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Recently observed microwave resonances in the spectrum of a two-dimensional electon gas under
high magnetic fields in the neighborhood of the fractional filling ν = 1/3 were interpreted as signa-
tures of a weakly pinned Wigner solid. Using the rotating-and-vibrating electron-molecule (RVEM)
theory [Yannouleas and Landman, Phys. Rev. B 66, 115315 (2002); Phys. Rev. A 81, 023609
(2010)], in conjunction with exact diagonalization, a unified microscopic approach is developed for
the interplay between liquid fractional-quantum-Hall-effect (FQHE) states and Wigner-solid states
in the lowest Landau level (LLL) in the neighborhood of ν = 1/3. In contrast to more traditional
treatments, the RVEM theory utilizes a single class of variational wave functions for the description
of both the FQHE liquid and Wigner-solid states, and their coexistence.

Liquid characteristics of the FQHE states are associated with the symmetry-conserving rotations
and vibrations of the electron molecule. The liquid characteristics, however, coexist with intrinsic
correlations that are crystalline in nature, as revealed by the conditional probability distributions.
Although the electron densities of the symmetry-conserving LLL states do not exhibit crystalline
patterns, the intrinsic crystalline correlations are reflected in the emergence of cusp yrast states in
the LLL spectra. These cusp states correspond to fractional fillings in the thermodynamic limit and
are the only ones to provide the global ground states of the system. It is shown that away from
the exact fractional fillings, weak pinning perturbations (due to weak disorder) may overcome the
energy gaps between adjacent global states and generate pinned broken symmetry ground states
as a superposition of symmetry-conserving LLL states with different total angular momenta. The
electron densities of such mixed states (without good angular momentum quantum numbers) ex-
hibit oscillating patterns that correspond to molecular crystallites. These pinned Wigner crystallites
represent finite-size precursors of the bulk Wigner-solid state. It is further shown that the emer-
gence of these molecular crystallites is a consequence of the presence of RVEM components in the
symmetry-conserving LLL states. In addition, it is shown that the RVEM approach accounts for the
Wigner-solid state in the neighborhood of ν = 1, which was also found in the experiments. Utilizing
results for sizes in a wide range from N = 6 to N = 29 electrons, we address the extrapolation to
the thermodynamic limit of the energetics of pinned Wigner crystallites, showing development of a
crystal of enhanced stability due to contributions of quantum correlations. Furthermore, we address
the size evolution of the crystal motifs (culminating in a hexagonal bulk two-dimensional Wigner
lattice).

PACS numbers: 73.43.-f, 71.10.Pm, 73.20.Qt

I. INTRODUCTION

In the early 1980’s, the widely accepted theorical inter-
pretation of the fractional quantum Hall effect (FQHE)
phenomenon1 was formulated around the antithesis be-
tween a new form of quantum fluid respresented by
the celebrated Jastrow-Laughlin wave function2 and the
pinned Hartree-Fock Wigner crystal (HFWC) described
in the work of Fukuyama and Lee3 and Maki and Zotos.4

In the above, the Wigner-crystal (WC) phase has been
described3,4 by broken-symmetry variational wave func-
tions which differ from those used for the quantum
liquid.2

The seminal paper by Laughlin2 pointed to two key
aspects in favor of the “quantum-fluid” interpretation:

(i) The energy per particle of the HFWC varied
smoothly with the filling factor ν in contrast to the
experiment. However, Laughlin’s wave function corre-
sponded naturally to the major fractional fillings [ν =
1/(2p + 1)] that were observed experimentally [as a re-

sult of the conservation of its total angular momentum
L = (2p+ 1)N(N − 1)/2].
(ii) The energy per particle (extrapolated to the ther-

modynamic limit N → ∞) of the Laughlin-liquid state
was substantially lower than that of the Wigner crystal
at ν = 1/3. In the context of the major fractions, a
crossover2 to a Wigner-crystal ground state5 was calcu-
lated to occur only for smaller fractional fillings; initially
the onset of Wigner-solid ground states had been esti-
mated to occur for fillings 1/11 ≤ ν ≤ 1/9, while later
studies6 predicted crossover already for 1/7 ≤ ν ≤ 1/5.
Based on the above studies, signatures of the Wigner

crystal were expected to appear naturally in the range
of smaller filling factors, and indeed over the last two
decades experimental studies of the Wigner crystal in the
lowest Landau level (LLL) seemed to validate the above
crossover prediction.7–10 Furthermore this crossover be-
havior between liquid (larger major fractions) and crys-
tal (smaller major fractions) was also in agreement
with the composite fermion (CF) approach for the liq-
uid states,11–13 including the modifications of the HF
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Wigner crystal referred to as composite fermion Wigner
crystals.13–17 (For an outline of the status of the CF the-
ory for the Wigner crystal, see Sec. VI below.)

In light of the above, the most recent observation18 of
experimental signatures associated with a pinned Wigner
crystal in the immediate neighborhood of ν = 1/3 (as
well as18,19 in the neighborhood of ν = 1) represents
a rather surprising development. In this paper, moti-
vated by the above recent experimental observations, we
further develop the quantal theory of the rotating and
vibrating electron-molecule (RVEM) description.20 The
RVEM incorporates liquid and crystalline correlations
on an equal footing; it was introduced by us in pre-
vious publications20–24 and was shown20 to accurately
describe the full LLL spectrum. In the RVEM theory,
the description of both liquid and Wigner-solid states is
achieved within the framework of a single class of varia-
tional wave functions (see Refs. 20 and 21). This allows
us (see below) to discuss the coexistence of FQHE liq-
uid and Wigner-solid states. Namely, we will show that
the application of this theory to the LLL states in the
neighbohoods of ν = 1/3 and ν = 1 provides a unified

microscopic interpretation (i.e., amenable to direct com-
parisons with exact solutions) pertaining to the emer-
gence of both liquid-like and Wigner-solid behavior. In
addressing the emergence of the Wigner crystalline state
and its coexistence with the FQHE liquid, it is impera-
tive that quantitative estimates of the energy difference
between the liquid and solid states be provided.

The plan of the paper is as follows:

Sec. II presents a brief outline of the RVEM trial func-
tions and shows (in the neighborhood of ν = 1/3) that
the liquid characteristics of the LLL states coexist with
intrinsic crystalline correlations revealed in the condi-
tional probability distributions [CPDs, see Eq. (9)]. Fur-
ther insights into the underlying physical reasons for this
coexistence are given in Secs. II A and II B, where exam-
ples of quantitative analyses of the vibrational content (in
terms of RVEM components) of the symmetry-conserving
LLL states (obtained through exact diagonalization) are
presented.

Sec. III describes (in the neighborhood of ν = 1/3) the
effect of weak pinning (experimentally caused by weak
disorder25) that generates broken-symmetry molecular
(Wigner) crystallites manisfested in the electron density
(ED) of the two-dimensional (2D) system. These broken-
symmetry crystalline states result from the mixing of
symmetry-conserving LLL states with different total an-
gular momenta.

Sec. IV shows that the RVEM theory of liquid ver-
sus Wigner-crystallite behavior can be extended to the
neighborhood of ν = 1.

Our findings are not limited to the case of N = 6 elec-
trons (examined in detail in Secs. II, III, and IV); they
extend to larger sizes, as well. Indeed Sec. V presents
results for sizes in the range from N = 7 to N = 29
electrons. This section also addresses the extrapolation
to the thermodynamic limit of the energetics (energy dif-

ference from the liquid FQHE state) of pinned Wigner
crystallites, as well as the size evolution of the crystal
motifs (culminating in a 2D hexagonal Wigner lattice for
1/N → 0).
Sec. VI offers an outline of the status of composite-

fermion literature regarding the challenging problem of a
Wigner solid in the neighborhood of ν = 1/3.
A summary is given in Sec. VII.
Appendix A recapitulates the remaining analytic ex-

pressions needed to define the RVEM trial wave func-
tions presented in Eq. (5). Furthermore, with the in-
sights gained in this paper and the equivalence20 be-
tween the composite-fermion and the RVEM theories,
Appendix B shows that intrinsic crystalline correlations
are exhibited in the conditional probability distributions
of the composite-fermion trial functions in the neighbor-
hood of ν = 1/3. Moreover, Wigner crystallites (showing
crystalline electron-density oscillations) are obtained via
mixing of CF LLL states through the pinning process
introduced in Sec. III.

II. RO-VIBRATING ELECTRON MOLECULE
AND THE DESCRIPTION OF LIQUID-TYPE

BEHAVIOR

As has been discussed earlier,26,27 the many-body
Hamiltonian (H) of an assembly of N electrons in the
LLL is reduced to its two-body interaction (Coulombic)
component, i.e.,

H int
LLL = N

h̄ωc

2
+

N
∑

i=1

N
∑

j>i

e2

κrij
, (1)

where rij = |ri − rj |, κ is the dielectric constant, ωc =
eB/(m∗c) is the cyclotron frequency, B is the applied
magnetic field perpendicular to the plane, and m∗ is the
effective mass of the electron.
The neutralizing ionic background generates an over-

all external confinement.28–33 For high B, the external
confinement contributes an additional Hamiltonian term
Hcon

LLL (see Sec. III) which influences only the total ener-
gies of the LLL states, but not their many-body struc-
ture. Its effects do not need to be considered in this sec-
tion (such consideration will be postponed to Sec. III).
The eigenstates of the Hamiltonian in Eq. (1) have the

property that they conserve the total angular momentum

L =
∑N

i=1 li. This is instrumental in relating the pre-
cursor states of the finite system to the thermodynamic
filling factors ν via the relation2,34

ν = L0/L, (2)

with

L0 = N(N − 1)/2. (3)

For example, for a system of N = 6 electrons, the lowest-
energy state with a total angular momentum L = 45
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is the precursor that corresponds to the ν = 1/3 filling
factor in the thermodynamic limit; for N = 7 electrons,
the corresponding state is the lowest-energy one with L =
63.
To determine the eigenstates and eigenenergies of the

LLL Hamiltonian in Eq. (1), we employ two complemen-
tary approaches:

1. The usual exact diagonalization (EXD) method
which employs uncorrelated Slater determinants as
the basis for the expansion of the many-body wave
function. The number of Slater determinants in
the expansion is referred to as the dimension of the
EXD. These Slater determinants are made out from
the LLL single-particle orbitals

ul(r) = (2π2ll!)−1/2rleilφe−r2/4, (4)

with lengths in units of the magnetic length lB =
√

h̄/m∗ωc.

