plane-wave basis set to investigate the strain 

and stress balance in nano-patterned N/Cu(001) surfaces. HAS shows that, with 

increasing N coverage (and decreasing stripe widths), the stress-relief-driven lateral 

expansion of the averaged lattice parameter within finite-sized N-containing patches 

reduces from 3.5% to 1.8% and that, beyond a critical exposure, the lateral expansion of 

the patches increases again slightly, to 2.4%.  The latter implies that in this higher 

coverage range the compressive stress is partially relieved via another mechanism, which 

turns out to be nucleation of Cu-vacancy trenches. In full agreement with the above and 

previous experimental observations, DFT calculations show that an optimized N-induced 

c(2×2) structure has a net surface stress level of 4.2 N/m and such stress is effectively 

relieved when stripes of clean Cu(001) form along the ‚100Ú direction or when trench-

like steps of Cu atoms form along the ‚110Ú direction. Additionally, the calculations 

demonstrate that (contrary to earlier suggestions) rumpling displacements within the 

outermost Cu layer do not act to relieve the compressive surface stress levels and that, 

while clock-like displacements could relieve stress levels, such displacements are 

energetically unstable. 

 

I. INTRODUCTION  

For several decades experimental and theoretical studies have provided a great 

deal of insight into the nature of the bonding among atoms and molecules chemisorbed 

on surfaces and those of the surface. Chemisorption of N on Cu(001) has been the subject 

of many investigations because the Cu(001) surface displays a striking long-range 

nanoscale ordering in the course of N adsorption. Nano-sized clusters are nearly square, 
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consisting of N patches with a dimension of about 55Å ×55Å, which locally exhibit 

c(2×2) symmetry, and surrounding clean-surface stripes1, as indicated in Fig. 1a. The 

arrangement of N patches across stripes can be either in-phase or out-of-phase, depending 

on the thickness of those stripes.2 As N coverage proceeds to saturation (and with 

probable missing Cu row formations in the N patch boundaries3) the island evolves into a 

nearly homogeneous distribution of N atoms on Cu(001) – N atoms occupying every 

alternate hollow adsorption site –  and the Cu-vacancy trenches forming along the ‚110Ú 

direction, as shown in Fig. 1b.4 The remarkable nano-patterning is generally believed to 

be driven by stress relief of the N-rich overlayer.5  

 

FIG. 1. (Color online) Schematic diagrams of reconstruction models: (a) N patches with 
stripes (b) N patches with trenches (c) clock displacement, and (d) rumpling 
displacement. (N: red circle; Cu: white (1st layer), gray (2nd layer), black (3rd layer) 
circles; Arrow: lateral displacements of Cu atoms in the 1st layer; +/−: vertical 
displacements of Cu atoms in the 1st layer.) 
 

(a)        (b) 

      
 

(c)        (d)  
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Several models have been proposed with significantly modified substrate 

structure beneath the patches, the most prominent of which are the clock reconstruction 

model6 and the rumpling model.7,8 These models differ from the prevailing picture of 

c(2×2)-N Cu(001) surface, which does not assume any reconstruction or significant 

distortions of Cu at the surface. In the clock model, Cu atoms in the outermost layer shift 

clockwise or counter-clockwise while N atoms maintain a c(2×2) site registry, as in Fig. 

1c. The rumpling model postulates a large rumpling of 0.34 Å in the outermost Cu layer 

and a commensuration of N patches with the substrate as in Fig. 1d. The rumpling model 

is based on the data from Photoelectron Diffraction (PhD) measurements7 and Scanning 

Tunneling Microscopy (STM) experiments,8 in which bright spots in the images were 

interpreted as Cu rather than N atoms. However, neither the clock nor the rumpled model 

has so far been supported by subsequent experiments or theoretical calculations. More 

recent STM experiments,9-12 for example, have not indicated such reconstructions at any 

N coverage. Instead the majority of these experiments interpret the bright spots as N 

atoms being incommensurate with the substrate.9-11 DFT-GGA calculations13,14 also show 

that for various striped structures (with different stripe-to-stripe distances) N-atom 

separations are not commensurate with the substrate Cu atoms, that rumpling in inner Cu 

atoms is less than 0.15 Å, and that N atoms always sit approximately above the first-layer 

Cu atoms. The STM images simulated in these studies also show that N atoms appear 

bright. Briefly, these more recent experimental and theoretical studies consistently predict 

unrumpled, unreconstructed substrates as the basis for c(2×2) N/Cu(001) surfaces.  

The interest in the above two reconstructed models lies in the fact that they 

propose novel surface-stress relief mechanisms.  In both, stress relief is accompanied by 
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elongation of Cu-Cu bonds in the top layer.  In the rumpling model, this is caused by a 

large vertical displacement (rumpling) in the top Cu layer.  In the clock model, it results 

from lateral displacement (rotation) in that top Cu layer, in analogy to what happens in 

the C/Ni(001) system.   

Since each model purports to bring about stress relief, calculations of surface 

stress can directly address those assumptions. Although the experimental and calculated 

surface stresses have already been reported for clean and c(2×2)-N/Cu(001) surfaces,14-16 

surface stress calculations of the alternative structures, implied by the competing models, 

have not been performed. We have thus carried out first-principles density-functional 

calculations to evaluate surface stress levels in ideal c(2×2)-N/Cu(001), in surfaces with 

experimentally-observed N-free stripes of various boundary geometries and thicknesses, 

in surfaces with experimentally-observed Cu-free trenches of various directions and 

thicknesses, and in other hypothetical surfaces such as rumpled and clock-reconstructed 

Cu(001).  We demonstrate the effectiveness of the inter-island boundaries for stress relief 

in c(2×2)-N/Cu(001) surfaces by deriving the one-dimensional (1D) stress formula as the 

function of the periodicity of stripes and stripe width. 

We also used helium atom diffraction to investigate the growth of half-order (1/2, 

1/2) diffraction features in annealed surfaces with increasing N exposures, observed at 

room temperature, in order to examine possible domain ordering and observed surface 

strain changes in the N-containing domains.  The N-N spacing, of course, must reflect 

surface Cu lattice parameters and hence also surface stress levels.  We conclude that the 

stress levels can increase as the N coverage initially increases, but that at the high N 

coverages the surfaces (with coexisting stripes and trenches) show decreasing stress 

levels with increasing N-coverage.  We set out details of our theoretical and experimental 

methods in Sec. II, present our results and discussions in Sec. III, and summarize our 

conclusions in Sec. IV. 

 

II. METHODS 

A. Theoretical methods 
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We based our DFT calculations on the plane wave basis set17 and the ultrasoft 

pseudopotential scheme.18 We used the Quantum-Espresso computer code.19,20 For the 

exchange-correlation energy, we have used the generalized gradient approximation 

(GGA) with the Perdew-Burke-Ernzerhof functional.21 We set the kinetic energy cutoff at 

544 eV for the plane-wave basis set.  The calculated lattice constant for Cu bulk was 

3.67Å, which is 1.6% larger than that of experiment.  

We use several surface models to study structural relaxations and surface stresses 

in c(2×2)-N/Cu(001) surfaces. For simulating an ideal c(2×2)-N/Cu(001) surface, we 

used the c(2×2) unit cell.  We also used c(2×2) for a rumpled Cu(001) structure, and 

necessarily a p(2×2) unit cell for the clock reconstruction. Figures 2 to 5 show schematic 

diagrams of the larger unit cell structures with N-free stripes or Cu-free trenches that are 

studied here.  To mimic N patches, we introduce into our surface model a 1D stripe 

aligned along the ‚100Ú direction with a N-patch of width l = 1, 3, 4 ao (ao: lattice 

constant, 3.67Å) and stripe widths d = 1, 2 ao, such that the corresponding surface unit 

cells are (2√2×√2)R45°, (4√2×√2)R45° and (5√2×√2)R45°, as in Fig. 2a-d. These striped 

surface models assume in-phase boundaries. In order to study the effect of out-of-phase 

boundaries we used the surface unit cell of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
45  with a N-patch of widths l = 3, 4 ao 

and stripe widths d = 1.5, 0.5 ao as in Fig. 3a and 3b. To study the formation of a missing 

Cu row in the monoatomic-wide stripe boundary, we used (5√2×√2)R45° unit cell with a 

N-patch of width l = 4 ao and stripe width d = 1 ao as in Fig. 4. For trench formation, we 

align a 1D trench either along the ‚110Ú direction, as in Fig. 5a-c, or along the ‚100Ú 

direction, as in Fig. 5d-e, to examine the effect of the alignment direction, with the N-

patch width  l = 21 , 1, 23 , 25 , 4 ao and trench width d = 1, oa21 , such that the 

corresponding surface unit cells are p(2×2), (2√2×√2)R45°, p(4×2),  p(6×2), and 

(5√2×√2)R45°, as indicated in Fig 5. We then calculated surface stresses in the above 

c(2×2)-N/Cu(001) surfaces in the surface direction perpendicular to stripes or trenches. 

With the calculated lattice constant ao = 3.67Å, N-patch width in the above surfaces 

varies from 11 to 15 Å. 

The supercell consisted of slabs of nine Cu layers for c(2×2), p(2×2), and 

(2√2×√2)R45° unit cells, and of four Cu layers for (4√2×√2)R45°, (5√2×√2)R45°, 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
45

, p(4×2), and p(6×2) unit cells.  On each side of the nine-layer slabs, N 

overlayers were adsorbed symmetrically with respect to the center layer, and all atoms 

were allowed to relax maintaining inversion symmetry. In the four-layer slab 

calculations, however, an N overlayer was placed only on one surface and two Cu layers 

on the clean side were fixed to the bulk positions, and all (free) atoms were allowed to 

relax until the forces on them fell below 2×10-2 eV/Å. A schematic diagram with labels 

relevant to structural parameters is shown in Fig. 6, where dN-N and dCu1-Cu1 are the 

(lateral) nearest neighbor N-N and Cu-Cu distances in the topmost layer, respectively, 

dN-Cui and dij are the vertical interlayer distances between N and Cu atoms in the i-th Cu 

layers (from the top) and between Cu-Cu in the i and j-th Cu layers, respectively, and ri 

and δ are rumpling in the i-th Cu layers and lateral shift of Cu atoms in the topmost layers, 

respectively. For statistics, we evaluate these structural parameters only for atoms within 

N patches (thus not including Cu atoms in stripes) except for rumpling ri, in which case 

these are averaged for all Cu atoms in the i-th  Cu layer. 

