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Electronic and excitonic properties in the silicon cluster Si20 are studied using the many-body
Green’s-function theory. The implementations of the self-consistencies of both the one-particle
Green’s function G and the reducible polarizability Π are discussed. Numerical results of the full self-
consistency (FSC) and partial self-consistency (PSC) of the reducible polarizability Π are presented.
It is found that the FSC implementation, where both the energies and the amplitudes of Π are
updated, is numerically unstable. On the other hand, the PSC implementation, where only the
energies are updated, is a stable process. The quasiparticle lifetimes in Si20 are calculated by the
GWΓmethod and can be categorized into a high-energy regime and a low-energy regime. In the high-
energy regime, the scaled lifetimes of electrons and holes in Si20 are calculated to be 104 and 30 fs eV2

respectively, which are close to the corresponding bulk theoretical values in literatures. In the low-
energy regime, the scaled quasiparticle lifetimes are found to be longer than those in the high-energy
regime, which is attributed to the absence of electronic states around the Fermi level available for the
transitions of hot electrons (holes). The excitonic lifetimes in Si20 are calculated using the dynamic
Bethe-Salpeter equation (DBSE). It is found that excitonic lifetimes in a prolate structure such as
Si20 are irrelevant to the polarization direction of the incident photons, and are solely dependent
on the excitonic energies. An approximate method for calculating excitonic lifetimes based on the
weighted summation of lifetimes of electrons and holes is proposed. It is demonstrated that with a
much less computational cost than DBSE, the approximation can produce results closely following
those of DBSE.

PACS numbers: 36.40.Cg, 36.40.Vz, 73.22.-f, 73.22.Lp
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I. INTRODUCTION

Electronic and optical properties are extremely important information for the investigations and applications of
semiconductor nanoclusters (SCNCs).1 Electronic energy levels are mostly concerned in building SCNC-based devices,
where energy levels need to be appropriately aligned across the heterojunctions composed of SCNCs and other
materials.2 Optical features of SCNCs represent the responses of SCNCs to the incident photons and play a key
role in various optics-related applications of SCNCs.3 Both electronic and optical characteristics of SCNCs can be
obtained through spectral measurements. More specifically, electronic energy levels can be determined by the direct
and inverse photoemission techniques,4 while optical properties are usually characterized by various absorption and
emission spectra.5

From the theoretical aspect, universal first-principles methods for the prediction of electronic and optical behaviors
of materials are indispensable gears for the researches of SCNCs, especially when knowledge about the systems
investigated is limited. Over the past several decades, the density functional theory (DFT) has been widely used
for calculating ground-state properties of molecules and solids.6 Within the framework of DFT, the original many-
body system is replaced by a non-interacting reference system composed of independent particles. This simplification
reduces the computational cost significantly, and thus makes DFT a prevailing simulation method. However, a well
known issue of DFT is its tendency to underestimate the electronic bandgaps. One proper approach for calculating
the properties of electrons, or more precisely, quasiparticles (QPs) including quasielectrons and quasiholes, is the
GW method based on the many-body Green’s-function theory.7–9 The GW method has been proven to be accurate
for the simulations of electronic structures of a vast range of materials.8–11 The superiority of GW over DFT arises
from the fact that the non-local and dynamic features of the self-energy are preserved for each QP state in the GW
implementation, but not in the DFT scheme.
The interaction between SCNCs and incident photons usually involves the particle-hole excitations (or excitons) of

the systems, and thus can not be correctly formulated by any method based on one-particle picture, including DFT
and GW . An economic solution for the problem is the time dependent DFT (TDDFT), a method frequently used
together with the adiabatic local density approximation (TDLDA).12 TDLDA often yields right excitonic energies for
finite systems. Another powerful but more cumbersome approach based on the many-body Green’s-function theory
is the Bethe-Salpeter equation (BSE).12–14 BSE explicitly includes the exchange and dynamic screened Coulomb
interaction between the two particles considered, and is the standard for the simulation of excitons in bulk materials
where TDLDA usually fails. Furthermore, the frequency-dependent kernel of BSE enables it to capture the dynamic
features of excitons, which is also beyond the scope of TDLDA.
Although electronic and excitonic energies in different SCNCs have been investigated by the GW and BSE