2. The rotating-and-vibrating electron-molecule di-
agonalization (RVEM-diag) which was introduced
in Ref. 20. This method employs the technique
of diagonalizing the LLL Hamiltonian in Eq. (1)
by expanding the many-body wave function in a
correlated basis constructed with the general ro-
vibrational electron-molecule (RVEM) trial func-
tions (within a normalization constant)

ΦRVEM
L = ΦREM

L (n1, n2, . . . , nr)Q[Λ]|0〉, (5)

where

Q[Λ] ≡ Qm1

λ1
Qm2

λ2
Qm3

λ3
, (6)

with Λ = λ1m1 + λ2m2 + λ3m3. The number of
RVEM states in the expansion is referred to as the
dimension of the RVEM-diag; for a given L, this
is much smaller20 than the dimension used in the
EXD.

The index REM stands for “rotating electron
molecule.” [The terms Wigner molecule (WM)
and rotating Wigner molecule (RWM) are also of-
ten used; they are equivalent to electron molecule
(EM) and REM, respectively.] Here and in the fol-
lowing, (n1, n2, . . . , nr) denotes an N electron con-
figuration consisting of concentric polygonal rings,
with n1 electrons in the innermost ring, n2 elec-
trons located in the second inner ring, ..., and nr

electrons on the outermost ring; N =
∑r

i=1 ni.
The purely rotational (vibrationless) components
ΦREM

L (n1, n2, . . . , nr) are associated with the cusp
LLL states (see Fig. 1) and have been described in
detail in Refs. 20–22, and 24 (see brief description
in Appendix A). The general RVEM wave func-
tion in Eq. (5) is a product that combines rota-
tions with vibrational excitations, the latter being
denoted by Qm

λ , with λ being an angular momen-
tum; the superscript denotes raising to a power
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FIG. 1. (Color online) Exact-diagonalization energies for
N = 6 LLL electrons. Only the Hamiltonian term contain-
ing the two-body Coulomb interaction [see Eq. (1)] was con-
sidered. (a) LLL yrast states in the range 15 ≤ L ≤ 55.
The cusp states of the yrast line are marked by arrows.
All the cusp states correspond to either a (1,5) (upward ar-
rows) or to a (0,6) (downward arrows) Wigner-molecule ring
configuration.22,24,37 The cusp at L = 45 occurs for both the
(1, 5) and (0, 6) Wigner-molecule configurations. (b) The six
lowest-in-energy states of the LLL spectrum in the immedi-
ate neighborhood of the magic angular momentum L = 45
(ν = 1/3). Energies in units of e2/κlB . The zero of the
energy scale correspond to Nh̄ωc/2.

m. Both ΦREM
L and Q[Λ] are homogeneous polyno-

mials of the complex-number particle coordinates
z1, z2, . . . , zN , of order L and Λ, respectively. The
total angular momentum L = L + Λ. Q[Λ] is al-
ways symmetric in these variables; ΦREM

L is anti-
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symmetric (electrons are fermions). |0〉 is a product
of Gaussians

|0〉 = exp(−
N
∑

i=1

ziz
∗
i /2), (7)

which is usually omitted from the notation.

The vibrational excitationsQλ are given35,36 by the
symmetric polynomials:

Qλ =

N
∑

i=1

(zi − zc)
λ, (8)

where zc is the coordinate of the center of mass and
λ > 1 is an integer positive number.

As was shown in Ref. 20, the RVEM-diag reproduces
the EXD results to within arbitray precision. In this
paper, we are not focussing on this numerical aspect.
Rather we will use the RVEM-diag to analyze the ex-
tent that the vibrational degrees of freedom contribute
to the exact wave functions in the neighborhood of
ν = 1/3, in addition to (and beyond) the vibration-
less REM (the REM contibution by itself was studied
in earlier publications,22,23 and naturally only for the ex-
act fractional filling ν = 1/3). The importance of the
vibrational components derives from the fact that the
Laughlin trial functions (as shown in Ref. 20), as well as
the composite-fermion11,13 ones (see Appendix B), are
expandable in the RVEM basis. This suggests an equiv-
alent description of the “liquid character”12 of the LLL
states within the framework of our quantal RVEM the-
ory. Namely, states with a larger weight of rotational-
symmetry-preserving vibrational components exhibit en-
hanced liquid-like character.
In the RVEM approach, the liquid state of the rotating

and vibrating molecule is characterized by an azimuthally
uniform liquid-like electron density (consistent with the
fact that the RVEM wave functions are eigenstates of
the total angular momentum). Nevertheless crystalline
correlations are manifested in the CPDs, defined as

P (r, r0) = 〈ΦL|
∑

i6=j

δ(ri − r)δ(rj − r0)|ΦL〉, (9)

where r0 is a fixed point in the intrinsic frame of reference
of the rotating molecule. The CPD gives the probability
of finding an electron at position r given that another
one is located at r0.
In this respect, as discussed in Sec. III of Ref. 23,

the rotating/vibrating electron molecule contrasts with
the nonrotating (static) Wigner molecule familiar from
unrestricted Hartree-Fock theories, which does not pre-
serve the total angular momentum. As a result the static
Wigner molecule exhibits crystalline patterns in the elec-
tron density, and thus it is the proper finite analog of the
bulk two-dimensional classical Hartree-FockWigner crys-
tal (considered in the early paper of Maki and Zotos4)

TABLE I. Participation weights (sum of coefficients squared)
of different subspaces to the RVEM-diag wave function for
N = 6 and L = 45. The total dimension of the RVEM-diag
space considered is 44 (149 being the upper limit for the full
TI subspace). The symbol ΦREM

L (n1, n2)Q[Λ] (L = L + Λ)
denotes the subspace spanned by all the vibrations considered
of the form Q[Λ] ≡ Qm1

λ1
Qm2

λ2
Qm3

λ3
with Λ = λ1m1 + λ2m2 +

λ3m3

RVEM subspace Dimension Weight

ΦREM
45 (1, 5) 1 0.4477

ΦREM
40 (1, 5)Q[5] 2 0.2344

ΦREM
35 (1, 5)Q[10] 10 0.1490

ΦREM
30 (1, 5)Q[15] 20 0.0912

ΦREM
45 (0, 6) 1 0.0630

ΦREM
39 (0, 6)Q[6] 5 0.0120

ΦREM
33 (0, 6)Q[12] 5 0.0027

and of its composite-fermion extension14 (composite-
fermionWigner crystal, CFWC). In the RVEM approach,
behavior similar to a Wigner crystal is induced through
pinning, as will be elaborated in Sec. III.

We return now to the description of LLL states in the
neighborhood of ν = 1/3 having a good angular momen-
tum L. In the context of precursor states in a finite sys-
tem, Fig. 2 displays EXD results (for electron densities,
top row, and CPDs, bottom row) for three character-
istic yrast states in this neighborhood. Specifically we
consider N = 6 electrons in the LLL with total angular
momenta L = 45 (ν = 1/3 = 0.333), 47, and 50. The
EXD electron densities [Fig. 2(a-c)] are azimuthally uni-
form, in consonance with the quantum fluid picture of
the LLL states. In contrast, for all three cases, the EXD
calculated CPDs [Fig. 2(d-f)] exhibit crystalline correla-
tions reflecting the predominance of the (1,5) classical
isomer38,39 in the intrinsic frame of a rotating molecule.

The crystalline-like EXD-calculated CPDs for cusp
states (here for L = 45 and L = 50) have been reported
in many earlier studies (see, e.g., Refs. 22, 23, 40–43).
Our EXD calculations (case of N = 6 with L = 47 in
Fig. 2 and results for other N ’s and L’s reported in Ref.
20) demonstrate that the intrinsic crystalline correlations
are present in all states comprising the LLL spectra.

The degree of crystallinity (particle localization) in the
CPDs of Fig. 2 varies from one case to the other. This is
due to the different weight of the vibrational modes Qm

λ
in comparison to that of the vibrationless REM compo-
nent [see Eq. (5)]. Naturally, a larger vibrational compo-
nent in the EXD wave function results in reduced particle
localization and in a relative enhancement of the liquid
character of the LLL state. It is instructive to analyze the
vibrational content of the LLL states in detail with the
help of the RVEM theory. As illustrative examples, we
consider below the cases of N = 6 electrons with L = 45
(ν = 1/3), which is an yrast cusp state) and L = 47 (an
yrast non-cusp state); see Fig. 1.
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FIG. 2. (Color online) EXD electron densities (EDs, top row) and CPDs (bottom row) in the neighborhood of ν = 1/3 for
N = 6 LLL electrons, and for angular momenta (from left to right) L = 45 (ν = 0.333), 47, and 50. The solid dots denote the
position of the fixed point. All three CPDs reveal the predominance (to various degrees) of the (1,5) molecular configuration.
The units for the vertical axes in the CPD panels are arbitrary, but the same for all CPD frames here and throughout the
paper. Lengths in units of lB. The ED units are in 10−2l−2

B . EDs are normalized to the number of particles, N .