The vacuum space between the supercell and its periodic images was in excess of 

9 Å.  We employed the Monkhorst-Pack scheme22 for the following k-point sampling of 

the Brillouin zone: (9×9×1), (6×6×1), (3×6×1), (2×8×2), (2×10×2), (3×6×2), and (2×6×2) 

grids for c(2×2), p(2×2), (2√2×√2)R45°, (4√2×√2)R45°, (5√2×√2)R45° and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
45 , 

p(4×2), and (6×2) unit cells, respectively, with a Fermi level smearing23 of 0.27 eV. 
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FIG. 2. (Color online) Schematic drawings for N patches with stripes in the in-phase N 
arrangement with different N-patch width l and stripe width d: (a) l = 1 ao, d = 1 ao; (b) l 
= 3 ao, d = 1 ao; (c) l = 3 ao, d = 2 ao; (d) l = 4 ao, d = 1 ao. 
                                          
(a)                                                      (b) 

 
 
(c)                                                      (d) 

 
 
FIG. 3. (Color online) Schematic drawings for N patches with stripes in the out-of-phase 
N arrangement with different N-patch width l and stripe width d: (a) l = 3 ao, d = 1.5 ao; 
(b) l = 4 ao, d = 0.5 ao; 
(a)                                                                (b) 

 
 
FIG. 4. (Color online) Schematic drawings for N patches with the missing-Cu row 
boundary (l = 4 ao, d = 1 ao). 
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FIG. 5. (Color online) Schematic drawings for c(2×2) N/Cu(001) surfaces with different 
N-patch width l and trench width d. For trenches along <110> direction: (a) l = 1/√2 ao, d 
= 1/√2 ao; (b) l = 3/√2 ao, d = 1/√2 ao; (c) l = 5/√2 ao, d = 1/√2 ao.  For trenches along 
<100> direction: (d) l = 1 ao, d = 1 ao; (e) l = 4 ao, d = 1 ao. 
                                   
(a)                                                                (b) 

 
 
(c)                                                                (d) 

 
(e) 
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FIG. 6. (Color online) Structural parameters of interest. 

 
 To extract surface stress via ab initio methods, we used not only an analytical 

method but also the standard numerical method in order to avoid systematic errors in the 

calculations. While the numerical method makes use of calculated derivatives of surface 

energy with respect to small applied strains, the analytical method uses the stress 

theorem24 and requires appropriate corrections to the fictitious stress components that 

arise from the finite size of the plane-wave basis set.  For numerical stress, the strains ε of 

±2% and ±4% (in some cases, ±1% and ±3%, too) are applied and only the diagonal 

stress components (σx and σy) were calculated using the following equations: 

                      bulk

slab
bulkslabsurf

N
NEEE −=                                                        (1) 

and 

                      
i

surf
surf
i d

dE
A
1

ε
σ =  ,                                                                   (2)       
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where Esurf, Eslab, Ebulk, and A are surface energy, slab and bulk energy, and surface area, 

respectively. To extract the surface stress σsurf from the analytically-calculated slab and 

bulk stresses, σslab and σbulk ,  we used 

        ⎥
⎦

⎤
⎢
⎣

⎡
−= cell

bulk

bulk

slab
bulk
i

slab
i

cellsurf
i V

V
N
Nt σσσ                                  (3)                                                   

where Nslab is the number of Cu atoms in the slab (which is used to calculate σslab), and 

Nbulk is the number of Cu atoms in the volume of bulk unit cell, Vbulk, (which are used to 

calculate σbulk), and Vcell and tcell are the volume and thickness of the supercell, 

respectively, which includes the slab and the vacuum. For the symmetric nine-layer slab, 
surf
iσ in equation (3) is divided by a factor of 2 to account for two identical surfaces. For 

the asymmetric four-layer slab, the surface stress of the N-adsorbed surface was extracted 

by setting the stress of its clean bulk-terminated (bottom) surface to that of a bare bulk-

terminated four-layer slab.  

We should point out that even in fully-relaxed slabs subject to the force threshold 

(2×10-2 eV/Å), we find non-zero residual stress (σz) along the surface normal, the 

magnitude of which is mostly, but not always, an order of magnitude smaller than the 

horizontal stress components (σx and σy). Furthermore, although in some calculations, the 

values of σi (i=x,y,z) may fluctuate from one ionic iteration to another, the difference σi (i=x,y) 

– σz always converges. We used this fact to extract reliable stress values from the 

fluctuating stress components in fully-relaxed slabs, enabling us to set σi
slab in Equation 

(3) to σi (i=x,y,z) – σz. This guarantees that the stress along the surface normal is zero, as it 

should in fully-relaxed slabs. We also find that it is important to use identical supercells 

for both slab and bulk calculations in Equation (3). Stress values so calculated are in good 

agreement with numerical stress values in most cases studied here.  

 

B. Experimental methods 

 

The high-resolution helium atom scattering apparatus is fully described 

elsewhere.25  An intense nearly monoenergetic (Δv/v ~ 1 %) thermal energy He beam is 

scattered from the sample crystal, and diffracted He atoms are mass selected and detected 

in a pulse-counting RF quadrupole mass-spectrometer.  Time-of-flight energy analysis 
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confirmed that the incident energy, for all the measurements reported here, was fixed and 

stable at 31.3 meV.  The time-of-flight path length of this instrument has been calibrated 

using seeded HD in He beams such that J = 0 → 1 HD rotational energy losses/gains 

agree with known gas phase values.  The fixed scattering angle, 99.0o, is also known to 

within 0.1o; first-order diffraction peak positions are accurately predicted to well within 

0.5%, or typically ~ 0.01 Å-1.25  

In a base pressure of below 2 × 10–10 mbar, the single-crystal 1cm-diameter 

Cu(001) sample was cleaned with repeated cycles of sputtering (15 min, Ne+, 1 keV, 

~13 μA/cm2) at RT and annealing at 675 K for 10 min.  The same ion gun was used for 

1 keV N+ and/or N2
+ ion exposures. 

For each nitrogen ion exposure the total current was monitored on the room 

temperature grounded sample (typically of order ~ 5 μA/cm2).  The time-integrated 

current is reported as a measure of the cumulative N implantation on/into the surface.  

Any single charge exposure of larger than 3000 μC is known to produce an N-saturated 

surface, with 0.49 ML of N (after annealing).5  (Doubling the N exposure produced no 

discernable further increase in the N Auger signals.) 

For the measurements presented here, smaller N-ion doses were made. Following 

each N-ion implantation the sample was annealed to 600 - 620 K for 5 minutes before 

each helium-diffraction scan was made. Successive N doses followed previous 

implantations/anneals.  Here the absolute N coverages could not be measured and are 

unknown, although increasing exposures will increase successive total N coverage in the 

range between zero and slightly below 0.5ML. Presented here are the results for one 

series of exposures and anneals.  Exactly the same trends were observed with other 

sequences." 

 

III. RESULTS AND DISCUSSIONS 

A. HAS experiment 

 

In our He-diffraction measurements, we have not been able to measure the stripe 

periodicity within the specular, (0,0), feature.  The implication is that the apparent 

average height of the surface, as seen by incoming He atoms, is insensitive to the local 
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nitrogen coverage.  Importantly however, half-order intensities were seen to grow even at 

exposures as low as 50 μC, as illustrated in Fig. 7a. This is fully consistent with isolated 

domain growth, even at coverages below 0.075 ML.  No evidence for domain ordering 

(peak splitting) was seen in the half-order intensities, at any coverage.  This confirms that 

the relative phases of adjacent c(2×2) domains are initially, and remain, uncorrelated at 

all exposures we investigated.  In helium scattering, the main order diffraction peaks 

remain well below 10-2 of the specular peak intensities.  These peaks may show some 

signs of peak splitting, at higher N coverages but, given the signal-to-noise levels in the 

available data, extensive investigations of these peaks were not warranted. 

He-atom diffraction has a distinction from other (more conventional) diffraction 

techniques, which we have exploited in this investigation of surface lattice parameters.  

The difference between techniques lies in the extreme surface sensitivity of He 

diffraction, and its reliance on a surface corrugation profile to give rise to finite 

diffraction intensities.  We shall see that, in contrast to the X-ray diffraction or Low 

Energy Electron Diffraction (LEED) techniques, non-specular He-atom diffraction 

intensities are dominated by top-most structure within the more corrugated N-containing 

regions alone.  Hence an incommensuration/net expansion of these regions is reflected in 

the mean half-order peak positions. 

An adsorbate-free Cu(001) exhibits a He atom scattering surface corrugation that 

is typically believed to be < 10-2 Å.  The unit cell of an uncorrugated (flat) surface 

therefore does not have a significant form factor at wide scattering angles.  Only as the 

corrugation increases does the form factor distribution spread to wide scattering angles, 

and its magnitude can become measurable at the positions of half order He diffraction 

peaks.  Thus only the N-containing regions contribute scattering amplitudes that are 

significant (measurable) around the half-order scattering positions.  In our studies the N-

containing regions exhibit no discernible phase correlations (and resultant 

narrowing/splitting of the diffraction peaks).  We see therefore an intensity distribution 

that reflects the magnitude squared of the form factor of single (isolated and laterally 

extended) N domains.  That form factor is peaked at the incommensurate half-order 

position, (π/a´, π /a´) where a´ is a lattice parameter averaged over only the extent of an 

N-containing region.  The substrate-defined half-order position is at G/2 = (π/a, π/a).  For 



13 | P a g e  
 

the uncorrelated expanded N patches, the He intensity is thus peaked at G/2 – δ´ (π/a, 

π/a), where δ´= (a´– a)/a´.   