methods,15,16 efforts on electronic and excitonic lifetimes in SCNCs are relatively rare. In this paper, the term
”lifetime” exclusively means the time scale of the electron-electron inelastic scattering in a system. Decay pathways
due to non-radiative and radiative processes are not taken into account. For a hot electron (hole), the inverse of its
inelastic lifetime correspond to the rate that this electron (hole) transfers its energy to the remaining electrons in the
system through the inelastic scattering process. This process is the dominant decay pathway for electrons (holes) with
large excitation energies. The decay rate can be evaluated as the imaginary part of the complex QP energy in the
GW method,17,18 which has incorporated such a dynamic characteristic of the system into the frequency-dependent
self-energy term. The lifetime data of electrons shall be of interest for electronics based on SCNCs. Furthermore,
within the theoretical framework of the many-body Green’s function theory, the calculation of the electronic lifetimes
in an SCNC is the starting point for the evaluation of the excitonic lifetimes in the same system, which will also be
elucidated in this paper.
The inelastic lifetime of an exciton represents the rate that the exciton transfers its extra energy to the remaining

electrons in the system, which is similar to that of electrons. Yet, the lifetimes of excitons are generally more important
than those of electrons, since charge-conserved electron-hole excitations (N → N) are more frequently encountered
than charge-non-conserved quasiparticle excitations (N → N ± 1) in practical applications of SCNCs. (Here N is
the initial number of the electrons in the system investigated.) A promising application of SCNCs where excitonic
lifetimes are an important factor is the efficiency enhancement for single-junction photovoltaic devices based on the
multiple exciton generation (MEG) process in SCNCs.19 The mechanism of MEG is that an initial energetic exciton
created by the incident photon could generate multiple excitons via the impact ionization process and thus increase
the photocurrent of the photovoltaic devices. The rate of an MEG (or impact ionization) process is determined by the
rate that an exciton transfers its energy partially to other electrons by generating other excitons in the same system.
In other words, the rate of MEG is essentially the excitonic inelastic relaxation rate, or the inverse of the excitonic
inelastic lifetime.
Investigations for MEG processes in different SCNCs have been reported in recent years,20,21 yet there is still a

controversy about the relation between the spatial confinement and the enhancement of MEG efficiency.22,23 The
difficulty is mostly due to the presence of the nonradiative relaxation that competes with the MEG process. The



3

phonon-assisted nonradiative relaxation process is also size dependent and manifests in experimental data, which
complicates the explanation of these data. Therefore calculations for MEG rates based on first-principles theoret-
ical simulations could be very useful to distinguish the two processes and to explain experimental data. With the
capability of fully describing the two-particle interaction, BSE is a powerful tool for the simulation of MEG rates,
or excitonic inelastic lifetimes. However, calculation of excitonic lifetimes within the framework of the many-body
Green’s-function theory requires the solution of the dynamic BSE (DBSE), which includes frequency-dependent terms
and is computationally expensive. This seriously hinders the application of the method for the simulation of MEG
rates in SCNCs.
In this paper, excitonic inelastic relaxation rates in a simple semiconductor cluster, Si20, is investigated using DBSE.

A simple method is proposed for the estimation of the excitonic lifetimes based on TDLDA and GW implementations,
instead of solving the time-consuming DBSE. Results obtained by the approximation method are very close to those
obtained by the DBSE. This reduces the computational cost dramatically without significant loss of accuracy for
calculation of excitonic lifetimes. Numerical issues such as the self-consistencies of the one-particle Green’s function
G and the reducible polarizability Π are also addressed.

II. METHODOLOGY

A. Quasiparticle equation

The electronic energies of a many-body system can be obtained by solving the quasiparticle (QP) equation

(T + Vext + VH)φi(r) +

∫

dr′Σxc(r, r
′;Ei)φi(r

′) = Eiφi(r), (1)

where T is the kinetic energy operator, Vext the external potential, VH the Hartree potential, Ei and φi the energy
and wavefunction of the ith QP, and Σxc(r, r

′;Ei) the exchange-correlation self-energy operator. The QP equation is
solved based on the results of the density functional theory (DFT)

(T + Vext + VH)ψi(r) + Vxc(r)ψi(r
′) = ǫiψi(r), (2)

where ǫi and ψi are the eigenvalue and eigenfunction of the ith Kohn-Sham (KS) particle respectively, and Vxc the
exchange-correlation potential. With the assumption that the KS eigenfunctions agree well with the QP wavefunctions
in most cases,10 QP energies are usually solved with perturbative method to the first order

〈ψi|Σxc(r, r
′;Ei) |ψi〉 − 〈ψi|Vxc(r) |ψi〉 = Ei − ǫi. (3)

According to Hedin’s equations7, Σxc = iGWΓ (with ~ = 1), where Γ is the vertex function and G is the one-particle
Green’s function:

G(r, r′;E) =
∑

n

ψn(r)ψn(r
′)