A. The case N = 6 with L = 45 (ν = 1/3 = 0.333)

For N = 6 and L = 45, the dimension of the EXD
Hilbert space is 1206; that is the number of uncorrelated
Slater determinants built out of the harmonic-oscillator
states ul(r) [see Eq. (4)]. The translationally invariant20

(TI) subspace spanned by the RVEM wave functions
has a much smaller dimension of 149. Here we analyze
RVEM-diag results (see TABLE I) for a smaller RVEM
basis of dimension 44; this suffices to yield a many-body
yrast state having an 0.990 overlap with the EXD wave
function and an energy relative error of 0.141% referenced
to the EXD energy (i.e., an energy of 2.864187 e2/κlB
compared to the EXD energy of 2.860151 e2/κlB).

The state with L = 45 is a cusp state. As a result the
RVEM component with highest contribution is expected
to have the form of a pure (vibrationless) ΦREM

45 (1, 5),
given that the (1,5) molecular configuration is predomi-
nant in the corresponding EXD-calculated CPD [see Fig.
2(d)]. This expectation is confirmed by the RVEM-diag
results in TABLE I, where the participation weight (coef-
ficient squared) of this ΦREM

45 (1, 5) component is listed as
0.4477. We note that in total, including the vibrational

components, the (1,5) isomer contributes the most with
a participation weight of 0.9223, while the contribution
of the (0,6) isomer is only 0.0777.

In Figs. 3(a) and 3(b), the CPD of ΦREM
45 (1, 5), which

is the largest component in the RVEM-diag at L = 45,
is compared with the CPD associated with the RVEM
diagonalization for the maximum expansion (44 RVEM
states) considered in TABLE I. The CPD of the pure
vibrationless component [Fig. 3(a)] displays a (1,5) iso-
meric configuration with largest radial and azimuthal
variations. The importance of the additional vibrational
modes [containing the Q[Λ] factors] in bringing a close
agreement with the EXD-calculated CPD is apparent
[compare Fig. 3(b) with the EXD-calculated CPD in Fig.
2(d)].

For L = 45 (ν = 1/3 for N = 6), it is natural to com-
pare the behavior of RVEM-diag wave function (with 44
RVEM states, see TABLE I) with that of the Laugh-
lin trial function,2,13,23 in particular due to the fact that
the corresponding energies differ only in the 4th deci-
mal point. Indeed the Laughlin-state energy is 2.86440
e2/κlB compared to the RVEM-diag energy of 2.864187
e2/κlB; this translates to a relative error of 0.148% for
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FIG. 3. (Color online) (a-b) RVEM-diag CPDs for the cusp
yrast state with N = 6 LLL electrons, and L = 45 (corre-
sponding to ν = 1/3). (a) CPD with only one RVEM state
[namely, ΦREM

45 (1, 5) with the largest participation, see TA-
BLE I] included in the RVEM basis. (b) The CPD corre-
sponding to the largest number of RVEM states considered in
TABLE I. (c) The corresponding CPD for the Laughlin wave
function. (d) The radial densities ρ(r) for the EXD (solid line,
online red), RVEM-diag (with 44 states, see TABLE I; dot-
ted line, online brown), and Laughlin (long dashed line, online
blue) wave functions. The solid dots in (a-c) denote the posi-
tion of the fixed point. The CPD in (b) exhibits only minor
differences from the EXD-calculated CPD in Fig. 2(d). The
circled numbers in (a,b) denote the number of states included
in the RVEM expansion. The units for the vertical axes in the
CPD panels are arbitrary, but the same for all CPD frames
here and throughout the paper. Lengths in units of lB . The
units of the vertical axis in (d) are l−2

B . The radial densities
are normalized as

∫∞

0
ρ(r)rdr = N .

the former compared to 0.141% for the latter.

To proceed in more depth with this comparison, we
display in Fig. 3(c) the CPD for the Laughlin state. It
is apparent that the Laughlin CPD deviates from the
CPD associated with the EXD calculation [Fig. 2(d)]
to a larger extent than the RVEM-diag one [Fig. 3(b)];
e.g., the central hump is significantly attenuated in the
Laughlin-state CPD, and this reinforces the impression
of a “liquid state.” Furthermore, Fig. 3(d) compares the
radial electron densities for the EXD, RVEM-diag, and

TABLE II. Participation weights (sum of coefficients squared)
of different subspaces to the RVEM-diag wave function for
N = 6 and L = 47. The total dimension of the RVEM-diag
space considered is 78 (180 being the upper limit for the full
TI subspace). The symbol ΦREM

L (n1, n2)Q[Λ] (L = L + Λ)
denotes the subspace spanned by all the vibrations considered
of the form Q[Λ] ≡ Qm1

λ1
Qm2

λ2
Qm3

λ3
with Λ = λ1m1 + λ2m2 +

λ3m3.

RVEM subspace Dimension Weight

ΦREM
45 (1, 5)Q2 1 0.3549

ΦREM
40 (1, 5)Q[7] 4 0.2283

ΦREM
35 (1, 5)Q[12] 11 0.1485

ΦREM
30 (1, 5)Q[17] 20 0.0400

ΦREM
45 (0, 6)Q2 1 0.1405

ΦREM
39 (0, 6)Q[8] 8 0.0539

ΦREM
33 (0, 6)Q[14] 22 0.0262

ΦREM
47 (2, 4) 1 0.0002

ΦREM
43 (2, 4)Q[4] 2 0.0012

ΦREM
39 (2, 4)Q[8] 8 0.0059

Laughlin states. Again, the deviation between the EXD
and RVEM-diag radial EDs is smaller than the deviation
between the EXD and Laughlin radial EDs. This behav-
ior is in agreement with the fact that the overlap between
the EXD and RVEM-diag states is 0.990, while that be-
tween the EXD and the Laughlin state is smaller,44,45

i.e., 0.982.

B. The case N = 6 with L = 47

For N = 6 and L = 47, the dimension of the EXD
Hilbert space is 1540. The translationally invariant20

(TI) subspace spanned by the RVEM wave functions
has a much smaller dimension of 180. Here we analyze
RVEM-diag results (see TABLE II) for a smaller RVEM
basis of dimension 78; this suffices to yield a many-body
yrast state having an 0.986 overlap with the EXD wave
function and an energy relative error of 0.19% referenced
to the EXD energy.
The state with L = 47 is not a cusp state [see Fig. 1(a)].

As a result the RVEM component with highest contribu-
tion is expected to have the form ΦREM

45 (1, 5)Q2|0〉, given
that the (1,5) molecular configuration is predominant in
the nearest L = 45 cusp state (see Fig. 2), and corre-
sponding to the fact that two units of angular momentum
separate 47 from 45. This expectation is confirmed by the
RVEM-diag results in TABLE II, where the participation
weight of this Q2 component is listed to be 0.3549. We
note that vibrations associated with the (1,5) isomer con-
tribute the most with a (combined) participation weight
of 0.7717, while those associated with the (0,6) isomer
contribute only by 0.2206. The (2,4) isomer has a much
smaller contribution with a weight of 0.0073.
Restating the above, we note that for N = 6 and L =

47 the vibrationless (1,5) component does not contribute
to this LLL state. This is due to the fact that this state is
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FIG. 4. (Color online) RVEM-diag CPDs for the non-cusp
yrast state with N = 6 and L = 47. (a) Only one RVEM
state [namely, ΦREM

45 (1, 5)Q2 with the largest participation,
see TABLE II] is included in the RVEM basis. (b) The CPD
corresponding to the largest number of RVEM states con-
sidered in TABLE II. The solid dots denote the position of
the fixed point. The CPD in (b) exhibits only minor differ-
ences from the EXD-calculated CPD in Fig. 2(e). The circled
numbers denote the number of states included in the RVEM
expansion. The units for the vertical axes are arbitrary, but
the same for all CPD frames here and throughout the paper.
Lengths in units of lB .

a non-cusp yrast state. The component with the largest
participation weight is ΦREM

45 (1, 5)Q2; it corresponds to a
dipolar (Λ = 2) vibration of the largest component [i.e.,
ΦREM

45 (1, 5)] in the nearest cusp state with L = 45.

In Fig. 4, the CPD of the largest component of the
RVEM-diag calculated for L = 47, that is ΦREM

45 (1, 5)Q2,
is compared with the CPD associated with the the wave
function resulting from the RVEM diagonalization for the
maximum expansion (78 RVEM states) considered in TA-
BLE II. While the effect of the dipolar Q2 vibration in
softening electron localization is visible when comparing
to the pure REM CPD [compare Fig. 4(a) to Fig. 3(a)],
the importance of the remaining additional vibrational
modes in bringing a close agreement with the CPD ob-
tained from the EXD calculation is apparent [compare
Fig. 4(b) to the EXD-calculated CPD in Fig. 2(e)].

