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We develop the theory of the scaling of the anomalous Hall effect (AHE) in the insulating regime,
which is observed in experiments to relate the anomalous Hall and diagonal conductivities by
σAHxy ∝ σ1.40∼1.75

xx for a large range of materials. This scaling is qualitatively different from the
ones observed in metals. Basing our theory on the phonon-assisted hopping mechanism and perco-
lation theory in random networks, we derive a general formula for the anomalous Hall conductivity
(AHC), in which the percolation theory averaging of the random linked triad clusters is a key aspect
that captures the correct observed physics. We show that it scales with the longitudinal conduc-
tivity as σAHxy ∼ σγxx with γ predicted to be 1.33 ≤ γ ≤ 1.76, quantitatively in agreement with
the experimental observations. Our theory predicts that this scaling remains similar regardless of
whether the hopping process is long range type (variable range hopping) or short range type (ac-
tivation hopping), or is influenced by interactions, i.e. Efros-Shklovskii (E-S) regime. Our theory
completes the understanding of the AHE phase diagram in the insulating regime.

PACS numbers: 75.50.Pp, 72.20.Ee, 72.20.My

I. INTRODUCTION

The anomalous Hall effect (AHE) is a central topic
in the study of Ferromagnetic materials1. It exhibits the
empirical relation ρxy = R0Bz+RSMz between the total
Hall resistivity and the magnetization Mz and external
magnetic field Bz. Here R0 and RS are respectively the
ordinary and anomalous Hall coefficients. In experiment
the anomalous Hall resistivity (AHR) is usually observed
to follow a power law form versus the longitudinal resis-
tivity ρAHxy ∼ ρβxx, with ρxx varied by changing the tem-
perature T , disorder scattering or density of states (DOS)
around Fermi surface. When transformed to the anoma-
lous Hall conductivity (AHC), σAHxy , the scaling relation

takes the form σAHxy ≈ ρAHxy /σ
2
xx ∼ σ2−β

xx . Three regimes
are observed with respect to its dependence on the di-
agonal conductivity, σxx

1. In the metallic regime the
AHC σAHxy is observed to be linearly proportional to σxx
for the highest metallic systems (σxx > 106Ω−1 cm−1)
and roughly constant for the rest of the metallic regime.
This dependence indicates the different dominant mech-
anisms in ferromagnetic metals. These are understood
to be the skew scattering, side jump scattering, and in-
trinsic deflection mechanisms. The intrinsic contribution
is induced by a momentum-space Berry phase linked to
the electronic structure of the multi-band spin-orbit (SO)
coupled system1,2. The side jump scattering mechanism
gives the same scaling relation as the intrinsic contribu-
tion, i.e. σAH−sjxy ∝ σ0

xx, and the skew scattering is linear

in the longitudinal conductivity, σAH−skxy ∝ σxx. While
these mechanisms are now better understood, the maxi-
mum scaling exponent of the AHC cannot exceed unity
in the metallic regime1.

On the other hand, experiments in the insulating
regime exhibit an unexpected scaling relation of the
AHC: σAHxy ∝ σ1.40∼1.75

xx with the scaling exponent gener-

ically larger than unity3–14. Earlier experiments on AHE
in this regime was done in magnetite Fe3O4

3, and the
recent experimental observations of this scaling are re-
ported in a large range of materials including granu-
lar Fe/SiO2 films, magnetite epitaxial thin films, dilute
magnetic semiconductor (DMS) Ga1−xMnxAs, and fer-
romagnetic semiconductor anatas Ti1−xCoxO2−δ. The
observed scaling in the insulating regime has remained
unexplained and a major challenge in understanding fully
the phase diagram of the AHE

The hopping transport regime prevails when a system
is in the disordered insulating regime, with the impurity
on-site energies randomly distributed. At low tempera-
ture (T � E0/kB with E0 the ionization energy of the
bound states), the charge transport in such system will
be dominated by the phonon-assisted hopping of elec-
trons/holes between impurity sites16,17.