In X-ray diffraction, the probe is comparatively insensitive to the N adsorbate.  

Much stronger diffraction is seen from the bulk and near-surface Cu centers.  The half-

order peaks observed in X-ray diffraction are therefore dominated by the local N-induced 

modulation of Cu core positions that are strongest in subsurface layers.  The weak X-ray 

“(½, ½)” diffraction peak intensities may thus occur more closely to the exact G/2 

positions.  So far as we are aware, their reciprocal space positions have as yet not been 

accurately analyzed. 

Low energy electron diffraction (LEED) is more sensitive to the N adsorbate than 

are X-rays, but is still sensitive as well to subsurface Cu atomic centers.  The half-order 

peaks observed in LEED are therefore also influenced strongly by the N-induced 

modulation of subsurface Cu core positions.  An isolated N domain is expected to show a 

net expansion in the topmost Cu layer, but lower layers (exhibiting a 2x2 rumpling 

periodicity) are not expected to be so strongly laterally expanded.  In addition to this 

depth characteristic of the “half order periodicity,” this periodicity is expected to be 

manifest also in a selvedge region between the N domain and surrounding regions.  This 

selvedge (N-free region) around isolated domains exhibits a net compressive strain.  

LEED is sensitive to these regions, in stark contrast to the He scattering.  We have argued 

therefore for a comparatively reduced LEED sensitivity to the expansions in N domains.  

The “(½, ½)” form factors for isolated (uncorrelated) N domains are thus anticipated to 

be much closer to the exact G/2 positions in LEED than in helium scattering. 

In other words:   scattering He atoms are sensitive to a c(2×2)-corrugation of the 

topmost layer of N-containing patches, and are insensitive to subsurface layer positions, 

or to in-plane compressive relaxations in the selvedge regions of isolated domains.  It is 

the lattice parameter of the individual finite-sized N-containing patches, a´, alone – and 

not the substrate’s bulk lattice parameter - that determines the “half-order” He diffraction 

peak position.  In addition a strong correlation of the mean N-N lattice parameter with 

total N exposures is seen clearly in helium diffraction. Figures 7b and 7c show initially a 

decreasing lattice parameter with increasing N exposure.  The N-containing domains are 

strictly incommensurate with respect to the substrate bulk. 
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FIG. 7. (Color online) [100] azimuth room temperature He atom diffraction, from N+ 

implanted and post annealed Cu(001) surfaces.  Ei = 31.3 meV.  Increasing N+ doses show 

increasing half-order diffraction intensities at increasing parallel momentum transfers, 

| Δ K1/2|.  N+ doses are color-coded from lowest to highest: black, 50 μC; red, 90 μC; green, 

150 μC; blue, 350 μC; cyan, 850 μC; magenta, 1350 μC: and for (c) yellow, 5000 μC.  

(The highest exposure level curves are omitted in parts (a) and (b) for clarity, to avoid the 

display of overlapping curves.  The zero exposure (brown) point is omitted in part (c) as 

there is no discernible half-order peak to fit.)  (a) He diffraction intensity scans, displayed 

on a logarithmic scale, normalized to the specular diffraction intensity at ΔK = 0.  (b) 

Linear-scale normalized-intensity distributions of the ΔK1/2 = (- ½, -½) peak region used in 

evaluation of data for (c).  (c) 1-D parallel-momentum integrated He intensity of the 

(-½, ½) peak regions (after background subtraction) vs. parallel-momentum positions of 

intensity peaks, ΔK1/2 (determined from best fit Gaussian curves.)  The dashed-dotted line 

and arrow indicates the movement sense of the data points with increasing N ion 

exposure. 
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The bulk lattice parameter of 3.61 Å, at room temperature, would dictate a half-

order diffraction peak position at ΔK = 1.74 Å-1.  The positions of the true measured 

peaks lie in the range from ~1.68 to 1.71 Å-1.  At low N coverages an “averaged” N-N 

nearest-neighbor separation is about 3.74 Å.  Stress relief within isolated N domains is 

manifest in an isotropic surface lattice parameter expansion of roughly 3.5% at the lowest 

N exposures.  This observed strain magnitude is reduced as the domain densities increase 

at higher N exposures.  At around 1000 µC the N-N separations decrease to ~3.67 Å and 

the expansion virtually halves to 1.8 +/– 0.2%.  No evidence is seen for any anisotropic 

relaxations. 

At N+ exposures in excess of 1350 µC, the He diffraction reveals a reversal of the 

effects of increasing coverage that are evident at lower coverages (i.e., increasing stress 

levels and decreasing strains).  At saturation two effects are seen:  the final strain level is 

increased again to ~ 2.4% and (also shown in Fig 7c) the half-order helium atom 

diffraction shows a slight reduction in intensity.  Both of these observations can be 

explained by the currently accepted observation on the N/Cu(001) surface, namely that at 

coverages exceeding 0.35 ML trench-like missing rows aligned along <110> directions 

are formed.5  The density of those stress-relieving defects increases until saturation.  The 

missing-row trenches locally will scatter He atoms diffusely and their presence could also 

modify the corrugation amplitude seen by He in the ordered c(2×2) areas.  Thus as this 

defect density increases, the half -order peak intensities may, as is indeed observed, 

decrease despite the increasing total N levels. 

We have found that N+ exposures in excess of 3000 µC produce the saturated 

phase.  We know from STM results that the missing-Cu trenches are first nucleated at 

lower N+ exposure levels.5  We suggest then that a flat Cu(001) surface can support the 

observed 1.8% enlarged N-lattice parameter, but below this critical strain level, i.e. at 

smaller expansions, the surface stress levels become too large.  It appears that the 

missing-Cu trenches, at increasing N coverages, are initiated at this critical strain level, 

and presumably at points on the surface where the local compressive stress levels are 

highest. 

Leibsle et al. first suggested that the N/Cu may form patches of an 

incommensurate layer on the Cu substrate.1,5  A Cu3N crystalline lattice parameter, at 
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2.69 Å, is 5% larger than that of the substrate.  Later LEED studies of a well-ordered 

surface, at  <0.375 ML N, gave precise lateral separations of the N/Cu patches, at 55 Å.26 

On the same surface, given a lack of asymmetry in satellite spots around an (hk) bulk 

diffraction peak, Sotto et al concluded that Cu and N overlayer strains were below 

0.05%.26  Yet channeling and blocking measurements, in combination with an atomistic 

simulation of inhomogeneous stresses, with an assembly of stressed N-on-Cu patches 

indicated that Cu lateral displacements were as much as ~ 0.35 Å, although the rms 

displacement of surface Cu atoms was as low as 0.15 or 0.16Å.15  The strain on this 

surface, averaged across a patch, was about  2.3%. The quenched molecular dynamics 

simulations showed also that the surface atomic species at the edge of a patch were 

subject to larger displacements than those at the center of a 2-D patch.  A very similar 

strain displacement pattern also gave excellent agreement with X-ray diffraction rod 

intensities.16  The interpretation of the X-ray diffraction, however, is not simple and 

direct, as the diffraction pattern is influenced by the deep (~> 50Å) stress field experienced 

below each patch. 

Careful analysis of precise STM measurements of N-atom displacements showed 

directly that the strain patterns in nearly isolated N patches are inhomogeneous.10,11,27 It 

was concluded that an rms displacement within an N-containing patch is as large as 0.6Å 

and that the maximum displacements typically do not exceed one half of a Cu-Cu 

nearest-neighbor spacing, 2.55 Å.  It was also concluded that N does, on average, sit in 

fourfold hollow sites and that the largest displacements are seen at the boundaries, i.e., at 

the edges of patches.   

The quantitative analysis of distortions in N on Cu arrays with STM has proven 

difficult because of possible electronic effects and anisotropy in the scanning tip.  

Arguably diffraction gives rise to data that are more representative of many patches.  The 

measured X-ray reciprocal lattice rod intensities fit well with those calculated for a 

simulated non-uniform strain pattern at higher N surface concentrations  Although the He 

diffraction presented here does not yield information about the non-uniformity of strain 

and stress levels within N-containing patches, it does reveal variations of strain levels 

between surfaces within a wide range of N+ exposures. 
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All data to date are consistent with the view that a c(2×2) N/Cu(001) phase region 

is under compressive stress.  The stress is in part relieved through expansion of the mean 

near surface-Cu lattice parameter, and possibly through N displacements with respect to 

the surface-Cu defined hollow sites.  We have now shown as well that the degree of 

stress relief is dependent on the N coverage.  Surface strains can be reduced to < 2%.  In 

contrast, at the lowest coverage we have seen a lateral expansion as high as 3.5%.  The 

observed range of average strain magnitudes is fully consistent with Croset et al.’s 

calculations.16  

 

B. Results from DFT Calculations 

 

1. Structural relaxations of the c(2×2) N/Cu(001) phase 

 

In Table 1 we present the results of our investigation into structural relaxation 

within an ideal c(2×2)-N overlayer on the unreconstructed Cu(001) system and make 

comparisons with available theoretical and experimental results. Recall the top view of 

the c(2×2)-N phase as shown in Fig. 1a. The vast majority of experimental and 

theoretical studies (see Table 1), agree that N atoms adsorb in fourfold hollow sites on 

Cu(001) without any distortion of the substrate. Although the N adsorption height varies 

from 1.5 Å to zero above the upper Cu-atom plane, most studies put it between 0.1 Å and 

0.6 Å. Our calculations for the ideal c(2×2)-N/Cu(001) surface also predict that N 

adsorbs 0.17 Å above the first-layer Cu atoms, i.e., N atoms are almost coplanar with the 

outermost layer of Cu atoms. They also agree on a large expansion of the first Cu 

interlayer spacing with respect to the bulk: ∆12 varies from 15% to 5% depending on the 

techniques used, recent DFT-GGA studies find it to lie in the range of 7.7 and 9.1%.  