III. PINNED ELECTRON MOLECULE AND
THE DESCRIPTION OF CRYSTAL-TYPE

BEHAVIOR

The experimentally observed rf or microwave reso-
nances in the spectrum of a 2D electon system under high
B have been interpreted8–10,18,19 as collective modes of
a weakly pinned (due to disorder) Wigner-solid phase.
Within the context of the LLL Hilbert space of a finite
system, pinning can be described by a many-body Hamil-
tonian having the following two terms in addition to the
Hamiltonian in Eq. (1): (i) impurity-type external po-
tentials denoted by Vimp and (ii) an overall confinement

Hamiltonian term denoted by Hcon. Namely,

H = H int
LLL +Hcon + Vimp. (10)

The confinement Hamiltonian accounts for the neutral-
izing ionic background,28–33 and (for a smooth edge) it
can be approximated as being harmonic

Hcon =

N
∑

i=1

1

2m∗

(

pi −
e

c
Ai

)2

+

N
∑

i=1

1

2
m∗ω2

0r
2
i . (11)

In Eq. (11), p is the momentum of an electron and
A(r) = (−By,Bx, 0)/2 is the vector potential.
In the presence of the confinement, the degeneracy of

the single-particle orbitals within each Landau level is
lifted. In the high-magnetic field regime condidered in
this paper (ω0 << ωc), the harmonic-confinement part
involves only the Darwin-Fock levels that form the LLL
band, and it can be approximated26,27 simply as

Hcon
LLL = h̄(

√

ω2
0 + ω2

c/4− ωc/2)L. (12)

Since Hcon
LLL is linear in the total angular momentum L,

it influences only the total energies of the LLL states,
but not their many-body structure [determined solely by
H int

LLL, see Eq. (1)]. We note that the description of pin-
ning below is independent of the precise value of ω0.
The first two terms in Eq. (10) define the “global”

Hamiltonian

Hglb = H int
LLL +Hcon

LLL, (13)

which provides the global ground state of the system at
a given B (in the absence of disorder).
An example of a global LLL spectrum (as a function of

the applied magnetic field) corresponding to the Hamil-
tonian Hglb is displayed in Fig. 5. Specifically, for N = 6
electrons the global LLL spectrum is plotted in the neigh-
borhood of ν = 1/3 (L = 45). It is seen that only cusp
states (see Fig. 1) become ground states [specifically for
L = 40, 45, and 50, associated with the (1,5) molecu-
lar configuration]. The first excited states are separated
from the ground states by relatively large energy gaps
and are composed of these (1,5) cusp states and those
associated with the (0,6) molecular configuration (with
L = 39 and 51, see Fig. 1).46 The remaining LLL states
in Fig. 1, including the rest of the yrast states (e.g., with
L = 41, 42, 43, 44, 46, 47, 48, 49) become higher excita-
tions in Fig. 5.
The effect of the pinning perturbation term Vimp in

Eq. (10) is to mix global states with good L and produce
a wave packet without a good total angular momentum.
For a weak pinning case (small perturbation Vimp), it is
apparent that Vimp can efficiently mix only two global
ground states in the neighbohood of their crossing points
(denoted by arrows in Fig. 5). Thus a weakly pinned
state will have in general the form

ΦPIN(L1, L2;α, β) = αΦL1
+ βeiθΦL2

, (14)
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FIG. 5. The global spectrum as a function of the magnetic
field in the neighborhood of ν = 1/3 for N = 6 LLL electrons.
The confinement was taken as h̄ω0 = 3.6 meV. Note that all
global ground states are yrast cusp states (see Fig. 1), but not
all cusp states become global ground states.22,26,27 The yrast
cusp states with L = 39 (0,6), 40 (1,5), 45 (1,5), 50 (1,5), 51
(0,6) are portrayed by thick dashed-dotted lines. The L = 45
curve relates to ν = 1/3 in the thermodynamic limit. The
numbers next to some curves (for yrast states only) denote the
corresponding total angular momenta. The arrows highlight
a couple of curve crossings (for curves associated with cusp
states). Remaining parameters: κ = 13.1 and m∗ = 0.067me,
corresponding to GaAs. The topology (relative position) of
the curves is independent of the specific value for h̄ω0 (see
text).

where L1 and L2 are the magic angular momenta of the
global ground states and α2 + β2 = 1. The phase θ de-
termines the orientation of the pinned state; we mention
it here for the sake of generality and completeness, but
it is not an essential parameter for the rest of the paper.
It is apparent that the total angular momentum of the

wave packet state in Eq. (14) is not a good quantum
number and is given as the average value

L̄ = α2L1 + β2L2. (15)

Likewise, the energy of the pinned state is given as the
average of the energies E1 and E2 of the superimposed
states

EPIN(L1, L2, α, β) = α2E1 + β2E2. (16)

To demonstrate that weak pinning leads to
formation of a nonrotating Wigner-crystal-type
state, we display in Fig. 6 the electron den-
sities for (a) ΦPIN(45, 50; 1/

√
2, 1/

√
2) and (b)

ΦPIN(45, 51; 1/
√
2, 1/

√
2), where EXD yrast states

have been used for both ΦL1
and ΦL2

. Fig. 6 demon-
strates that the pinning of LLL states leads to formation
of explicitly nonrotating EMs with the molecular
configurations being present in the electron densities
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FIG. 6. (Color online) Electron densities for pinned [see Eq.
(14)] LLL states in the neighborhood of ν = 1/3 for N = 6
electrons. EXD states have been used for both ΦL1

and ΦL2
.

(a) L1 = 45 and L2 = 50 (|L1 − L2| = 5). (b) L1 = 45 and
L2 = 51 (|L1 − L2| = 6). The formation of a pinned (non-
rotating) EM representing a (1,5) molecular configuration in
(a) and a (0,6) molecular configuration in (b) is transparent.
α = β = 1/

√
2. Note that all six humps of localized electrons

are visible in the electron densities of the pinned EM (in con-
trast to five visible humps in the CPDs of a rotating electron
molecule). Lengths in units of lB. The units of the vertical
axes are 10−2l−2

B . The electron densities are normalized to
the number of particles, N .

themselves. This amounts to a “reverse projection”47 −
that is, construction of a symmetry-broken, nonrotating,
pinned state via superposition of symmetry-conserving,
liquid-like states (with good total angular momenta),
which themselves are characterized by azimuthally
uniform electron densities [see Figs. 2(a-c)], but exhibit
intrinsic crystalline correlations manifested in the
corresponding CPDs [see Figs. 2(d-f)].

A remarkable trend revealed by the EDs in Fig. 6
is that the (1,5) molecular configuration corresponds to
a superposition of two EXD yrast states with angular
momenta differing by |L1 − L2| = 5 angular momen-
tum units, while the (0,6) molecular configuration corre-
sponds to a superposition of two EXD yrast states with
angular momenta differing by |L1 − L2| = 6 units. This
motivated us to study the ED patterns in the neighbor-
hood of ν = 1/3 for the superposition of two EXD yrast
states as a function of the difference ∆L = |L1 − L2| (in
particular for ∆L = 2, 3 and 4; see Fig. 7). Of course
the cases portrayed in Fig. 7 involve mixing with ex-
cited states, which are separated from the global ground
state (L1 = 45) by larger energy gaps (see Fig. 5) and
are not expected to materialize in a weak-pinning sit-
uation. Fig. 7 illustrates that these combinations lead
to formation of charge density waves (CDWs) instead of
Wigner-molecular crystallites (as in Fig. 6). The relative
amplitudes of the oscillations in the EDs shown in Figs.
7(a-c), referenced to the WM with ∆L = 5 [Fig. 6(a)],
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FIG. 7. (Color online) Electron densities corresponding to
charge density waves for pinned [see Eq. (14)] LLL states in
the neighborhood of ν = 1/3 for N = 6 electrons (correspond-
ing to angular momenta around L = 45). EXD states have
been used for both ΦL1

and ΦL2
. (a) L = 45 and L1 = 47

(|L1 − L2| = 2). (b) L1 = 45 and L2 = 48 (|L1 − L2| = 3).
(c) L1 = 45 and L2 = 49 (|L1 − L2| = 4). Unlike the cases
in Fig. 6, the EDs here are not commensurate with the (1,5)
or (0,6) classical Wigner-molecule equilibrium configurations;
instead they represent charge density waves. (d) The rel-
ative amplitude of the density oscillations as a function of
∆L = |45 − L2|, referenced to the WM case with ∆L = 5
[which is the strongest one, see Fig. 6(a)]. The numbers above
the vertical bars denote the values of L2. Lengths in units of
lB . The units of the vertical axes are 10−2l−2

B . The electron
densities are normalized to the number of particles, N .

are shown in Fig. 7(d) exhibiting attenuated variations
in the density.
Fig. 8 portrays the electron densities associated with

superposition of pure REM wave functions ΦREM
L (1, 5)

and ΦREM
L (0, 6) for N = 6 electrons. Such REM func-

tions are the strongest components in the RVEM ex-
pansions of the EXD LLL states for L = 45, L = 50,
and L = 51. We note that the magic angular momen-
tum L = 45 is commensurate with both the (1,5) and
(0,6) isomeric structures, while the magic L = 50 and
L = 51 are commensurate only with one isomer, i.e., the
(1,5) for the former and the (0,6) for the latter. Fig.
8 shows that superposition of same-configuration RVEM
functions leads to pinned WMs [see Figs. 8(a) for (1,5)
and 8(d) for (0,6)]. In contrast, superposition of RVEM
functions corresponding to different isomers fails to gen-
erate any crystalline structures. This means that the
emergence of the EXD pinned crystallites (such as in Fig.
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FIG. 8. (Color online) Electron densities for pinned [see Eq.
(14)] LLL states in the neighborhood of ν = 1/3 for N = 6
electrons. Pure REM states ΦREM

L (n1, n2) have been used
for forming the superposition in Eq. (14). (a) L1 = 45 and
L2 = 50; with a (1,5) molecular isomer. (b) L1 = 45 (1,5)
and L2 = 51 (0,6). (c) L1 = 45 (0,6) and L2 = 50 (1,5). (d)
L1 = 45 and L2 = 51; both with a (0,6) isomer. The forma-
tion of a pinned (static) Wigner molecule representing a (1,5)
molecular configuration in (a) and a (0,6) molecular configu-
ration in (d) is apparent. Superpositions of REM functions
belonging to different isomers [(b) and (c)] fail to produce
a pinned crystalline structure. α = β = 1/

√
2. The units

of the vertical axes are 10−2l−2
B . The electron densities are

normalized to the number of particles, N .