E − En + iηn0+
, (4)

where the coefficient ηn is +1 for unoccupied states and −1 for occupied states. W is the screened Coulomb interaction
which can be written as W = V + VΠV . Here V (r, r′) is the Coulomb interaction, and Π(r, r′;E) is the reducible
polarizability which represents the linear response of the electronic density to the external perturbative potential, and
can be expressed as the summation of well-defined resonant modes24

Π(r, r′;E) = 2
∑

s

ρs(r)ρs(r
′)

×

[

1

E − (ωs − i0+)
−

1

E + (ωs − i0+)

]

, (5)

where

ρs(r) =
∑

v,c

Rv,c
s ψ∗

v(r)ψc(r). (6)

The energies ωs and amplitudes ρs(r) of the reducible polarizability Π are obtained by solving the equation Π =
P + PVΠ, where P = −iGGΓ is the irreducible polarizability. Both Σxc and Π (or W ) include the vertex function
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Γ. It has been shown that a consistent choice of Γ is necessary for the QP calculation.25 In this paper, Γ is obtained
by solving the equation Γ = 1+ (∂Σ0/∂G)GGΓ in the framework of the local density approximation (LDA), which is
equivalent to the time-dependent LDA (TDLDA) for Π and GWΓ for Σxc. More details can be found in Ref. 8 and 9.
The self-energy term 〈ψi|Σxc |ψi〉 in Eq.(3) can be separated as an energy-independent exchange part 〈ψi|Σx |ψi〉

and an energy-dependent correlation part 〈ψi|Σc |ψi〉. The latter is evaluated as26

〈ψi|Σc |ψi〉 =
∑

n

∑

s

an,s,i
E − En − ωsηn

, (7)

where an,s,i equals 2 〈ψiψn |(V + fxc)| ρs〉 〈ρs |V |ψiψn〉 in the GWΓ implementation.
The imaginary parts of the QP energies can be obtained by applying analytical continuation of Σc(r, r

′;Ei) in
the complex energy plane, and the complex QP energy Ei − iηiγi is calculated by solving a complex equation set
numerically

Re 〈ψi |Σxc(Ei − iηiγi)|ψi〉 − 〈ψi |Vxc|ψi〉 = Ei − ǫi, (8a)

|Im 〈ψi |Σxc(Ei − iηiγi)|ψi〉| = γi. (8b)

Then the damping rate of a hot electron (hole) due to the inelastic electron-electron scattering is evaluated as27

τ−1
i = 2 |Im 〈ψi|Σxc(r, r

′;Ei) |ψi〉| , (9)

where τi is the lifetime of the ith QP.

B. Bethe-Salpeter equation

An excitonic state of a system with N electrons essentially involves two particles, which can be investigated by the
Bethe-Salpeter equation (BSE)13,14

L(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′)

+

∫

d(33′44′)G(1, 3)G(3′, 1′)Ξ(3, 4′; 3′, 4)L(4, 2; 4′, 2′), (10)

where L(1, 2; 1′, 2′) is the two-particle correlation function, and the integral kernel Ξ = δΣ/δG. In Eq. (10) a
integer label is assigned to a set of space, spin and time variables, namely (1) = (x1, t1) = (r1, σ1, t1). The Fourier
transformation of the terms related to the particle-hole excitations of L can be written as14,28

Lph(x1,x2;x1′ ,x2′ |t1, t1′ ;ω) =

∫ +∞

−∞

dt2e
−iωt2Lph(x1t1,x2t2;x1′t1′ ,x2′t

+
2 )

= −ie−iω(t1−|τ1|/2)
∑

r

χr(x1,x1′ ; τ1)χ̃r(x2,x2′ ;−δ)

ω − Ωr + iη
e−iΩr |τ1|/2

+ie−iω(t1+|τ1|/2)
∑

r

χr(x2,x2′ ;−δ)χ̃r(x1,x1′ ; τ1)

ω +Ωr − iη
e−iΩr |τ1|/2, (11)

where the time variables have been reorganized as

t1 =
t1 + t1′

2
, t2 =

t2 + t2′

2
, τ1 = t1 − t1′ , τ2 = t2 − t2′ . (12)

t+2 means t2+δ with δ → 0+. Ωr and χr(xi,xj ; ti−tj) are the energy and particle-hole amplitude of the rth excitation.
With the quasiparticle approximation, χr can be expressed as

χr(x,x
′; τ) ≈ eiΩr |τ |/2

∑

v′,c′

Ar
v′c′ψc′(x)ψ

∗
v′ (x′)

[

e−i(E
c
′−iγ

c
′ )τθ(τ) − e−i(E

v
′+iγ

v
′ )τθ(−τ)

]