The relevant experimental structural parameters for the proposed clock and rumpling 

models, discussed in Sec. I, are presented in Table 2. The total displacement of a Cu atom, 

in the clock model (illustrated in Fig. 1c) is reported to be 0.14 Å.6 For the rumpling 

model the difference in height between the upper and lower Cu atoms  in the top layer 

was reported to be 0.34 Å.7,8 As a result, N atoms were to locate between the upper and 

lower Cu atoms, at 0.07 Å below the upper half-plane of Cu atoms.  
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Table. 1. Calculated structural parameters of ideal c(2×2)-N/Cu(001) compared with 
available theoretical and experimental results for an undistorted substrate. For the 
definition of the structural parameters used in this table, refer to Fig. 6.   
 

Method dN-Cu1 (Å) r1 (Å) ∆12 (%) ∆23 (%) Reference 

LEED 1.45  0   28 

LEED 1.46  0   29 

LEED 0.6  0   30 

LEED 0.0  0 +7.7  6 

SEXAFS 0.41  0   31 

SEXAFS 0.4  0 +4.7 +0.3 32 

HF Cluster Model 0.36  0   33 

HF Cluster Model 0.6  0   34 

DFT-GGA 0.48  0   35 

Helium Ion 

Channelling 
  +15.0 3.0 15 

X-ray Diffraction 

& Molecular 

Dynamics 

  +14.0 1.5 16 

DFT-GGA 0.21  0 +7.7 +0.5 13 

grazing incidence 

X-ray diffraction 
0.15 0 +14.0 +1/5 36 

DFT-GGA 0.2 0 +9.1 +0.9 37 

DFT-GGA 0.17  0 +7.8 +0.2 This study 
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Table. 2. Structural parameters of hypothetical clock- and rumpling- reconstructed 
N/Cu(001) surfaces from experiment and theory. DFT-X1 and DFT-X2 (X=C,R) 
represent, respectively, theoretical structures for clock (X=C) and rumpling (X=R) 
models that were investigated in this study. They were obtained by fixing N or Cu atoms 
in the top layer to positions either close to experimental ones (DFT-X1) or ones based on 
the analogy with that of other system (DFT-X2) while relaxing all other atoms.   
 

 Clock model   Rumpling model  

Method LEEDa DFT-C1 DFT-C2   PhDb/STMc DFT-R1 DFT-R2 

dN-Cu1 (Å) 0.06 0.21 0.05   -0.07 
-0.07 

(fixed) 

0.10 

(fixed) 

dN-Cu2 (Å) 1.91 2.13 2.14   1.99 2.09 2.13 

r1 (Å) - - -   0.34 
0.34 

(fixed) 

0.24 

(fixed) 

δ (Å) 0.14 
0.14 

(fixed) 

0.42 

(fixed) 
  - - - 

∆12 (%) +2.5 +9.6 +13.7   +4.7 +8.8 +3.8 

∆23 (%) -2.5 +0.5 +0.7   +0.3 -1.4 -3.2 

r2 (Å)  0.12 0.05    - - 
a Ref. 6 
b Ref. 7 
c Ref. 8 

 

To check on the stability of the proposed clock, denoted by C, or rumpling, 

denoted by R, model structures, we first generated the model structures as deduced by 

other workers and compare these with second alternative structures, as described below. 

Table 2 reports on our results for models DFT-X1 and DFT-X2, where X = C or R 

depending on the model in question. The numbers 1 and 2 refer to the two models of each 

type. 

For the clock model, we first carry out DFT-C1 calculations to examine its 

energetics using the lateral-shift parameter (δ in Fig. 6) as described by Zeng, et al.6 

Specifically, we fix the lateral displacement of Cu atoms in the first layer at 0.14 Å and 

allow all other atoms to relax completely. To pinpoint the structural and energetic effects 

of this lateral-shift magnitude, we then increase δ to 0.42 Å and again allow all other 

atoms to relax. (See DFT-C2 in Table 2.) The most notable structural changes between 

the relaxations of DFT-C1 and DFT-C2 occur in the N height (dN-Cu1), which reduces 
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from 0.21 to 0.05 Å, and the first-layer Cu expansion (∆12), which increases from 9.6 to 

13.7%. As Cu atoms shift more, N atoms can more closely approach the surface, 

implying that the top layer interacts most strongly with the N atom.  However, we find 

that both structures are unstable since they always return to the undistorted c(2×2)-

N/Cu(001) structure during relaxation when the initial constraint (δ for each model) is 

lifted. Since DFT-C2 has a higher total energy than DFT-C1, the degree of instability 

increases as the shift magnitude increases.  

Analogously, for the rumpling model, we begin with DFT-R1 calculations of a 

rumpled surface with fixed rumpling displacements; We fix the amplitude of the 

rumpling level (r1 in Fig. 6) of the Cu atoms in the first layer at 0.34 Å and the N atoms at 

0.07 Å below the atoms in that layer.7,8  (See DFT-R1 in Table 2.) Relaxation of this 

experimentally suggested structure gives a first-layer expansion ∆12 of 8.8%, which is 

comparable to that of the unrumpled (ideal) structure. But this structure, too, is unstable, 

as its total energy is higher than that of the unrumpled one:  N atoms are always pushed 

upwards and the rumpling of Cu atoms systematically disappears, once the initial 

constraints are lifted.  

To illustrate the effects from the two parameters derived from experiment, we 

carry out DFT-R2, with an increased N height, at 0.1 Å above the upper layer Cu atoms 

and a decreased rumpling at 0.24 Å. We can think of DFT-R2 as calculations from a state 

which is intermediate between an ideal, unrumpled surface and that assumed in DFT-R1. 

We find that the effect of this relative positioning of N atoms is to notably decrease ∆12 

from 8.8 to 3.8%. The fact that DFT-R2 has a higher energy than DFT-R1 might suggest 

that DFT-R1 could be a local minimum. It is not, however, because in absence of the 

constraints described above, it always returns to the unrumpled ideal c(2×2)-N structure. 

All these facts suggest that even in terms of stability neither model – clock or rumpling – 

is favorable for c(2×2)-N/Cu(001) surfaces. 

It might be wondered, however, whether the surface might undergo rumpling in a 

more realistic situation, specifically, at sub-saturation coverage, where the N-overlayer 

density concentrates in localized patches. Hence, it is necessary to check whether a stripe 

can induce rumpling as large as was proposed in the rumpling model. We present the 

calculated structural parameters of these striped surfaces for the in-phase boundaries in 
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Table 3 and for the out-of-phase boundaries in Table 4. Yoshimoto et al.14 have already 

investigated the relaxations of striped c(2×2)-N/Cu(001) surfaces of N patch width l = 5, 

6, 8 ao and stripe widths d = 1, 3 ao  – larger than those under examination in our study.  
 
Table 3. Average theoretical structural parameters of the clean and striped surfaces of 
N/Cu(001) with in-phase boundaries with different N-patch width l and stripe width d. 
 

l (ao) d (ao) unit cell  (Å) Cu-dN 1
  (Å) r1

  (Å) δ   (%) 12Δ  
 (%) CudCu 11 −  

 (%) NdN −  

0 ∞ p(1×1) N/A 0 0 -5.4 0 0 
1 1 (2√2×√2)R45° 0.129 0.074 N/A +2.0 +2.5 N/A 
3  1 (4√2×√2)R45° 0.144 0.125 0.087 +5.7 +2.2 3.2 
3  2 (5√2×√2)R45° 0.140 0.165 0.074 +3.9 +2.2 3.1 
4  1 (5√2×√2)R45° 0.143 0.106 0.084 +6.5 +1.9 2.7 

 
Table 4. Averaged theoretical structural parameters of c(2×2) N/Cu(001) surfaces with 
out-of-phase boundaries for different N-patch width l and stripe width d.  
 

l (ao) d (ao) unit cell  (Å) Cu-dN 1  (Å) r1
  (Å) δ   (%) 12Δ  (%) CudCu 11 −   (%) NdN −

3 1.5 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
45  0.153 0.168 0.091 +4.5 +2.2 +3.0 

4 0.5 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
45  0.181 0.113 0.064 +6.3 +1.3 +1.5 

 
 

An N patch (width l=4 ao) in stripe formation induces a substantial expansion of 

the first-to-second interlayer distance ∆12 of 6.5%, not greatly at variance from ∆12 in the 

ideal c(2×2) N overlayer (7.8%). Thus, if the N-patch width is sufficiently larger than the 

stripe width, the N-patch functions more like the ideal (infinite) N overlayer, so that the 

effect of a stripe or a trench becomes weak. This is also clearly seen in the average lateral 

Cu1-Cu1 distances, 11-CudCu , which decreases as l increases. Conversely, if the patch 

width is relatively smaller, the effect of a stripe is stronger, as can be seen in the 

relaxations of the top layer:  ∆12 is just 2.0% for a stripe of l = 1 ao and d = 1 ao.  (See 

Table 3).  

In connection with the rumpling model, the displacements of interest are the 

vertical ones of Cu atoms in the top layer, which we present in Fig. 8 for the surface 

structure (l = 4 ao, d = 1 ao). They differ according to location with respect to stripe. 

Inner Cu atoms within the patch in the first Cu layer show a small rumpling (r1 in range 
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of 0.04 − 0.1Å), which decreases even further as the patch width l increases. The most 

significant rumpling appears among Cu atoms at the patch edge adjacent to stripe, as 

shown in Fig. 8. Thus, the effect of any given stripe is limited to the relaxation of the Cu 

atoms at the edge, and quickly dies away towards inner atoms. Therefore, we expect that 

for a much larger island, such as the one observed in experiment (55 Å × 55 Å), any 

rumpling of inner Cu atoms must be negligible. Besides, our calculations show that N 

atoms always sit above Cu atoms by at least 0.1 Å for larger values of l − in contrast to 

the proposed rumpling model, within which the N atoms are either above what it 

characterizes as a lower Cu-atom half plane or below those it takes to be above. We will 

discuss these results further below, in our treatment of surface stress. 