6) cannot be explained (or anticipated) without the prior
knowledge of the presence of appropriate (n1, n2, ..., nr)
isomeric RVEM functions as physical components in the
EXD LLL states with good L [see, e.g, the RVEM ex-
pansions in TABLE I and TABLE II, and in Ref. 20].

The above considerations culminate in the following
“selection rules” for the construction of pinned Wigner-
molecule crystallites: (I) The difference between the an-
gular momenta of the superimposed states [e.g., L1 and
L2 in Eq. (14)] should be a multiple of the magic angu-
lar momentum period associated with cusp states [e.g.,
either ∆L = 5 or 6 for N = 6, see Fig. 1(a)]. (II) A given
isomer [e.g., (1,5) or (0,6) for N = 6] must have a partici-
pation weight in both the symmetry-conserving superim-
posed states (for the participation weights for N = 6 and
L = 45, see TABLE I). Naturally, different participa-
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FIG. 9. The global spectrum as a function of the magnetic
field in the neighborhood of ν = 1 for N = 6 LLL electrons.
The confinement was taken as h̄ω0 = 3.6 meV. Note that all
global ground states are yrast cusp states, but not all cusp
states become global ground states.22,26,27 The yrast cusp
states with L = 15, 20 (1,5), 21 (0,6), 25 (1,5), 27 (0,6), 30
(1,5) are portrayed by thick dashed-dotted lines. The L = 15
curve relates to ν = 1 in the thermodynamic limit. The num-
bers next to some curves denote the corresponding total an-
gular momenta. Yrast states in addition to the cusp states
are portrayed by a solid line. The arrows highlight a couple
of curve crossings (for curves associated with cusp states).
Remaining parameters: κ = 13.1 and m∗ = 0.067me, corre-
sponding to GaAs. The topology (relative position) of the
curves is independent of the specific value for h̄ω0 (see text).

tion weights give rise to different strengths of the density
oscillations in the Wigner-molecule crystallites [see Fig.
7(d)].

IV. PINNED ELECTRON MOLECULE IN THE
NEIGHBORHOOD OF ν = 1

The recent experimental observation in the neighbor-
hood of ν = 1 (in addition to the ν = 1/3 neighborhood)
of a microwave resonance in the spectrum of a 2D electon
system under high B has also been associated with the
formation of a weakly-pinned Wigner solid.18,19 In this
Section, following an analysis similar to that used in Sec.
III for the ν = 1/3 neighborhood, we show that crystal-
lite states (precursors to a Wigner solid in the thermo-
dynamic limit) develop also naturally for a finite system
in the neighborhood of ν = 1.
We start by displaying in Fig. 9 the global spectrum for

N = 6 electrons; in this case L = L0 = 15 corresponds
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FIG. 10. (Color online) Electron densities for pinned [see
Eq. (14)] LLL states in the neighborhood of ν = 1 (L = 15)
for N = 6 electrons. EXD states have been used for both
ΦL1

and ΦL2
. (a) L1 = 15 and L2 = 21 (|L1 − L2| = 6).

(b) L1 = 15 and L2 = 20 (|L1 − L2| = 5). The formation
of a pinned (nonrotating) EM representing a (0,6) molecular
configuration in (a) and a (1,5) molecular configuration in (b)
is transparent. α = β = 1/

√
2. Lengths in units of lB. The

units for the vertical axes are 10−2l−2
B . The electron densities

are normalized to the number of particles, N .

to an integral filling factor ν = 1 [see Eq. (2)]. The
global LLL spectrum around ν = 1 (Fig. 9) shares the
same prominent characteristics with that in the neigh-
borhood of ν = 1/3 (Fig. 5), i.e., only yrast cusp states
associated with magic angular momenta (here L = 15,
21, 25, 30) can become global ground states for a given
magnetic field. The rest of the LLL states [derived from
the interaction-only Hamiltoninan H int

LLL; see Eq. (1)] be-
come excited states in Fig. 9 and they are separated by
substantial gaps from the global ground states.
As was pointed out in Sec. III, weak pinning re-

sults in the mixing of two global-ground states in the
neighborhood of crossing points (see, e.g., arrows in
Fig. 9), according to the prescription in Eq. (14). To
demonstrate that weak pinning leads to formation of
a nonrotating Wigner-crystal-type state in the neigh-
borhood of ν = 1, we display in Fig. 10 the elec-
tron densities for (a) ΦPIN(15, 21; 1/

√
2, 1/

√
2) and (b)

ΦPIN(15, 20; 1/
√
2, 1/

√
2), where EXD yrast states have

been used for both ΦL1
and ΦL2

. Fig. 10 shows that the
pinning of LLL states in the neighborhood of ν = 1 leads
also to formation of explicitly nonrotating EMs, with the
molecular configurations being present in the very elec-
tron densities. We stress again the property that a dif-
ference of ∆L = 6 in angular momenta generates a (0,6)
isomer, while a difference of ∆L = 5 generates a (1,5)
isomer; this was also the case in the neighborhood of
ν = 1/3 (see Fig. 6 and the selection rules given at the
end of Sec. III).
We further note that the filling factor corresponding

to the crossing point of the L1 = 15 and L2 = 21 global
curves is 0.857, while the filling factor for the cross-
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ing point of the L1 = 45 and L2 = 50 global curves
is 0.316; here the filling factor is calculated from Eq.
(2). As a result, we find that the pinned Wigner crys-
tallite can appear in a larger range of filling factors away
from ν = 1 (i.e., ∆ν = 0.143) compared to the corre-
sponding range in the neighborhood of ν = 1/3 (where
∆ν = 0.333− 0.316 = 0.017). This trend is in agreement
with experimental observations.18

V. LARGER SIZES

In the previous sections, we addressed the interplay of
liquid and crystalline states by studying in detail EXD
results for the case of N = 6 electrons. Our findings,
however, are not limited to the case of N = 6 electrons,
but extend to larger sizes; this is supported by the EXD
results presented in this section for sizes in the range from
N = 7 to N = 29 electrons.

A. Extrapolation of total energies

In Fig. 11(a), we plot the three lowest global ground-
state energies around ν = 1/3 (for N = 7 electrons)
as a function of the magnetic field B. They correspond
to three cusp states with angular momenta 57, 63, and
69. The magnetic field corresponding to ν = 1/3 is
denoted by B1/3, while those associated with the two
crossing points A and C (left and right of B1/3) are de-
noted as B− and B+, respectively. The AD dashed line
corresponds to the broken-symmetry (pinned) Wigner-

crystallite state ΦPIN(57, 63; 1/
√
2, 1/

√
2) with energy

EPIN = Eglb(L1 = 57)/2 + Eglb(L2 = 63)/2, while the
EC dashed line corresponds to a pinned crystalline state
ΦPIN(63, 69; 1/

√
2, 1/

√
2) with energy EPIN = Eglb(L1 =

63)/2 + Eglb(L2 = 69)/2.
The energy cost (energy gap to be overcome) for mix-

ing the L = 63 ground state at ν = 1/3 with the ex-
cited state L = 57 directly (vertically) above it, yield-

ing the pinned crystallite ΦPIN(57, 63; 1/
√
2, 1/

√
2) is de-

noted by ∆xc [see Fig. 11(a)]. Most importantly, at B−

(or B+) the good-angular momentum states L1 = 57
and L2 = 63 (or L1 = 63 and L2 = 69) are degenerate
and thus the energy cost (gap) for creating the crystal-
lite from a superposition of two angular momenta states
vanishes. The least favorable place (that is, the largest
energy cost) for creating the crystallite is at B1/3, while,
as aforementioned, at B−(B+) the cost vanishes. Since
ν1/3B1/3 = ν−B− = ν+B+ (keeping the electron den-
sity constant), this correlates with the experimentally
observed continuous reduction of the microwave absorp-
tion strength as the filling factor ν approaches the value
1/3, reflecting the enhanced stability of the liquid state
at ν = 1/3 compared to the crystalline one. As one
moves away from B1/3, the energy cost for creating the
crystallite decreases, so that a weaker disorder can act
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FIG. 11. (Color online) (a) The global energy spectrum
[ground state (L = 63) and first excited states (L = 57 and
L = 69)] at ν = 1/3 (and its neighborhood) for N = 7
electrons, as a function of the magnetic field B. The mag-
netic field corresponding to filling factor ν = 1/3 is de-
noted by B1/3, and those corresponding to the crossing
points A and C are denoted by B− and B+. The dashed
lines indicate the energies for the pinned crystalline states
[Eq. (14)] ΦPIN(57, 63; 1/

√
2, 1/

√
2) (AD, left dashed line)

and ΦPIN(63, 69; 1/
√
2, 1/

√
2) (EC, right dashed line). (b-

d) These panels portray the elecrton density of the pinned
crystallite ΦPIN(57, 63;α, β) for various values of the weights
α and β, corresponding to different degrees of pinning at the
points marked in (a) as F and G and on the dashed-line seg-
ment marked in (a) as AD. In (a) the points marked F ,
G and A can be reached via a weak-pinning disorder, while
moving from A to D along the dashed line would require
strong-pinning disorder. The energy cost (gap) for mixing the
ground state (L = 63) with the first excited state (L = 57) at
B1/3 [point marked F in (a)] is denoted as ∆xc. The confine-
ment was taken as h̄ω0 = 3.6 meV. Remaining parameters:
κ = 13.1 and m∗ = 0.067me, corresponding to GaAs. The
topology (relative position) of the curves is independent of
the specific value for h̄ω0 (see Sec. III). Lengths in units of
lB. The units of the vertical axes are 10−2l−2

B . The electron
density is normalized to the number of particles, N .

as a pinning perturbation leading to the formation of the
crystallite, as illustrated in Fig. 11.