, (13)

where A
r is the eigenvector corresponding to χr. Note that the finite QP lifetimes have been taken into account

in Eq. (13). This approach has been applied to the study of the dynamics of core-excitons in semiconductors by
Strinati.29 The integral kernel Ξ in Eq. (10) can be approximated as

Ξ(3, 4′; 3′, 4) ≈ −iδ(3, 3′)δ(4+, 3′)V (3, 4)

+iδ(3, 4)δ(3′, 4′)W (3+, 3′). (14)
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By substituting Eqs. (11), (13) and (14) into Eq. (10) and projecting both sides onto ψc(x1)ψ
∗
v(x1′) and

χr(x2,x2′ ;−δ), the BSE Eq. (10) can be converted to a complex eigenvalue problem

[(Ec − iγc)− (Ev + iγv)]A
r
vc +

∑

v′,c′

Ar
v′c′(K

x
vcv′c′ +Kd

vcv′c′) = (Ωr − iΓr)A
r
vc, (15)

where Γr is the imaginary energy of the rth exciton. In this paper, only singlet excitations are considered, and thus
the exchange term Kx

vcv′c′ = 2 〈ψvψc |V |ψv′ψc′〉. The direct interaction term Kd
vcv′c′ can be calculated as

Kd
vcv′c′ = −〈ψvψv′ |V |ψcψc′〉

−
∑

s

[

1

Ωr − iΓr − ωs − (Ec′ − Ev)
+

1

Ωr − iΓr − ωs − (Ec − Ev′)

]

× [〈ψvψv′ |V | ρs〉 〈ρs |(V + fxc)|ψcψc′〉+ 〈ψvψv′ |(V + fxc)| ρs〉 〈ρs |V |ψcψc′〉] , (16)

where the screened interaction

W = V + [(V + fxc)ΠV + VΠ(V + fxc)] /2, (17)

has been substituted into Eq. (16). Note that W is written in a symmetric form, since the local exchange-correlation
effect fxc has to be included to make Eq. (15) consistent with the calculation of Σc and Π in Sec. II A. In Eq.
(15), only resonant part is taken into account, while the anti-resonant part is neglected. This is the Tamm-Dancoff
approximation (TDA), whose effect on excitonic energies is found to be negligible.13 Usually ωs and ρs come from
the reducible polarizability Π obtained by TDLDA (Eq. (5)).
Solution of the complex eigenvalue Ωr − iΓr through Eq. (15) simultaneously determines the excitation energy Ωr

and the lifetime Tr = (2Γr)
−1 of the rth exciton. Actually Eq. (15) explicitly includes four terms related to the decay

of the exciton, which are illustrated by the Feynman diagrams in Fig. 1. However, it is unfeasible to solve the DBSE
Eq. (15) directly, since the matrix on the left hand side is explicitly dependent on the eigenvalues Ωr to be solved.
Thus Eq. (15) is usually simplified by taking the two approximations

Γr = γc = γv = 0, (18a)

Ωr ≈ Ec′ − Ev ≈ Ec − Ev′ . (18b)

which lead to an energy-independent matrix, namely the static BSE (SBSE). The reducible polarizability Π̃ obtained
from SBSE can be written in the same way as that from TDLDA

Π̃(r, r′;E) = 2
∑

r

ρ̃r(r)ρ̃
∗
r(r

′)

×

[

1

E − (Ωr − i0+)
−

1

E + (Ωr − i0+)

]

, (19)

where ρ̃r(r) = χr(r, r, 0) and the tilde distinguishes the results of BSE from those of TDLDA. Note that in most cases

Π̃ in Eq. (19) is different from Π in Eq. (5). The issue for the self-consistency of the reducible polarizability Π will
be discussed in Sec. III A.

a b

c d

FIG. 1. Feynman diagrams of terms in Eq. (15) related to the decay of particle-hole excitations. Arrowed lines are Green’s
functions. Wiggled lines are screened interactions. Diagrams a and b correspond to the diagonal elements in Eq. (15). Diagrams
c and d denote the screened particle-hole interaction in Eq. (16).
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C. Numerical Details

The ground state LDA calculation of Si20 is performed using the SIESTA code.30 Core electrons [1s22s22p6] of Si
are replaced by the nonlocal norm-conserving pseudopotential based on the Troullier-Martins scheme.31 A triple-ζ
polarization (TZP) basis set of numerical atomic orbitals is used for the valance electrons of Si. Two stable geometric
configurations of Si20 have been reported in literatures, one with the C3v symmetry (Fig. 2a)32,33 and the other with
the C2h symmetry (Fig. 2b)34. The former has been shown to be more stable by DFT with generalized gradient
approximation (GGA) functionals, DFT with hybrid functionals and coupled-cluster CCSD(T) method. In this work,
both configurations are calculated via DFT with LDA, and we find that the energy of the C3v isomer is about 0.2 eV
lower than the C2h one. Thus all numerical work and discussion in the remaining part of the paper will focus on the
structure as shown in Fig. 2a.