 
FIG. 8. Calculated vertical displacements of Cu atoms in the top layer for the surface 
structure (l = 4 ao, d = 1 ao) shown in Fig. 2d. The displacements here are specified with 
respect to the average height of the first Cu layer. 
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2. Surface stresses of clean Cu(001), ideal N/Cu(001), and clock- and 

rumpling-reconstructed N/Cu(001) surfaces 

          

Table 5. Theoretical surface stress for clean, ideal c(2×2)-N, clock-reconstructed, and 
rumpled Cu(001) surfaces.  
 

Surface Unit cell Analytical stress 
(N/m) 

Numerical stress 
(N/m) 

Other study 
(N/m) 

clean p(1×1) +1.27 +1.31 
+1.4a, 
+1.51b,+1.38c 

+2.10d 

ideal c(2×2)-N c(2×2) -4.20 -4.21 -5.3a 

-4.0 ~ -4.2e 

rumpling (DFT-R1) c(2×2) -5.24 -5.47  
rumpling (DFT-R2) c(2×2) -6.55 -6.68  
clock (DFT-C1) p(2×2) -3.36 -3.61  
clock (DFT-C2) p(2×2) -1.18   

a Ref. 14. DFT-GGA   b Ref. 39. DFT-GGA  c Ref. 40. EAM   d Ref. 41. Modified EAM.  
e Ref. 36. Tight-binding approximation. Surface stress value for clean Cu(001) is assumed to be in range of 
1.3 and 1.5 N/m. 
 

We have calculated surface stresses for several surface configurations introduced 

earlier. These include the hypothetical surface structures of the rumpled and clock- 

reconstructed N/Cu(001) surfaces. We present the results in Table 5, in which a negative 

value means compressive stress (a tendency to expand the surface area), while a positive 

value implies tensile stress (a tendency to contract the surface area). Analytical and 

numerical surface stresses are in excellent agreement, within a maximum deviation of 

0.28 N/m. More importantly, our results square well with those of other studies, both 

theoretical and experimental. (We performed numerical stress calculations selectively as 

a check for our analytical stress results. From now on we report the analytical stress 

results if not otherwise specified.) Our calculated surface stresses for clean Cu(001) and 

c(2×2)-N on unreconstructed Cu(001) surfaces are 1.3 and -4.2 N/m, respectively. 

Yoshimoto and Tsuneyuki reported 1.4 and -5.3 N/m for these surfaces, respectively.14 

The figures for clean surface are nearly identical, but our value for c(2×2)-N/Cu(001) is 

26% smaller than their analogous result. Cf. Table 5. On the other hand, the surface stress 

difference between the N patch and stripe regions reported in previous studies, are 5.5 

N/m,36 6.1 N/m15  and 7.0 N/m.16 While our calculated stress change (5.5 N/m) is in 

excellent agreement with that of Prevot et al. (5.5 N/m)36, all these studies14-16,36 
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unanimously agree that N overlayer induces a large stress change, which happens to be in 

the range of -5.5 and -7.0 N/m.  

Now we discuss the surface stress levels of clock and rumpling models for the 

c(2×2)-N/Cu(100) structure. Applying the constraints discussed in Sec. III.B.1, we 

calculate the surface stress for the two rumpling model structures DFT-R1 and DFT-R2 

to be -5.24 and -6.55 N/m, respectively (See Table 5).  These values constitute a jump of 

1.04 − 2.35 N/m beyond those of the unrumpled ideal surface. That is, the rumpling 

model turns out not to relieve stress, but indeed to intensify it. 

For the clock model, the calculated surface stresses for the two structures DFT-C1 

and DFT-C2 are -3.36 and -1.18 N/m, respectively. Recall from Sec. III.B.1 that for 

DFT-C1 we chose a clock shift value (0.24 Å) between the two experimental values 

reported for lateral displacements (0.14 Å6 and 0.28 Å7), while for DFT-C2 we chose a 

value (0.42 Å) comparable to that for C/Ni(001) (0.4 Å). The stress reduction caused by 

the rotation from undistorted (ideal) Cu(001) increases as the rotation increases. It is 

striking to find the large surface stress on the undistorted surface (-4.2 N/m) is 

substantially relieved by a shift of 0.42 Å in DFT-C2. This demonstrates that the clock 

displacements do indeed contribute to relief of the compressive stress. Nevertheless, 

recall that this clock displacement is not energetically favorable. Just as for the rumpling 

models, as the displacement increases the total energy increases. The total energy 

increase in DFT-C2 is related to the reduced rumpling in the second Cu layer (r2 in Table 

2) from 0.12 Å (DFT-C1) to 0.05 Å (DFT-C2), which registers the interaction strength 

between N and the Cu atom directly below it. Both the N-Cu2 bond and the N-Cu1 bond 

are weakened with Cu rotation (i.e., the bond lengths increase,) resulting in an increase of 

the total energy. These results remind us of the importance of considering both stress-

relief and energetic arguments in discussion of stress-related phase transitions on this and 

other surfaces. Although various stress-relief mechanisms can be imagined, only the 

energetically-favorable ones will occur.38,42 For example, though the clock displacement 

would substantially relieve surface stress for C/Ni(001), O/Ni(001) and N/Cu(001),38 it 

actually takes place only in C/Ni(001), and not in O/Ni(001)  nor in N/Cu(001).43  

 

3. Surface stress of the c(2×2) N/Cu(001) surfaces with stripes 
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The stress-relief mechanisms active in N/Cu(001) system are generally considered 

to involve variations in surface density resulting from different spatial periodicities. The 

stress is in part relieved through expansion of the mean lattice parameter of N-containing 

regions.  We find that the degree of stress relief is dependent on N coverage:  at high N 

coverages surface strains are <2%, whereas at low coverage we have seen an N-N lateral 

expansion as high as 3.5%. Thus the following competing stress-relief mechanisms may 

be at work on the N/Cu(001) surface:   

(a) At low N coverage the clean surface stripes which coexist with c(2×2) patch-like 

structures may be the leading cause of stress relief.1 

(b) At somewhat higher coverage stress relief mechanism may involve the formation of 

missing copper rows in the clean surface regions.3   

(c) At saturation coverage (disappearance of clean surface region) stress relief may come 

through the formation of Cu-vacancy trenches along the <110> direction beneath the N 

overlayer.11 

We present the results of our calculations, in the light of the above. As indicated in 

Figs. 2 and 3, on striped surfaces N patches and stripes are alternating. The dimension of 

the corresponding surface unit cells, l+d, represents the spatial periodicity of stripes at the 

surfaces. Thus, smaller l+d (or simply l if d is fixed) corresponds to larger stripe density 

at the surface. (l = 0 would mean zero-width N-patch – i.e., clean surface.) 

 

   
FIG. 9. Calculated stress levels for striped surface phases with respect to N-patch width l 
for in-phase stripe boundaries. The surfaces considered in this graph have stripe widths, 
d, of 1 ao only.  
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Table 6. Calculated surface stress for striped surfaces with different N-patch width l and 
stripe width d.   
 

Boundary type Unit cell l 
(ao) 

d (ao) 
Analytical stress 
(N/m) 

Numerical stress 
(N/m) 

in-phase 

(2√2×√2)R45° 1 1 +0.72 +0.44 
(4√2×√2)R45° 3 1 -0.35 -0.1 

(5√2×√2)R45° 4 1 -0.90 -0.86 
 

(5√2×√2)R45° 3 2 -0.30  
      

out-of-phase  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
45  3 1.5 -0.38 -0.21 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
45  4 0.5 -2.24 -2.51 

      
 
In striped surfaces both compressive and possibly even tensile stress regions can 

coexist since stripes exhibit differing stress levels to the patches. As we reduce l gradually 

to zero keeping d =1 ao (i.e., we systematically add more stripes with the uniform stripe 

width d), we would expect that the compressive stress in the substrate reduces, eventually, 

to the level within the tensile clean Cu(001) surface at l = 0. In Table 6 we report our 

results of stress levels averaged over the unit cell, for striped surfaces with N patch widths 

l = 4 ao to l = 0 and stripe width d = 1 ao and we show selected results in Fig. 9 for the in-

phase boundary. Clearly, striped surfaces exhibit remarkable stress relief, and as N-patch 

width l decreases the stress relief increases. For small l only, our analytical calculations 

of surface stress suggest that the stress relief is approximately proportional to 1/l.  
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 To extrapolate our results for large l, we develop a model based on the fact that, 

for a regularly striped surface with N-patches of width l and stripes of width d, surface 

stress receives contributions from both. Therefore, for a striped surface we have 

          ,
L
d

L
l)d,l( stripepatchavg σσσ +=                                         (4) 

where σpatch and  σstripe are surface stresses, averaged respectively throughout the N-patch 

and the stripe region and L is the surface length (1D unit cell size) equal to l + d. 

According to equation (4) σavg approaches σpatch as l → ∞ but approaches σstripe as l → 0. 

As an initial guess, if we assume that σpatch  and  σstripe do not change from their initial 

values ( initial
patch

σ  = -4.2 N/m and  
initial
stripeσ  = +1.27 N/m) regardless of l, the resultant surface 

stress,  
avg

σ  , would be 

  
 

.
L
d

L
l)d,l( initialinitialinitial

stripepatchavg
σσσ +=

 
       (5) 

This hypothetical stress is presented by the dotted curve in Fig. 9. This stress turns out to 

be much larger in magnitude (more compressive) than the calculated ones (See Fig. 9). 