The gradual development of a Wigner crystallite in
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FIG. 12. (Color online) Extrapolation of the EXD-calculated
[see Eq. (1)] energy gap per particle, 2∆xc/N , at ν = 1/3
to the thermodynamic limit (1/N → 0). Results are shown
in the range N = 7 to N = 12 (see TABLE III). In the
thermodynamic limit, the energy cost per particle, ∆xc/N ,
to create a pinned crystal at precisely ν = 1/3 is approxi-
mately 0.004e2/κlB . Vertical axis: Energies per particle in
units of e2/κlB . Horizontal axis: 1/N where N is the number
of electrons.

the neighborhood of 1/3 for weak-pinning conditions is
illustrated in Fig. 11(b-d), where the pinned state is il-
lustrated at the points marked F , G, and A, respec-
tively. To simulate the experimental finding of a liquid
state at ν = 1/3 (B1/3), we assume a sufficiently weak
pinning so that the weights α and β in the superposi-
tion αΦL1=57 + βΦL2=63 [see Eq. (14)] can be taken as
α = 0 and β = 1; indeed the electon density in Fig.
11(b) is circularly symmetric corresponding to a liquid
state. We remark that because of the large mixing en-
ergy gap at B1/3, creation of a pinned crystalline state
at ν = 1/3 requires strong-pinning disorder. The elec-
tron density associated with a pinned crystallite shown
in Fig. 11(c) [corresponding to the point marked G in
Fig. 11(a)] was obtained via weak-pinning induced mix-
ing (α = 0.141, β = 0.990). This electron density exhibits
partially developed crystalline features, with a (1,6) elec-
tronic configuration. A fully developed (1,6) crystallite

(obtained for α = β = 1/
√
2) is shown in Fig. 11(d) [cor-

responding to the point marked as A in Fig. 11(a)], which
as aforementioned is associated with a vanishing mixing
gap (i.e., most susceptible to pinning by weak disorder).

To gain further insights into the nature of the Wigner
crystalline states considered in this paper, it is instruc-
tive to extrapolate the EXD-calculated ∆xc as a function
of 1/N (where N is the number of electrons) to the ther-
modynamic limit (i.e., 1/N → 0). Such extrapolation
(see Fig. 12 and TABLE III) allows us to compare our
results with previous treatments of the Wigner crystal
based on variational wave functions in the bulk;4,6,14 the

latter results are summarized in TABLE IV. Since the
results from the bulk wave functions4,6,14 assume that
the kinetic energy of all the electrons is quenched to the
value of the LLL energy, h̄ωc,

30,33 we need to omit kinetic
energy contibutions from ∆xc when making comparisons;
the energies used in Fig. 12 correspond to spectra like the
one shown for N = 6 in Fig. 1. Then 2∆xc is given by
the difference |Eint

1 −Eint
2 | of the electron-electron inter-

action energies [the eigenenergies of the Hamiltonian in
Eq. (1)] associated with the yrast state with (magic) an-
gular momentum L = 3L0 = 3N(N − 1)/2 (ν = 1/3)
and the (magic) yrast state immediately preceeding it;
see detailed description in TABLE III.
Inspection of the values in TABLE IV leads us to con-

clude that the Wigner crystalline state described by our
treatment entails the smaller gap (energy cost) of the
crystal relative to the liquid state at ν = 1/3, compared
to previous treatments. This finding is a consequence of
the quantum nature of our crystalline state, exhibiting a
high degree of electronic correlations. Since ∆xc is largest
at ν = 1/3 [see Fig. 11(a)], the above conclusion extends
to the crystalline states formed (via weak-disorder pin-
ning) in the whole neighborhood of ν = 1/3.

B. Evolution of crystalline patterns

In this section, we discuss the evolution of the pinned
EXD crystalline patterns as a function of size (the num-
ber of electrons N). In Fig. 11, in addition to the
N = 6 system discussed in detail in earlier sections, we
presented results for pinned Wigner crystallites in the
neighborhood of ν = 1/3 for N = 7 electrons; they con-
form to a (1,6) molecular configuration in agreement with
the finite-size crystalline structures for repelling classical
point charges.38,39

Currently, for N > 10, it is not computationally con-
venient to calculate electron densities (or CPDS) in the
neighborhood of ν = 1/3. However, given the fact that
the crystalline isomeric structures are independent of the
filling factor ν (they depend only on the number of elec-
trons N ; compare Sec. III and Sec. IV), we can use EXD
results in the neighborhood of ν = 1 to study the evo-
lution of pinned crystallites with size, without loss of

TABLE III. Interaction energies per particle [see the Hamil-
tonian in Eq. (1)] from N = 7 to N = 12 of the yrast states
entering in the evaluation of the gap 2∆xc/N . (n1, n2) de-
notes the ring configuration. Energies in units of e2/κlB .

N (n1, n2) L1 L2 (3L0) Eint
1 /N Eint

2 /N
7 (1,6) 57 63 0.57409 0.54213
8 (1,7) 77 84 0.63462 0.60373
9 (2,7) 101 108 0.68860 0.66177

10 (2,8) 127 135 0.74287 0.71684
11 (3,8) 157 165 0.79218 0.76915
12 (3,9) 189 198 0.84187 0.81921
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FIG. 13. (Color online) Electron densities for pinned (crys-
talline) [see Eq. (14)] LLL states in the neighborhood of ν = 1
for N = 13 electrons. (a,b) Formation of a pinned (nonrotat-
ing) EM representing a (4,9) molecular configuration is evi-
dent. In (a) L2 − L1 = 9, with the outer ring showing nine
density humps, and in (b) L2 − L1 = 4, showing four density
peaks on the inner ring. α = β = 1/

√
2. Lengths in units of

lB . The units of the vertical axes are 10−2l−2
B . The electron

density is normalized to the number of particles, N .

generality.
To this end, we present EXD calculated electron den-

sities of pinned crystallites for three (larger than N = 6)
sizes, i.e., N = 13 (Fig. 13), N = 20 (Fig. 14), and
N = 29 (Fig. 15).
In accordance with the selection rules described in Sec.

III, the pinned EM for N = 13 resulting from mixing
states with L1 = 136 and L2 = 145 exhibits a 9-electron
outer ring (L2 − L1 = 9) [Fig. 13(a)], and the one with
L1 = 141 and L2 = 145 shows a 4-electron inner ring
(L2−L1 = 4) [Fig. 13(b)]. The superposition of these two
mixed states gives the (4,9) pinned configuration. For
N = 20 (Fig. 14) and N = 29 (Fig. 15), we focus on the
electron configurations in the outer rings of the pinned
EM crystallites; the classical molecular isomers38,39 ex-

TABLE IV. Energy cost per particle at the thermodynamic
limit (compared to the liquid state) for forming a Wigner-
crystalline state at ν = 1/3 according to previous approaches
and the present work. Note that smaller values reflect higher
stability of the crystal. Values corresponding to previous
Wigner-crystal approaches were extracted from Fig. 2 in Ref.
14. Energies in units of e2/κlB .

Approach Energy cost per particle
Maki-Zotosa (Hartree Fock) 0.0245
Lam-Girvinb 0.0183
Yi-Fertigc (composite-fermion WC) 0.0070
Present Workd 0.0040

a Ref. 4
b Ref. 6
c Ref. 14
d see Fig. 12
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N=20e         EXD   EDs         PINNED EMs

FIG. 14. (Color online) Electron densities for pinned [see Eq.
(14)] LLL states in the neighborhood of ν = 1 for N = 20 elec-
trons. In (a) L2 − L1 = 12 corresponding to twelve electrons
on the outer ring, and in (b) L2−L1 = 13, with thirteen elec-
trons on the outer ring. These electron densities correspond
to formation of pinned (nonrotating) EM isomers representing
a (1,7,12) molecular configuration (a) and a (1,6,13) molec-
ular configuration (b). α = β = 1/

√
2. Lengths in units of

lB. The units of the vertical axes are 10−2l−2
B . The electron

density is normalized to the number of particles, N .

hibit the (1,7,12) and (1,6,13) crystalline configurations
for N = 20 and the (4,10,15) and (5,10,14) configurations
for N = 29. It is evident that the quantum mechanical
Wigner configurations of the outer rings in the EXD-
calculated EDs in Fig. 14 and Fig. 15 are in agreement
with the above classical patterns. For these sizes, i.e.,
N = 20 and N = 29, exploration of the molecular con-
figurations of the electrons in the inner rings via EXD
calculations will require consideration of higher angular
momenta and a heavier computational effort, beyond the
scope of this paper.