(a) Si20 (C
3v

) (b) Si20 (C
2h

)

FIG. 2. Optimized structures of two isomers of Si20. The labels in brackets correspond to the point group symmetries of the
clusters.

All integrals are evaluated on a uniform grid in real space with grid spacing of 0.5 a.u., which has been tested to give
QP energies with an accuracy of 0.1 eV. The exchange integrals

∫

dr
∫

dr′ψi(r)ψj(r)V (r, r′)ψk(r
′)ψl(r

′) are evaluated
by first solving Poisson equations with the multigrid method.35 The convergence of the QP calculation usually requires
a large number of unoccupied states for the evaluation of the polarizability. Thus a Coulomb-hole screened-exchange
(COHSEX) remainder scheme has been applied to accelerate the convergence of the correlation part 〈ψi|Σc |ψi〉.

26

III. RESULTS AND DISCUSSIONS

A. Self-consistency of G and Π

In the QP calculations, a ready starting point is the approximation for G

G(r, r′;E) ≈ G0(r, r
′;E) =

∑

n

ψn(r)ψn(r
′)

E − ǫn + iηn0+
. (20)

From G0, one can evaluate Σxc as Σxc = G [V + (V + fxc)ΠV ], and thus solve the Eq. (1) for QP energies En.
However, it not clear whether one should recalculate every quantity involved (G, Π, Σxc) until the convergence of all
quantities, or the self-consistency. For calculation of QP inelastic decay rates in finite systems, we have demonstrated
that it is necessary to implement the self-consistency of G,36 which will be restated briefly here.
The inelastic decay rate of the ith QP can be written as a summation Si

Si = 2

∣

∣

∣

∣

∣

∑

n

∑

s

an,s,iγi
(Ei − En − ωsηn)2 + γ2i

∣

∣

∣

∣

∣

. (21)

Replacing G with G0 changes the positions of the poles from En + ωsηn to ǫn + ωsηn, which may cause considerable
error to Si, since Si is mostly determined by the arrangement of the poles in the vicinity of Ei. The effect is illustrated
schematically in Fig. 3, where unoccupied (occupied) energy levels ǫn obtained by DFT are shifted up (down) to yield
the QP energy levels En. Yet the poles ǫn + ωsηn are not moved together, leading to misplaced poles around a given
energy level Ei.
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FIG. 3. Schematic plot for the relation among LDA energies ǫn and hence derived poles ǫn + ωsηn, QP energies En and hence
derived poles En + ωsηn. Each color defines a set including an energy level and poles accompanying the energy level. To
maintain correct orders, En should be used together with En + ωsηn. A mixture between En and ǫn + ωsηn changes the pole
arrangement in the vicinity of a QP energy level, which may introduce notable errors for the QP lifetimes.

In our former paper,36 we only implement the iteration (G → Σxc → G), with the assumption that Π ≡ ΠTDLDA.
In this paper, we further extend our investigation about the self-consistency of Π. The reason for the implementation
of the self-consistency of Π is similar to that of G. Since the inelastic decay rate of rth exciton can be written as a
summation S̃r, which also has a set of poles. Replacing Ωs by ωs thus changes the positions of the poles, and causes
error to S̃r.
Note that G is connected to all one-particle properties, namely QP energies En in Σxc and QP energy differences

(Ec − Ev) in the BSE kernel K. While Π is connected to all two-particle properties, namely excitonic energies Ωs

in both Σxc and K. If two different data sets (G′,Π′) and (G′′,Π′′) are used for Σxc and K respectively, potential
confusion and inconsistency will occur. This implies that the same G and Π shall be used in the calculation of Σxc

and K, which brings about a self-consistent issue at higher level, namely a cycle (G,Π) → (Σxc,K) → (G,Π). The
relation of the three self-consistent cycles are illustrated in Fig. 4, where bold lines indicate iterative steps. The
left part is the G cycle, where the self-consistent G is solved with Π as an argument. The right part is the Π cycle,
where the self-consistent Π is solved with G as an argument. The central part is the GΠ cycle, which indicates the
convergence of all of the four quantities. This cycle is implemented in the way G(Π) → Π(G) → G(Π), until the
simultaneous convergence of both G and Π.

G

xc
 !