This large discrepancy arises because Equation (5) does not include the stress relief in 

σpatch and σstripe contributed by the relaxations of first-layer Cu1-Cu1 bond lengths at the 

surface as a result of the formation of stripes. In reality, σpatch and σstripe  should change 

from their initial values. As a first order approximation, these changes can be expressed as 

follows: 

 )(
d
d

)()( patchpatch
patch
patchpatchinitialpatch

patch 0
patch
0

patch
0patch

λλ
λ
σ

λσλσ
λλ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=

               (6) 

          and 

 ,)(
d
d

)()( stripestripe
stripe
stripestripeinitialstripe

stripe 0
stripe
0

stripe
0stripe

λλ
λ
σ

λσλσ
λλ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=

               (7) 

where patch
0

λ  and patchλ  are the initial and final Cu1-Cu1 bond lengths of the first-layer Cu 

substrate averaged beneath the N patch, while stripe
0

λ  and stripeλ  are the corresponding 

variables averaged within the Cu stripe. As a result, within this 1-D model with uniform 

but distinct patches and stripes, the stress changes initialσσσΔ −=  will be: 
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  patchpatch
patch Y εσΔ =                         (8) 

and 

  stripestripe
stripe Y εσΔ =                            (9) 

, respectively, where 
0

0 )(
λ

λλε −= is the strain – i.e., expressible as the fractional 

expansion of the (average) first-layer Cu-Cu bond length d(Cu1-Cu1), with respect to the 

substrate lattice parameter λo = ao – and  

  
0

patchpatch
patch

d
Y

d λ

σ
ε

⎛ ⎞
= ⎜ ⎟
⎝ ⎠        

                                                                (10) 

  
0

stripestripe
stripe

d
Y

d λ

σ
ε

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                                       (11) 

are (microscopic) area-averaged elastic moduli of the first-layer Cu substrate beneath the 

N patch and at the Cu stripe, respectively. Here we assume that these moduli are fixed, 

and depend solely on the presence or absence of the adsorbed nitrogen. The expansion 

strain ε, under a very simplifying assumption, is taken to be uniform within a patch and 

must be one function of l and d. Also, since (Lλo)/ao = (lλpatch + dλstripe)/ao is conserved,  

     ld patchstripe εε −=                                                             (12) 

As a result, the final form of Equation (4) will be, 

                                         stripeinitial
avgavg L

dYdl ελσσ Δ−= )(),( 0  ,                             (13) 

where stripepatch YYY −=Δ . Note that stress relief initial
avg avg

σσσ −=Δ is linearly proportional 

to strain ε for a given l and d. Note also that while initial
avg

σ  in Equation (5) is in fact just a 

function of one variable l/d alone, we are not certain of the dependence on l/d of 

)d,l(avgσ  in Equation (13), since the exact dependence of εpatch and εstripe upon l and d is 

unfortunately not known. Nevertheless we attempt here to estimate these functional forms 

given some self-evident facts and further assumptions as follows. First, as l → ∞, we 

require that εpatch → 0 since there should be no lateral expansion in an extended 0.5 ML 

N/Cu(001) patch.  Second, each will vary monotonically as the N coverage is varied.  In 

consideration of the d = 1 stripe calculations reported upon in Tables 3, and 6, and in Fig. 
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9, we thus propose that for fitting purposes εstripe and εpatch can take the following 

functional forms: 

  

( ) (1 exp( ))         stripe cl a blε = − − −                                                   (14) 

  

 

( ) (1 exp( ))( )
stripe c

patch l a bll
l l

εε − −= − =                                          (15)  

The parameters a, b, and c can be found by fitting to our calculated values of surface 

averaged lateral expansions within patches. We have utilized the signs such that a, b and c 

are expected to take positive values. For the special case with l = 1, both strains are 

necessarily equal and opposite, and independent of the variable c;  

  ( )( ) - 0.025 1 exp
patch stripe

a bε ε= = = − −

  

                                         (16)

 
The above numerical value is taken from Table 3. Other numerical (d = 1) strain data 

from this table is then fitted using,  

    

(17)                                                   
)exp(1

))exp((1 0.025)(
b

bll
c

patch

−−
−−−=ε

    

 

From εpatch, which is 2.5, 2.2 and 1.9% for l = 1, 3, 4 ao respectively, (c.f. 

 (%) CudCu 11 − in Table 3,) we obtained the best fit parameters a = 0.128, b = 0.214, 

and c = 1.1.  Note that Equation (15) guarantees that as l → ∞, εstripe → - a, that as l → 0, 

εstripe → 0, and that εstripe varies monotonically with l as required.  Given that this fit is for 

d = 1 stripe widths, then a also represents the maximum achievable patch extension, 

which is 0.128 ao.  Equation (15) guarantees also that as l → ∞, εpatch → 0, and that as l → 

0, εstripe → 0. But with an unwise choice of c > 1, the patch strain can be seen to increase 

unphysically with increasing l at small l. This unphysical solution at l < 1 is an artifact of 

our continuum model, in which we treat l as a continuous variable while in reality l could 

take only the multiples of lattice constant ao. 

 Substituting the model form of (14), and the definition of (5), in the 1-D model 

result (13) we obtain 

  
(1 exp( ))

 
1

patch stripe

initial initial c

avg

l Y a bl
l

σ σ
σ

+ + Δ − −
=

+

  

                               (18)

 
Clearly if l is 0, avgσ  = initial

stripe
σ  = 1.27 N/m, and as l → ∞, avgσ  = initial

patch
σ  = -4.2 N/m. In 

addition, by fitting the surface stresses for striped surfaces (σ = 1.27, 0.72, -0.35, -0.9 
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N/m for l = 0, 1, 3, 4 ao, respectively, in Table 6 and by using Equation (17), we find that 

∆Y =151.6 N/m. The values derived here, of course, cannot be expected to precisely 

represent true values of a real surface since we have made no attempt to model the 2-D 

array structure of patches or to consider spatial variations of stresses and strains. On the 

other hand, the 1-D moduli, Ypatch and Ystripe, represent the stiffness of each of the surfaces 

with respect to that of the substrate material. Either one or both of these moduli may 

therefore even be negative in value. Suffice it to say that our determined difference value, 

∆Y = 151.6 N/m, implies that the surface of the patch has a stiffer modulus than that of 

the striped region surface. This observation might be anticipated from consideration of 

the higher near-surface packing density with the included/added N atoms. The fact that 

N-containing patch dimensions (~55Å) are virtually independent of surface coverage 

would also be supportive of a strong asymmetry in the relative stiffness of the surface 

regions. Finally, the results of Ng and Vanderbilt44 imply that for assembly of a surface 

without a modulus asymmetry the spatial distribution of N patches at low N coverages, 

θN,  should be equivalent to the spatial distribution of the other (N-free) phase at a 

complementary N coverage θfree = 0.5 - θN. No such equivalence is observed:  e.g. N-

containing patches tend to be square, while only much smaller, diamond (rotated,) N-free 

patches tend to form at the intersections of N-free stripes. The observed inequivalence of 

N-containing and N-free spatial distributions is thus also supportive of our suggested 

asymmetries in surface region moduli. 

 Finally we can obtain the model )l(avgσ which we display by the dash-dot curve in 

Fig. 9. Apparently, from our model form of σavg, as the stripe density increases (l 

decreases), compressive stresses within the N-patches reduce monotonically. This stress 

relief is achieved by means of expansions within the N-patches and contractions within 

the stripe. Thus, the formation of the stripe boundary is critical in stress relief. On the 

other hand, as the stripe density decreases (l/d increases), stress reduction is not so 

effective. At the experimental length of N-patches (l ≈ 15), σavg is 2.75 N/m, just 65% of 

the level of the ideal c(2x2) N/Cu(001) surface. The slow stress reduction at large l/d is 

because lateral relaxation  (%) CudCu 11 −  is subjected to Equation (12). Accordingly, at 

large N-patch width, stripe width is critically important in stress reduction.  

 We now discuss the striped surfaces with out-of-phase boundaries. As observed in 
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experiment,2,3 the N-patch alignment in the boundary is not unique:  it could be either in 

phase or out of phase. Figure 3 shows the out-of-phase boundaries with different stripe 

widths and Table 6 presents the calculated stress. Comparison of the stress levels for the 

out-of-phase boundaries with those for the in-phase boundaries is illuminating. We see a 

large stress relief from the stripe width of 0.5 ao for l=4 ao to that of 1.5 ao for l=3 ao the 

latter showing ~ 2 N/m more reduction than the former. This remarkable effect of stripe 

width in stress reduction is not obtained for in-phase boundaries, where as we increase d 

to 1 ao for l=4 ao from 2 ao for l=3 ao the increased stripe width gives a fractional 

reduction of only 0.6 N/m. On the other hand, even taking into account the smaller stripe 

thickness in the out-of-phase boundary, the stress level for the out-of-phase boundary 

with stripe width of 0.5 ao is certainly much more compressive than that for the in-phase 

boundary with stripe width of  1.0 ao for l=4 ao: -2.24 vs. -0.9 N/m, respectively. 

However, this is not true for the larger stripe widths, namely, of 1.5 ao (out-of-phase) and 

2.0 ao (in-phase) for l=3 ao: -0.38 vs. -0.30 N/m, respectively:  instead, these exhibit 

similar stress levels. Thus our calculations show relative effectiveness of the in-phase 

boundary for the monoatomic stripe, confirming a model recently proposed by Yamada et 

al. based on STM measurements.3 Overall, stress relief in striped surfaces strongly 

depends on the local geometry of the boundary. 

 

 

4. Surface stresses of the c(2×2) N/Cu(001) surfaces with a missing-

Cu row boundary  
 
Table 7. Calculated surface stress for surfaces with a missing-row boundary.   
 