To summarize: For all sizes (in the range of N = 6
to N = 29) that we considered here (and for angular
momentum values that we have been able to reach, at
the present time, via quantum mechanical EXD calcula-
tions), the pinned crystalline configurations characteriz-
ing the electron densities are in agreement with those ob-
tained from structural optimization of Coulomb repelling
classical point charges confined by a 2D circular har-
monic potential.38,39 This finding is particularly notewor-
thy since the LLL EXD wave functions are determined
solely by the interelectron repulsion [see the Hamiltonian
in Eq. (1)]. As discussed in the context of the classical
calculations (see TABLE I in Ref. 38), these configura-
tions develop gradually a core that possess a hexagonal
Wigner-lattice structure for larger clusters (above hun-
dred particles). The aforementioned agreement supports
the conjecture that the quantum mechanical crystalline
configurations described in this paper may be considered
as embryonic Wigner crystallites extrapolating to the
Wigner haxagonal lattice at the thermodynamic limit.
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FIG. 15. (Color online) Electron densities for pinned (crys-
talline) [see Eq. (14)] LLL states in the neighborhood of ν = 1
for N = 29 electrons. In (a) L2 − L1 = 15 corresponding to
fifteen electrons on the outer ring, and in (b) L2 − L1 = 14,
with fourteen electrons on the outer ring. These electron den-
sities correspond to formation of pinned (nonrotating) EM
isomers representing a (4,10,15) molecular configuration (a)
and a (5,10,14) molecular configuration (b). α = β = 1/

√
2.

Lengths in units of lB. The units of the vertical axes are
10−2l−2

B . The electron density is normalized to the number of
particles, N .

VI. DISCUSSION:
COMPOSITE-FERMION-CRYSTAL

APPROACHES VERSUS THE WIGNER SOLID
IN THE NEIGHBORHOOD OF ν = 1/3

The concept of a composite-fermion Wigner crystal
was described14 through the use of the wave function
approach, i.e., by attaching Jastrow vortices (factors) to
the Maki-Zotos4 Hartree-Fock-crystal wave function. Of
relevance for our purposes here is Fig. 2 in Ref. 14, where
the energies of the CFWC are compared to those of the
Laughlin liquid states2 in the range 0.10 ≤ ν ≤ 0.35
(which includes the FQHE fillings 1/7, 1/5, and 1/3).
From this figure,14 it is evident that the CFWC energy
lies far above the Laughlin-liquid energy in the neighbo-
hood of ν = 1/3. On the other hand the CFWC energy
is competitive with the Laughlin energy in the neighbor-
hood of ν = 1/5, and it becomes lower than the Laugh-
lin energy in the neighborhood of ν = 1/7. The above
trends suggest that the CFWC wave function is a legit-
imate candidate for the case of the Wigner solid in the
neighborhood of ν = 1/5, but not for the Wigner solid re-
cently observed18 in the neighborhood of ν = 1/3. This is
consistent with most of the subsequent studies16,17 asso-
ciated, or related, to CF crystals; indeed, we are unaware
of any CF crystal study that addressed the neighborhood
of ν = 1/3.

The similarity between the IQHE and the FQHE was
used in Ref. 48 to study whether the reentrant IQHE
behavior49 may occur also for CFs in higher CF Landau
levels. According to this analogy, residual interactions
between CF quasiparticles (that is excitations of the CF
fractional quantum Hall effect liquid) may lead to forma-
tion of CF-solid phases, or to second-generation CF liq-
uids. Ref. 48 employed the same Hamiltonian composite-
fermion approach as Narevich al.15 to model the CF solid
and CF liquid phases around the electronic fractional fill-
ings 4/11, 6/17, and 4/19, which are higher than 1/3.
Such an approach (employing a two-component picture,
i.e., CF liquid and its excitations), which has been noted
in Ref. 18, contrasts with our approach where a single
class of wave functions is used for both the liquid and
Wigner-solid states.

Of relevance to our paper here is the fact that Ref. 48
did not produce new CF results in the neighborhood of
ν = 1/3 with respect to the previous composite-fermion
Wigner-crystal studies14 of Yi and Fertig. Furthermore
the Hamiltonian CF approach employed in Ref. 48 ap-
pears not to describe the neighborhood of ν = 1/3, since
it is a weak-coupling perturbative method applicable50

only to cases “when a higher CF LL level (p ≥ 1) is par-
tially filled”; it fails when the composite-fermion filling
factor (νCF) is close to an integer value (corresponding
to a closed CF shell). Note that for an electronic filling
factor ν ∼ 1/3, one has νCF ∼ 1.

The above approaches were explicitly based on a bulk
2D system. However, the liquid-like composite-fermion
trial functions were formulated11,13 in the context of a
finite system. This offered several advantages, an im-
portant one being the ability to perform quantitative
comparisons13 with exact results (e.g., for energies) and
wave functions (e.g., pair correlations and overlaps). The
composite-fermion crystal in Refs. 16 and 17 (henceforth
referred to as CFC, to distinguish it from the aforemen-
tioned infinite CFWC) represents an attempt to formu-
late a CF crystal for a finite system. The important new
element in the CFC approach is the use of the correlated
rotating-electron-molecule21,23 wave function in the place
of the uncorrelated single Slater determinant employed in
the CFWC of Ref. 14. This substitution is nontrivial, and
(in the framework of the CFC theory) it leads to restora-
tion of the fundamental symmetries of the many-body
Hamiltonian (rotational and translational) and to the in-
troduction of additional energy-lowering correlations; a
direct consequence is that the CFC wave function can be
be tested against exact diagonalization calculations, due
to the fact that it has a good total angular momentum,
LCFC.

Because of its use of the REM (which is nonvanishing
only for magic angular momenta, Lm), the CFC is limited
solely to the FQHE filings, and cannot provide descrip-
tions in the neighborhood of fractional fillings. Further-
more, a serious shortcoming of the CFC is its inability
(by construction) to be extended to ν = 1/3. Indeed the
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angular momentum, LCFC, of the CFC is given by16,17

LCFC = N(N − 1)p+ LREM, (17)

where the first term on the right-hand side is 2L0p, p
is a nonnegative integer, and LREM is the REM angular
momentum. At ν = 1/3, one needs to have LCFC = 3L0,
with L0 [see Eq. (3)] being the lowest angular momentum.
Then the only possible value for LREM is L0 (p = 1). The
REM, however, at LREM = L0 coincides23 with the sin-
gle Slater determinant of the maximun density droplet,
and the usual attachment of two CF vortices to this de-
terminant yields11 the liquid Laughlin wave function for
ν = 1/3.
From the above discussion, it follows that the emer-

gence of a Wigner solid in the neighborhood of ν = 1/3
has been a challenging open problem in the composite-
fermion literature up to date. Based on the insights
gained in this paper and the equivalence20 between the
composite-fermion and the RVEM theories, we show (see
Appendix B) that CF wave functions can be used to de-
scribe formation of Wigner crystallites through the pin-
ning process introduced in Sec. III.

VII. SUMMARY

Based on the rotating-and-vibrating electron-molecule
theory20,21 (RVEM), and in conjunction with exact-
diagonalization results, we presented a unified micro-
scopic theory for the interplay between liquid and
Wigner-solid states in the neighborhood of ν = 1/3,
which was recently observed18 experimentally. In the
RVEM theory, the description of both liquid and Wigner-
solid states is achieved within the framework of a single
class of variational wave functions; see Eqs. (5 and (6)
and Refs. 20 and 21.
In the RVEM method, liquid characteristics of the

FQHE states are associated with conservation of the sym-
metries of the Hamiltonian, in particular the total angu-
lar momentum of the RVEM wave functions. For exam-
ple, the electron densities of the RVEMs are circularly
symmetric as expected for liquid states [this is also in
accordance with EXD results for all states of the LLL
spectra, as illustrated for N = 6 electrons in the neigh-
borhood of ν = 1/3 in Fig. 2(a-c)]. The liquid character-
istics of the LLL states, however, coexist with intrinsic
correlations that are crystalline in nature [i.e., exhibit
patterns associated with the equilibrium configurations
of N classical point-like electrons, as revealed via the
conditional probability distributions; see examples in Fig.
2(d-f)]. Further insight into the intrinsic crystalline cor-
relations was gained via a study of the relative weights of
the ro-vibrational excitations of the electron crystallite.
For N = 6 electrons, examples of such relative weights
were presented for states in the neighborhood of ν = 1/3
in Secs. II A and II B.
Although the electron densities of the symmetry-

conserving LLL states do not exhibit crystalline patterns,

the intrinsic crystalline correlations are reflected in the
emergence in the LLL spectra of cusp yrast states with
enhanced stability and magic angular momenta (see Fig.
1); the cusp states are associated with the fractional fill-
ings in the thermodynamic limit [see Eq. (2)]. A direct
consequence of the enhanced stability is the fact that only
states with magic angular momenta (cusp states) can be-
come global ground states, as illustrated in Figs. 5 and 9
for N = 6 electrons and ν = 1/3 and ν = 1, respectively.

Away from the exact fractional fillings, weak pinning
perturbations (experimentally due to weak disorder) can
overcome the energy gaps between adjacent global states
(in particular near their crossing points; see Fig. 5 and
Sec. V) and generate a mixed, broken symmetry (pinned)
ground state, that is a linear superposition of symmetry-
conserving LLL states with different total angular mo-
menta. A central finding of this paper is that such
pinned states do exhibit explicitly a crystalline pattern
in the electron density (nonrotating, pinned molecular,
or Wigner, crystallites); see, e.g., Figs. 6 and 8). These
pinned crystallites represent finite-size precursors of the
Wigner solid in the thermodynamic limit (see Sec. V).
Furthermore, we illustrated that the emergence of the
pinned molecular crystallite is a direct consequence of
the contributions of RVEM components in the symmetry-
conserving LLL states themselves; see discussion in text
related to Fig. 8.