K

FIG. 4. Schematic plot for the three self-consistent cycles. Bold lines indicate iterative steps. The left part G → Σxc → G is
the G cycle. The right part Π → K → Π is the Π cycle. The central part is the GΠ cycle which is implemented in the way
G(Π) → Π(G) → G(Π), until the simultaneous convergence of both G and Π.

The criteria for the convergence of G and Π are required for the numerical implementation. According to Eq. (4),
G is characterized by the QP wavefunctions ψn(r) and the energies En. Usually the QP wavefuctions can be assumed
to be identical to the LDA wavefunctions, then the convergence of G is simplified to the convergence of En. Similarly,
the polarizability Π is characterized by the amplitudes ρs(r) and the energies Ωs. However, the convergence of Π has
not been well studied. In this paper we test two possible implementations: the full self-consistency (FSC) and the
partial self-consistency (PSC). In the FSC strategy, both the convergence of ρs(r) and Ωs are pursued, while in the
PSC, only Ωs are updated in each iteration, with ρs(r) fixed to the TDLDA amplitudes. The latter essentially takes
the BSE kernel as a first order correction to the TDLDA kernel, which is an analogy to the assumption made in the
QP calculations that QP wavefuctions and LDA wavefunctions are identical. Note that only the static BSE is used
in both the FSC and PSC tests, since the dynamic BSE is much more time-consuming, and only has minor effects on
the excitonic energies Ωs.
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The QP energies and optical spectra obtained by the FSC implementation are shown in the top and bottom
diagrams of Fig. 5. The arrows between the two diagrams signify the order of each numerical step. It is found that
the QP energies shift toward the Fermi level as the iteration progresses. Also, the optical spectra change dramatically
between two consecutive iterative steps. Both diagrams indicate that the FSC is numerically unstable. On the other
hand, results obtained by the PSC implementation are more stable, as shown in Fig. 6 with the same style as Fig. 5.
In PSC both the QP energies and optical spectra change only slightly after each iterative step, and converge after 2-3
cycles. Therefore our discussion about properties of QPs and excitons in Sec. III B and III C will focus on the results
calculated by the PSC strategy.
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FIG. 5. QP energies (top) and optical spectra (bottom) obtained by the FSC implementation. The arrows between the two
diagrams signify the order of each numerical step, namely LDA-TDLDA-GWΓ-BSE-GWΓ-BSE-GWΓ.

The significant difference between the PSC and FSC approaches arises solely from whether the amplitudes ρs(r)
are fixed to TDLDA ones or not during each iterative step. Thus we analyze the ρs(r) calculated by TDLDA and
those obtained by SBSE to reveal the crucial role of the issue. In Fig. 7, the weights of largest transition components
of the first three excitations calculated by TDLDA and SBSE are illustrated. According to Fig. 7, both the TDLDA
kernel and the SBSE kernel tend to mix the independent-particle transitions. The tendency of the mixture is much
stronger in the case of SBSE, as the weight of the largest transition component of each SBSE exciton is smaller than
that of the corresponding TDLDA exciton. This effect has been reported for BSE calculations of various systems.16,37

It is speculated that the numerical instability of the FSC implementation could be attributed to the differences of
the transition weights obtained by TDLDA and BSE. In fact, each amplitude ρs(r) corresponds to a vector Rs, and
the reducible polarizability Π is a set composed of such vectors. This means that any quantity depending on Π is
essentially a function of these vectors. Since TDLDA and BSE are based on different frameworks (independent-particle
vs. quasiparticle), their vector sets also differ from each other, as can be seen in Fig. 7. Change from the TDLDA
vector set to the BSE vector set seems to be too large for the iteration to remain in the numerical stability domain.

B. QP energies and lifetimes in Si20

The QP energies in Si20 calculated by the GWΓ method have been illustrated in Fig. 8. The vertical ionization
potential obtained by LDA is 5.46 eV, while it is adjusted to 7.22 eV by the GWΓ method. This number is close to
the experimental data 7.46-7.53 eV.38
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FIG. 6. QP energies (top) and optical spectra (bottom) obtained by the PSC implementation. Plotted in the same style as
Fig. 5.