Surface phase Unit cell l 

(ao) 
d (ao) 

Analytical stress 
(N/m) 

Numerical stress 
(N/m) 

monoatomic-wide 
boundary: along ‚100Ú 

(5√2×√2)R45
° 4 1 +0.83 +1.26 

 
 
Table 8. Theoretical structural parameters of c(2×2) N/Cu(001) surfaces with a missing-
row boundary 

l (ao) d (ao) unit cell  (Å) Cu-dN 1  (Å) r1
  (Å) δ   (%) 12Δ  (%) CudCu 11 −   (%) NdN −

4  1 (5√2×√2)R45° 0.131 0.085 0.115 +6.7 +2.3 +4.4 
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As the N coverage increases towards saturation, the stripe width approaches 

monoatomic-thickness before eventually disappearing. Our stress model in Equation (18) 

indicates that the average compressive stress level in the thinnest striped surface, at the 

experimental N-patch length scale, is substantial (~ 3 N/m). Recently, Yamada et al. 

proposed the possibility of a missing-row formation in a narrow stripe boundary.3 Such a 

missing-row boundary is different from the trench that forms approaching saturation 

coverage in that N atoms are not present in the boundary. In addition, the missing row 

boundary is aligned along the <100> direction. Our model for the missing-row boundary 

is shown in Fig. 4. The surface unit cell used for the calculation of the missing-row 

boundary is of the same dimension as that for the striped structure in Fig. 2d (l=4, d=1). 

We present our calculated surface stress levels in Table 7 as well as the relaxation 

parameters in Table 8. The stress relief achieved by the missing-row boundary is 

remarkable, even the absolute stress level turning from compressive to tensile. As 

compared with the simple stripe boundary of a clean Cu row (l=4, d=1) in Table 6, the 

stress reduction via the missing-row boundary is by far larger. As expected, this large 

stress relief results from the large lateral Cu-Cu and N-N expansions owing to the holes 

created in the boundary together with the absence of N atoms in the proximity. 

The question thus arises: what are the energetic costs for creation of the (simple) 

stripe and missing-row boundaries and thus which is preferred. Hence we calculate the 

boundary creation energy per area for both. For simple stripe, the boundary creation 

energy per area (Ebc) is calculated as:  

 
(19)                                                     Cu(001)]) clean onN  ofrow  E[a -           

 stripes]  withN/Cu(001) 2)× E[c(2-           

 Cu(001)]  E[clean+ N/Cu(001)] 2)×c(2 (E[ideal
A
1 =  Ebc

 

where E[system] represents the total energy of the corresponding system and A is the 

surface area of a used supercell. We used the same surface unit cell to calculate the total 

energy of each system in (19), that is, (5√2×√2)R45°. Thus calculated boundary creation 

energy is equal to the work needed to create a strip boundary and therefore should be 

positive. Similarly, the boundary creation energy per area is calculated for missing-row 
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boundary, as: 

(20)                                        Cu(001)]) clean onN  ofrow  E[a -                    
 Cu(001)] clean on Cu ofrow  E[a -                    

 boundary]row -missing  withN/Cu(001) 2)× E[c(2-                    

 Cu(001)] E[clean*2 + N/Cu(001)] 2)×c(2 (E[ideal
A
1 = Ebc

 

Our calculated Ebc for stripe-boundary  and Ebc for missing-row-boundary are 1.6 and 16.4 

meV/Å2, respectively. Thus, the creation of stripe boundary of clean Cu row is by far 

easier than the creation of missing-row boundary. The inference is that at low coverages 

stripes should form in the boundaries. However, as N coverage increases (and, with it, N-

induced elastic repulsive interaction), the chance of the formation of a missing-row 

boundary must grow as well. Importantly, the surface phase with missing-row boundary 

can be considered a transition phase from striped surfaces to surfaces with the formation 

of trenches at saturation coverage. We will discuss this point in detail below. 

 

5. Surface stresses of the c(2×2) N/Cu(001) surfaces with trenches at 

saturation coverage 

 
Table 9. Calculated surface stress for surfaces with trenches.  
  
Surface phase Unit cell l 

(ao) 
d 
(ao) 

Analytical stress 
(N/m) 

Numerical stress 
(N/m) 

      
trenches only: 
along ‚100Ú 

(2√2×√2)R45° 1 1 -0.40 -0.23 
(5√2×√2)R45° 4 1 -1.58  

      

trenches only: 
along ‚110Ú 

p(2×2) 1/√2  1/√2 +0.23 +0.32 
p(4×2) 3/√2  1/√2 +0.10  
p(6×2) 5/√2  1/√2 -0.42  

      
 

Table 10. Theoretical structural parameters of c(2×2) N/Cu(001) surfaces with trenches 
along <110> direction for different trench width d and l=L-d.  
 

l (ao) d (ao) unit cell  (Å) Cu-dN 1  (Å) r1
  (Å) δ   (%) 12Δ  (%) CudCu 11 −   (%) NdN −

1/√2  1 p(2×2) -0.111 0.0 0.0 +4.0 N/A N/A 

3/√2  1 p(4×2) 0.018 0.106 0.083 +6.9 +4.9 +2.1 
5/√2  1 p(6×2) 0.058 0.043 0.116 +8.9 +3.8 +1.8 
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Table 11. Theoretical structural parameters of c(2×2) N/Cu(001) surfaces with trenches 
along <100> direction for different trench width d and l=L-d.  
 

l (ao) d (ao) unit cell  (Å) Cu-dN 1  (Å) r1
  (Å) δ   (%) 12Δ  (%) CudCu 11 −   (%) NdN −

1 1 (2√2×√2)R45° 0.069 0.007 0.146 +3.9 +6.1 +2.4 
4  1 (5√2×√2)R45° 0.130 0.042 0.114 +6.9 +2.1 +2.1 

 
 
FIG. 10. Calculated stress levels for several c(2×2) N/Cu(001) surface phases with 
respect to the distances between trenches l. The surfaces considered in this graph have 
trench width d, of 1/√2 ao only. For details refer to Table 9.  

 
 

At saturation N coverage, the stress mechanisms so far discussed become 

unavailable. Therefore, some completely new mechanism is required for stress relief. In 

contrast to stripes, trench formation modifies Cu density by working a defect (hole) into 

the substrate superstructure. The N-coverages can thus remain the same, that is, 0.5 ML. 

To examine the effect of trench direction on stress changes, we model trenches, both as 

observed in experiment along the ‚110Ú direction, as in Fig. 5a-c and along the ‚110Ú 

direction, as in Fig. 5d-e. For each case we create a spatial periodicity of trenches by 

removing a row of Cu atoms along the direction in question and calculate the surface 

stresses. We have reported our calculated stress levels in Table 9 and Fig. 10 as well as 

structural parameters in Table 10 for surfaces with trenches along the <110> direction and 

in Table 11 for surfaces with trenches along the <100> direction. By comparing two 

curves in Fig. 10, it is clear that a trench along the <110> direction (triangles in Fig. 10) is 
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much more effective in relieving stress than a trench along the <100> direction (circles in 

Fig. 10). In contrast to what happens with stripes (See Fig. 9), as l approaches zero, the 

stress level of the trench surface does not approach that within a clean surface, but rather 

stays closer to zero. This happens because the Cu vacancy constituting the trench works 

to relax mainly compressive stress since expanding Cu-Cu bond lengths can easily adjust, 

through the trench, to a compressive stress within the substrate.  

It might seem that a comparable effect could be claimed for the trench along the 

<100> direction, which also creates a Cu vacancy. However, the distance between the Cu 

rows across the trench in the latter is √2 times smaller (cf. Fig. 5a) than that created by the 

trench in the former direction (cf. Fig. 5d). In other words, there is more space for 

relaxation of the Cu1-Cu1 lateral bond in the former. As a result, the lateral Cu1-Cu1 

distance d(Cu1-Cu1) for the trench along <110> (for example, 3.8% of the bulk lattice 

constant for l=5/√2 ao, d=1/√2 ao in Table 10) is larger than that for the trench along the 

<100> direction (for example, only 2.1% of the bulk lattice constant for l = 4 ao, d=1 ao 

in Table 11). Moreover, Cu atoms are more densely packed per unit length along the 

<110> direction than any other direction including the <100> direction. Thus, removing 

Cu atoms along the <110> direction is the most effective way to reduce Cu density at the 

surface. All these facts help explain why trenches along <110> directions are more 

effective than trenches along <100> directions at relieving stress. (Note that the same 

arguments can be equally applied to stripe formation, in which case the <100> direction is 

favored over any other direction.) 

To compare the energetics, we calculated the trench-creation energy along lines 

similar to what we did in the case of stripes, in (19) - (20). The surface unit cells used are 

p(2×6) for trenches along the <110> direction and (5√2×√2)R45° for trenches along the 

<110> direction. While the trench densities are comparable, we find trench-creation 

energies are 17.0, and 29.0 meV/Å2 for the <110> and <100> directions, respectively. 

Thus, at this trench density the trench along the <110> is favorable not only in terms of 

stress reduction but also in terms of energetics. While both of the calculated trench-

creation energies are far larger than that for stripe-creation (1.6 meV/Å2), the creation 

energy of a trench along the <110> is comparable to or slightly larger than that of the 

missing-row boundary along the <100> direction. Thus, the preference order of the 
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boundary creation energy is stripe > missing-row > trench along the <110> direction > 

trench along the <100> direction. This order, in fact, may reveal the order in the phase 

transition at the c(2×2) N/Cu(001) surface: While at low N coverage surface stress within 

the N patches is relieved by stripes as N coverage increases up to saturation, since the 

space for stripe formation is increasingly limited, stress relief by stripe formation 

eventually becomes ineffective, so that a new stress relief mechanism appears:  the 

missing-row boundary forms in the narrow monoatomic thick stripe region, thereby 

enabling further stress reduction within the N patches. Finally at saturation coverage, 

trench nucleates along the <110> direction. Note that a trench along the <100> direction 

may not form a c(2×2) N/Cu(001) surface since trenches along the <110> direction 

already effectively relieve compressive stress levels at saturation coverage. In this picture, 

the missing-row boundary is an intermediate phase between stripe phase at subsaturation 

coverage and trench phase at saturation coverage. Since a missing-row boundary and a 

trench are in essence one (i.e. a Cu vacancy), this phase can certainly be considered as a 

concurrent phase of stripes and trenches.  