Along with the molecular crystallites (see Figs. 6 and
8), other charge-density-wave patterns may develop, orig-
inating from the absence of certain commensurability
conditions between the angular momentum states that
get coupled in the pinning process (see Fig. 7). How-
ever, they correspond to coupling of the global ground
states with excited global states, and therefore are less
likely to materialize for a case of weak pinning, because
of the large energy gaps between these states. Selection
rules governing the formation of pinned Wigner crystal-
lites were formulated at the end of Sec. III.

In addition to the neighborhood of ν = 1/3, we also
demonstrated that the RVEM approach can account in
a similar unified manner for the interplay between liquid
and Wigner solid states in the neighborhood of ν = 1;
see Sec. IV.

We note again here that our findings are not limited
to the case of N = 6 electrons only. In Sec. V, exact-
diagonalization results were presented in a wide range of
sizes, from N = 7 to N = 29 electrons. The extrapo-
lation displayed in Fig. 12 gave a value for the energy
gap representing the stability of the bulk Wigner crystal.
This value was compared to previously calculated esti-
mates by other methods in TABLE IV; it was found to
reflect a Wigner crystal of higher stability due to a large
degree of quantum correlations. Furthermore, we showed
in Sec. V that the pinned crystalline patterns obtained
via our quantum mechanical calculations evolve (for all
sizes considered in this paper, i.e., from N = 6 to N = 29
electrons) according to the well established sequence of
configurations found for classical point charges, leading
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to formation of Wigner-crystalline hexagonal cores for
N > 100 electrons.

As aforementioned, the RVEM theory described here
and applied to the analysis of the appearance of Wigner
crystalline patterns in the neighborhood of ν = 1/3 em-
ploys a single class of variational wave functions for the
description of both the correlated liquid and Wigner-
solid states. This theory differs in an essential manner
from composite-fermion approaches13 (including Laugh-
lin’s original formulation2) which utilize different classes
of variational wave functions for representing the liquid
versus Wigner-solid states. Specifically, in the CF ap-
proaches, FQHE states are associated with CF liquid
states (defined in the context of N LLL electrons and
preserving the total angular momentum11,13), while solid
states are described by CF Wigner crystals;14 the latter
violate the conservation of the total angular momentum
(broken symmetry) and are a modification (the attach-
ment of Jastrow factors) of the Maki-Zotos4 Wigner crys-
tal for an infinite 2D system (defined on a triangular lat-
tice at the mean-field Hartree-Fock level).51

In Sec. VI, we discussed the open challenges faced by
the composite-fermion literature13–17,48 in addressing the
emergence of the Wigner-solid state in the neighborhood
of ν = 1/3. Based on the insights gained in this pa-
per and the equivalence20 between the composite-fermion
and the RVEM theories, we show (see Appendix B) that
CF wave functions can be used to describe formation
of Wigner crystallites through the pinning process intro-
duced in Sec. III.

The physical picture and formalism developed in this
paper is expected to apply to other filling fractions.
While future experimental and theoretical studies will be
needed, our work suggests that liquid-Wigner-solid coex-
istence may occur for fractions in the neighborhood of
which a Wigner crystal has not been seen as yet. Inves-
tigations of these issues with a variable (tunable) degree
of disorder would be most valuable.
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Appendix A: Purely rotational trial wave functions
(REMs)

In this Appendix, we recapitulate the analytic formulas
for the vibrationless REM trial wave functions entering
into the general expression for the RVEM functions [see
Eq. (5)]. The REM expresions for any (n1, n2, . . . , nr)
multi-ring configuration (with the number of electrons
N =

∑r
q=1 nq, nq being the number of electrons in the

qth ring) were derived earlier in Refs. 20–22.
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FIG. 16. (Color online) Composite-fermion CPDs for the cusp
yrast states for N = 6 LLL electrons with (a) L = 30 (ν =
1/2) and (b) L = 39. The compact CF trial functions for these
L’s were calculated for a disk geometry according to Sec. 4.3
of Ref. 53. The solid dots denote the position of the fixed
point. The units for the vertical axes are arbitrary, but the
same for all frames portraying CPDs throughout the paper.
Lengths in units of lB . Note the (1,5) and (0,6) molecular
patterns for L = 30 (a) and L = 39 (b), respectively.

Assuming that L1 and L2 are the partial angular mo-
menta for each ring (L1 + L2 = L), the final two-ring
(n1, n2) REM expression is

ΦREM
L (n1, n2)[z]

=

l1+l2+...+ln1
=L1,ln1+1+ln1+2+...+lN=L2

∑

0≤l1<l2<...<ln1
<ln1+1<...<lN

C(l1, l2, . . . , ln1
)

× C(ln1+1, ln1+2, . . . , lN )det[zl11 , zl22 , . . . , zlNN ], (A1)

where the zi’s are complex-number particle coordinates
and “det” denotes a Slater determinant. The coefficients
C(l1, l2, . . . , ln1

) and C(ln1+1, ln1+2, . . . , lN ) are calcu-
lated by applying to each one of them the single-ring
[(0, N)] expression

C(l1, l2, . . . , lN ) =
(

N
∏

i=1

li!

)−1




∏

1≤i<j≤N

sin
[ π

N
(li − lj)

]



 . (A2)

It is straighforward to generalize the two-ring REM
expression in Eq. (A1) to more complicated or simpler
[i.e., (0, N) and (1, N − 1)] configurations by (I) consid-
ering a separate factor C(lnq−1+1, lnq−1+2, . . . , lnq−1+nq

)
for each qth ring; (II) restricting the summation of the
associated nq angular momenta, i.e., lnq−1+1 + lnq−1+2 +

. . .+ lnq−1+nq
= Lq, with

∑r
q=1 Lq = L.

The analytic expressions for ΦREM
L (n1, n2, . . . , nr)[z]

describe pure molecular rotations associated with magic
angular momenta

L = Lm ≡ L0 +

r
∑

q=1

nqkq, (A3)



17

-4
 0

 4
-4

 0

 4

L  =39 + L  =45
1  2

0

2

4

6

8

10

x

y

EDs PINNED CFs

FIG. 17. (Color online) Electron densities for pinned [see Eq.
(14)] LLL states in the neighborhood of ν = 1/3 for N = 6
electrons. Compact CF states have been used for both ΦL1

and ΦL2
. L1 = 39 and L2 = 45 (|L1 − L2| = 6). The com-

pact CF wave function at L = 45 coincides with the Laughlin
trial function.2 The formation of a pinned (nonrotating) EM
representing a (0,6) molecular configuration is transparent.
α = β = 1/

√
2. Note that all six humps of localized electrons

are visible in the electron densities of the pinned CFs (in con-
trast to five visible humps in the CPDs in Fig. 16). Lengths
in units of lB . The units of the vertical axis are 10−2l−2

B . The
electron density is normalized to the number of particles, N .

with kq, q = 1, . . . , r being nonnegative integers.
A central property of these trial functions is that iden-

tically

ΦREM
L (n1, n2, . . . , nr)[z] = 0 (A4)

when

L 6= Lm (A5)

This selection rule follows directly from the point group
symmetries of the (n1, n2, . . . , nr) multi-ring polygonal
configurations. Indeed under condition (A5) the C(. . .)
coefficients are identically zero. In other words, purely
rotational states are allowed only for certain angular mo-
menta that do not conflict with the intrinsic molecular
point-group symmetries.

Appendix B: Intrinsic crystalline correlations in
composite-fermion wave functions for ν > 1/5

Another class of trial functions that have been shown
to approximate well (in energy) the EXD yrast cusp
states are the composite-fermion ones;13 here we refer in

particular to the compact11 (also referred to52 as mean-
field) ones. For larger fractional fillings (ν > 1/5, includ-
ing ν = 1/3), it has been ascertained12,13 that the com-
pact CF functions represent paradigms of liquid states
devoid of any intrinsic crystalline correlations. Since for
N = 6 electrons ν ≥ 1/5 corresponds to angular mo-
menta L ≤ 75, the CF CPDs (for L = 30 and L = 39)
displayed in Fig. 16, however, disagree with the above
assertion. (The CF wave functions were calculated ac-
cording to Sec. 4.3 of Ref. 53.) Indeed, well formed crys-
talline correlations corresponding to the (1,5) molecular
isomer (commensurate with a magic angular momentum
L = 30) and the (0,6) molecular isomer (commensurate
with a magic angular momentum L = 39) are present in
these CF CPDs. This is in agreement with the finding in
Ref. 20 that all LLL functions with good L are equivalent
to rotating and vibrating Wigner molecules.
The above suggests that the superposition of CF wave

functions should also yield pinned Wigner crystallites.
This conclusion is explicitly confirmed in Fig. 17, where
the electron density (showing well developed crystalline
oscillations) of a pinned CF state is displayed for a case
in the neighborhood of ν = 1/3 [i.e., for a state con-
structed by mixing the compact CF states for L1 = 39
and L2 = 45, see Eq. (14)]. We note that the compact CF
state for N = 6 and L = 45 coincides with the Laugh-
lin trial function.2 We further note that L1 − L2 = 6,
and that accordingly the crystalline configuration in Fig.
17 corresponds to the (0,6) classical molecular isomer.
This demonstrates that the selection rules for formation
of Wigner crystallites (discussed at the end of Sec. III)
apply to the CF trial functions as well.
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