Inelastic lifetimes τi of hot electrons and holes in Si20 are plotted versus the excitation energy |Ei − EF | in Fig.
8a. In a high-density free electron gas (FEG), lifetimes of hot electrons with low excitation energies follow an inverse
quadratic law according to Quinn and Ferell39

τQF
i = 263r−5/2

s (Ei − EF )
−2 eV2 fs. (22)

Eq. (22) implies a constant scaled lifetime τi(Ei − EF )
2 for all hot electrons in FEG. Therefore we plot the scaled

lifetimes of both electrons and holes as a reference in Fig. 8b, although silicon is a semiconductor with non-uniform
electron gas. We find that the scaled hole lifetimes with low excitation energies (|Ei − EF | < 6.2 eV ) are longer than
those with high excitation energies (|Ei − EF | ≥ 6.2 eV ), so do the scaled electron lifetimes (with one exception). This
feature is strikingly similar to that of the metallic cluster Mg40 simulated by the same method,36 where a low energy
regime (RLE) and a high energy regime (RHE) have also been observed. The similarity between the QP lifetimes in
bulk silicon and those in jellium model has also been demonstrated by Fleszar and Hanke.40 Same as the case of Mg40,
here the longer QP scaled lifetimes in the RLE than those in the RHE is also attributed to the lack of electronic states
around the Fermi level available for the transitions of hot electrons (holes).36

In the regime RHE, the scaled lifetimes of hot electrons fluctuate in the range of 90 to 150 fs eV2, with an average of
104 fs eV2. The scaled lifetimes of hot holes in this regime approach 30 fs eV2 smoothly with increasing |Ei − EF |. QP
lifetimes in bulk silicon have been calculated in Ref. 40 and 41. According to Fig. 2 in Ref. 41, the scaled lifetimes of
electrons and holes are estimated to be 120 and 40 fs eV2 respectively, which are close to the results obtained in this
paper. This implies even in a cluster as small as Si20, the scaled QP lifetimes in the RHE have already approached
the corresponding bulk values. The notably shorter lifetimes of hot holes than those of hot electrons with the same
|Ei − EF |, can be attributed to the smaller angular momentums of holes, or more overlap among different hole states,
which leads to more possible transitions than electrons. This is an analogy to the bulk, where one can attribute
shorter hole lifetimes in simple s-p systems (no localized d-states) to the smaller momentums of holes.42

It is interesting to compare the semiconductor cluster Si20 simulated in this paper with the metallic cluster Mg40
studied before in Ref. 36, since both clusters have the same number of valence electrons. In Mg40, the scaled
lifetimes of hot electrons fluctuate in the range of 21 to 24 fs eV2, while those of hot holes are around 12 fs eV2 and
decrease slightly with increasing excitation energy |Ei − EF |. The results indicate that at the same excitation energy
|Ei − EF |, the scaled QP lifetimes in Mg40 are shorter than those in Si20. One reason for this phenomenon is the
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line separates both plots into a low-energy regime and a high-energy regime.

larger HOMO-LUMO gap in Si20 than that in Mg40, which leads to fewer energy states, or decaying channels, for
QPs in Si20. However, even if one takes this issue into account by redefining the excitation energy as Ei − ELUMO

and EHOMO − Ei for electrons and holes, the QP lifetimes in Si20 are still longer, which can be explained as higher
electron density in Si20 and thus stronger screening effects.

C. Excitonic energies and lifetimes in Si20

The final excitonic energies and lifetimes are calculated via Eq. (15), in the partially self-consistent way as has been
implemented in Sec. III A. Thus only complex eigenvalues are updated iteratively by the frequency-dependent dynamic
BSE matrix, with eigenvectors fixed to the TDLDA amplitudes. To accelerate and stabilize the self-consistency



11

procedure, the initial guess for the imaginary part of the excitation energy Γr for a given exciton is estimated as

Γr =
∑

v,c

|Rr
vc|

2
(γc + γv). (23)

The absorption spectra calculated by dynamic BSE and static BSE, both with partial self-consistency, are plotted in
Fig. 9. Since the cluster Si20 is a prolate cluster with C3v symmetry as shown in Fig. 2, it exhibits A1 transitions
(electric dipole perturbation along the z-axis) and E transitions (electric dipole perturbation within the xy-plane),
which are illustrated in Fig. 9a and 9b respectively. As shown in Fig. 9, the absorptive features of the A1 transitions
emerge in the lower energy regime than the E transitions, which is attributed to the larger dimension and thus less
electronic confinement along the z-axis than those along the x and y-axes. On the other hand, the DBSE and SBSE
absorption spectra for each irreducible representation are similar, indicating the negligible influence of the dynamic
screening effect on the excitonic energies. This observation is demonstrated more clearly in Fig. 10 by plotting the
energy differences between the DBSE and SBSE contribution arising from the second term in Eq. (16), where the
two methods are different from each other. As shown in Fig. 10, the energy differences vary from -0.2 to 0.1 eV, with
the average of -0.07 eV, which is negligible. These results demonstrate the feasibility of SBSE, which has been widely
used for simulations of materials.
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FIG. 9. Absorption spectra of (a) A1 transitions and (b) E transitions calculated by the dynamic and static BSE, both with
partial self-consistency. Absorption lines are broadened by Gaussian lineshapes with a spectral width of 0.1 eV.