In fact, this picture is well supported by our HAS experiment, in which the 

averaged lattice parameter within N-patches initially reduces, with increasing N coverage, 

from 3.5% to 1.8% above that of the substrate lattice parameter, indicating that stress 

relief is increasingly constrained with decreasing width of stripes, as occurs as N coverage 

increases. The N-containing patches, however, are not compressed beyond a certain 1.8% 

expansion level. We attribute this critical contraction level to the onset of missing-row 

formation followed by trench nucleation at saturation.  

In summary, trench and stripe formation stress-relief mechanisms are quite 

effective. It is clear, therefore, that the concurrent formation of stripes and missing-Cu 

rows (or trenches) at high N coverages is expected to be by far more effective in relieving 

surface stress. The coexistence of stripes and missing-Cu rows can therefore serve to 

maintain low absolute surface stress levels. As confirmed with our He diffraction 

findings, with increasing N coverage (above 0.35ML) the averaged N-lattice parameter 

would be expected to rise, because the trenches can enable proportionately larger patch 

relaxations. The c(2×2)-C/Ni(100) surface exhibits a similar trend – i.e., zero stress 
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change for C coverages from 0.34 ML to 0.43 ML, during which Ni substrate atoms 

undergo clock reconstruction.43 

 

IV. CONCLUSION 

 

We have calculated the surface stress of c(2×2)-N overlayers on Cu(001) using density 

functional theory within the pseudopotential approximation.  Upon N adsorption, 

substrate Cu atoms in the outermost layer do not undergo as significant vertical 

displacements (rumpling) as proposed in an earlier study, which offered such a model to 

account for stress relief in this system.45 An optimized N-induced c(2×2) structure has a 

net surface stress level of ~ 4 Nm-1. Our calculations demonstrate that rumpling 

displacements within the outermost Cu layer do not act to relieve the compressive surface 

stress.  And though clock displacements could relieve lateral stress levels substantially, 

we find that they are not energetically viable. We find instead that, although such stress is 

somewhat relieved when trenches of missing Cu atoms form along the <100> direction, it 

is most effectively relieved when stripes of clean Cu(001) form along the ‚100Ú direction 

or when trenches of missing Cu atoms form along the ‚110Ú direction.  

He diffraction experiments have shown that the surface strain within N-containing 

patches initially is reduced with increasing patch density. Calculations of stress levels 

within 1-D models for alternating patch and striped structures have indicated that N-

containing regions are less compressible than N-rich regions. This deduction appears also 

to be borne out qualitatively by others’ images of N-containing patch distributions on the 

Cu(001) surface.  

He diffraction also indicates that the N-patch strain levels increase as stresses are 

further relieved with inclusion of the missing Cu row trenches in the surface. We have 

concluded that the coexistence of stripes and trenches serves to limit average surface 

stress levels, by enabling larger lateral relaxations of Cu atoms within the uppermost 

surface plane. 

We hope that our work will motive some more experiments that could directly 

measure the stresses and/or confirm our reconstruction model.  In particular a cantilever 
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based atomic force microscope measurement could help validate some of the predictions 

in this work. 

 

ACKNOWLEDGEMENTS 

This work was supported in part by NSF grant CHE 0718055 and by DOE grant DE-

FG02-07ER15842. The authors would also like to thank David Vanderbilt for discussions 

on spatial distributions of regions with imbalanced surface-stresses. We are grateful to 

Lyman Baker for careful reading of the manuscript and many constructive comments. 

 

REFERENCES 
* Corresponding author. Email: talat@physics.ucf.edu. Fax: 407 823 5112. 

 

1. F. M. Leibsle, C. F. J. Flipse,  and A. W. Robinson,  Phys. Rev. B 47,  15865 (1993). 

2. S. M. Driver, D. P. Woodruff, Surf. Sci. 492, 11 (2001). 

3. M. Yamada, S. Ohno, Y. Iwasaki, K. Yagyu, K. Nakatsuji, and F. Komori, Surf. Sci. 

604, 1961 (2010). 

4. F. M. Leibsle, Surf. Sci. 514, 33 (2002). 

5. F. M. Leibsle,  S. S. Dhesi,  S. D. Barrett,  and A. W. Robinson,  Surf. Sci. 317,  309 

(1994).  

6. H. C. Zeng and K. A. R. Mitchell,  Langmuir 5,  829 (1989). 

7. J. T. Hoeft,  M. Polcik,  M. Kittel,  R. Terborg,  R. L. Toomes,  J. -H. Kang,  and D. P. 

Woodruff,  Surf. Sci. 492,  1(2001).  

8. S. M. Driver,  J-T Hoeft,  M. Polcik,  M. Kittel,  R. Terborg,  R. L. Toomes,  J-H. 

Kang,  and D. P. Woodruff,  J. Phys. Cond. Mat. 13,  L601 (2001). 

9. T. E. Wofford, S. M. York, F. M. Leibsle, Surf. Sci. 522, 47 (2003). 

10. S. Ohno, L. Yagyuu, K. Nakatsuji, F. Komori, Surf. Sci. 547, L871 (2003). 

11. F. Komori,  S. Ohno,  and K. Nakatsuji,  Prog. Surf. Sci. 77,  1 (2004).  

12. C. F. Hirjibehedin, C. P. Lutz, and A. J. Heinrich, Science 312, 1021 (2006). 

13. Y. Yoshimoto and S. Tsuneyuki, Surf. Sci. 514, 200 (2002). 

14. Y. Yoshimoto and S. Tsuneyuki, Appl. Surf. Sci. 237, 274 (2004). 



40 | P a g e  
 

15. C. Cohen,  H. Ellmer,  J. M. Guigner,  A. L'Hoir,  G. Prévot,  D. Schmaus and M. 

Sotto,  Surf. Sci. 490,  336 (2001). 

16. B. Croset,  Y. Girard,  G. Prévot,  and M. Sotto, Y. Garreau, R. Pinchaux, and M. 

Sauvage-Simkin,  Phys. Rev. Lett. 88,  056103 (2002). 

17. J. Ihm,  A. Zunger,  and M. L. Cohen,  J. Phys. C: Solid State Phys. 12,  4409 

(1979).     

18. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 

19. P. Giannozzi et al. J. Phys. Condens. Matter 21, 395502 (2009). 

20. S. Scandolo et al. Zeit. Krist. 220, 574 (2005). 

21. J. P. Perdew,  K. Burke,  and M. Ernzerhof,  Phys. Rev. Lett. 77,  3865 (1996).  

22. H. J. Monkhorst and J. D. Pack,  Phys. Rev. B 13,  5188 (1976).  

23. M. Methfessel and A. T. Paxton,  Phys. Rev. B 40,  3616 (1989).  

24. O. H. Nielsen and R. M. Martin,  Phys. Rev. Lett. 50,  697 (1983); Phys. Rev. B 32,  

3780 (1985); 32,  3792 (1985).  

25. L. V. Goncharova, J. Braun, A. V. Ermakov, et al., Cu(001) to HD energy transfer 

and translational to rotational energy conversion on surface scattering, J. Chem Phys. 

115, 7713 (2001). 

26. M. Sotto and B. Croset, Surf. Sci. 461, 78 (2000). 

27. T. Choi, C. D. Ruggiero, and J. A. Gupta, Phys. Rev. B 78, 035430 (2008). 

28. J. M. Burkstrand,  G. G. Kleiman,  G. G. Tibbetts,  and J. C. Tracy,  J. Vac. Sci. 

Technol. 13,  291 (1976).  

29. G. G. Kleiman and J. M. Burkstrand,  Surf. Sci. 21,  5 (1977).  

30. R. Franchy,  M. Wuttig and H. Ibach,  Zeitschrift für Physik B 64,  453 (1986). 

31. Q. Dai and A. J. Gellman,  Surf. Sci. 248,  86 (1991).  

32. T. Lederer,  D. Arvanitis,  M. Tischer,  G. Comelli,  L. Troger,  and K. Baberschke,  

Phys. Rev. B 48,  11277 (1993). 

33. L. Triguero,  U. Wahlgren,  L. G. M. Pettersson,  and P. Siegbahn,  Theor. Chim. 

Acta 94,  297 (1996). 

34. M. Ricart,  J. Torras,  J. Rubio,  and F. Illas,  Surf. Sci. 374,  31 (1997). 

35. J. Torras, M. Toscano,  J. M. Ricart,  and N. Russo,  Surf. Sci. J. Mol. Catal. A: Chem. 

119,  387 (1997).   



41 | P a g e  
 

36. G. Prévot, B. Croset, A. Coati, Y. Garreau, and Y. Girard, Phys. Rev. B 73, 205418 

(2006). 

37. X.-M. Tao, M.-Q. Tan, X.-X. Zhao, W.-B. Chen, X. Chen and X.-F. Shang, Surf. Sci. 

600, 3419 (2006). 

38. S. Hong,  A. Kara,  T. S. Rahman,  R. Heid,  and K. P. Bohnen,  Phys. Rev. B. 69,  

195403 (2004).  

39. M. J. Harrison, D. P. Woodruff, and J. Robinson, Phys. Rev. B 72, 113408 (2005). 

40. P. Gumbsch and M. S. Daw, Phys. Rev. B 44, 3934 (1991). 

41. J. Wan, Y. L. Fan, D. W. Gong, S. G. Shen, and X. Q. Fan, Modell. Simul. Mater. 

Sci. Eng. 7, 189 (1999).  

42. S. Olivier, A. Sau´l, G. Tre´glia, Appl. Surf. Sci. 212, 866 (2003). 

43. K. O. Ng and D. Vanderbilt, Phys. Rev. B 52, 2177 (1995).  

44. H. Ibach,  Surf. Sci. Rep. 29,  193 (1997).  

45. E. Z. Ciftlikli, L. V. Goncharova, B. J. Hinch, M. Alcantara Ortigoza, S. Hong, and T. 

S. Rahman, Phys. Rev. B 81, 115465 (2010).  

46.  