The excitonic inelastic decay rates (MEG rates) Γr of A1 and E transitions vs. excitonic energies Ωr are plotted
in log-log style in Fig. 11. Although the two transition modes differ in terms of the positions of major absorption
peaks, their decay-rate patterns almost coincide with each other. The results indicate that the excitonic lifetimes are
geometry-insensitive, and are solely determined by the excitation energy. We fit the data point with a simple rational
function (Padé function P 2

1 ),

y = 2x+ a+
b

x+ c
, (24)

where x and y represent ln(Ω/eV) and ln(Γ/eV) respectively. The fitting coefficients a, b and c are -4.49, -0.98 and
-1.19. Here the coefficient of the linear term is fixed to be 2, since it is easy to prove that the quadratic relation
between the excitonic decay rate and the excitonic energy will be approached at high-energy limit (large x) for both
single-particle excitations and collective excitations, provided that the quadratic relation between the QP decay rate
and the QP energy is approached at the high-energy regime as in this case. According to Eq. (24), excitons with
energies 5.0, 6.0 and 7.0 eV shall have lifetimes 12, 4.2, 2.2 fs respectively. The results provide a general picture about
the MEG rate: the process occurs on a time scale of several to several tens of femtoseconds in the silicon cluster
investigated.
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The most interesting issue is how the excitonic decay rates estimated based on Eq. (23) differ from those obtained
by solving the dynamic BSE(DBSE). If results calculated by the two approaches are close, then Eq. (23) can replace
DBSE in the calculation of excitonic lifetimes, which can reduce the computational time dramatically. Actually the
difference of the two approaches can be understood in terms of Feynman diagrams: Eq. (23) only takes into account
the first two diagrams in Fig. 1, while the dynamic BSE applied in this paper includes all the four diagrams in Fig.
1.

The ratios of the excitonic inelastic decay rates calculated with DBSE over those obtained with Eq. (23) are plotted
as a function of the excitonic energies in Fig. 12, where the ratios are again geometry-insensitive according to the
patterns of A1 and E transitions. Furthermore, one can find that for excitons in the high-energy regime (Ωr > 4.5 eV),
their ratios can be fitted by a constant (0.966) as shown by the solid line. The number is close to unity, indicating
Eq. (23) is a very good approximation of the DBSE results for excitonic decay rates in the high-energy regime. The
fitted constant is slightly smaller than unity, which means inclusion of the dynamic screening effect (the last two
diagrams in Fig. 1) reduces excitonic decay rates for most excitons. This is similar to the conclusion in Ref. 29, where
core-excitation width Γ is predicted to be smaller than core-hole width γ by inclusion of the dynamic screening effects
when solving BSE. Note that the MEG effect can only be observed for incident photons with energies larger than
twice the optical bandgap. For Si20 the optical bandgaps obtained by different methods (TDLDA, SBSE and DBSE)
are around 2.0 eV, which means that the excitonic MEG energy threshold should be about 4.0 eV. Therefore the lower
values in Fig. 12 located around 4.0 eV indicate that the approximation method tends to overestimate especially near
the MEG energy threshold, with the maximum factor of about 1.9 in our case.
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IV. CONCLUSION

In this paper, we simulate the electronic and excitonic properties in the silicon cluster Si20. The implementations of
the self-consistencies of the one-particle Green’s function G and the reducible polarizability Π within the framework of
the many-body Green’s-function theory are discussed. The full self-consistency of Π, where both the amplitudes ρs(r)
and the energies Ωs are allowed to relax, is numerically unstable. On the other hand, the partial self-consistency of Π
is stable where only the energies Ωs are allowed to relax. The scaled lifetimes of electrons and holes in the high-energy
regime are predicted to be 104 and 30 fs eV2, which are close to the corresponding bulk values. The scaled QP lifetimes
in the low-energy regime are longer than those in the high-energy regime due to the lack of electronic states around
the Fermi level available for the transitions of hot electrons (holes). The excitonic inelastic decay rates in Si20 are
calculated by dynamic Bethe-Salpeter equation (DBSE), and estimated by the weighted summation method based on
QP lifetimes. Results from the two methods are close to each other. With much less computational cost than DBSE,
the approximate method thus provides a fast way for the calculation of excitonic inelastic lifetimes in SCNCs. We
also found that excitonic lifetimes are solely dependent on the excitonic energies, and are insensitive to the geometry
of the structures.
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