To capture the Hall effect one requires the hopping
process between impurity sites (Fig. 1) to break the time-
reversal (TR) symmetry. The two-site direct hopping
preserves TR symmetry, and contribute only to the lon-
gitudinal charge transport. The hopping through triads
(three sites) is the minimum requirement to model theo-
retically the Hall effect18. The total hopping amplitude
is obtained by adding the direct and indirect (through
the intermediate k-site) hopping terms from i to j sites.
The two hopping paths give rise to an interference term
for the transition rate which breaks TR symmetry and
is responsible for the Hall current in the hopping regime.
For the ordinary Hall effect (OHE), the interference is a
reflection of the Aharonov-Bohm phase, and for the AHE
it reflects the Berry phase due to SO coupling.

While the hopping through triads reveals the minimum
element contributing to the AHE in the hopping conduc-
tion regime, the crucial step to understand the insulating
AHE and the observed scaling relation is hidden in the
evaluation of the AHC within percolation theory. In the
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FIG. 1: AHE in the insulating regime. In this regime charge
transport occurs via hopping between impurity sites.

hopping conduction regime, the charge transport is not
dominated by the whole impurity system but by specific
percolation clusters, which span the whole material but
cover only part of the impurity sites. To correctly evalu-
ate the AHC, one must address a highly nontrivial issue:
how to average the AHC over the percolation clusters with
triads.

The few previous studies of the AHE in this regime
have been focused on manganites and Ga1−xMnxAs by
employing Holstein’s theory in the anomalous Hall sys-
tem. In manganites, a non-uniform magnetic system, the
AHC is determined only by optimal triads, and therefore
this material does not exhibit the scaling observed in the
typical disordered insulators19,20. On the other hand,
the studies on insulating Ga1−xMnxAs did not appre-
ciate the central aspect of the hopping conduction that
the AHC should be averaged over percolation cluster,
and thus failed in explaining the observed scaling21,22.
A numerical study of the AHE using metallic theory ob-
served a scaling in a disordered metallic regime but both
the AHC and σxx remained metallic in this study while
the scaling was only present for a particular sign of the
impurities1,15. The AHE theory in the metallic regime is
generally based on the perturbation expansion in terms
of small parameter 1/(kF l). Here kF is the magnitude of
the Fermi wave vector, and l is the length of mean free
path. Hence, the available microscopic theories of metals
fail in the insulating regime since the condition kF l � 1
is no longer satisfied for disordered insulators by its own
construction1,15.

In this paper we develop a theoretical approach to
study the scaling of the AHE in the insulating strongly
disordered amorphous regime. It is the first time that the
AHC in this regime is correctly formulated and exactly
calculated by averaging over the percolation cluster. In
light of the fact that the charge transport is dominated
by the percolation cluster, we derive rigorously a new
configuration averaging formula for the AHC, with the
key physics that the Hall currents are averaged over per-
colation cluster containing triads completely considered.
With our formalism we calculate the upper and lower
limits of the AHC which correspond to different extreme
situations for the triad spatial distribution, and show it

scales with σxx as σAHxy ∼ σγxx, where γ is predicted to be
1.33 ≤ γ ≤ 1.76 with only a slightly quantitative depen-
dence on the specific hopping types. Namely, the scal-
ing remains similar in the Mott variable range hopping
(VRH), Efros-Shkolvskii (E-S) regime, and in activation
E3 hopping regime. This matches the experimental ob-
servation that the scaling is seen in many types of insu-
lators with different hopping types dominating.

II. THE MODEL

Our theory is based on a minimal tight-binding Hamil-
tonian. With the particle-phonon coupling considered,
the total Hamiltonian H = Hp +Hc +Hph, with

Hp =
∑
iα

εiĉ
†
iαĉiα −

∑
iα,jβ

tiα,jβ ĉ
†
iαĉjβ +

∑
iαβ

M · ταβ ĉ†iαĉiβ

Hc = iη
∑
iαλ

(~qλ · ~eλ)ω
−1/2
λ (bλe

i~qλ·~r − b†λe
−i~qλ·~r)ĉ†iαĉiα

Hph =
∑
λ

ωλb
†
λbλ.

Here Hp describes localized states, Hc gives the particle-
phonon coupling with η the coupling constant, Hph is the
phonon Hamiltonian, α is the local on-site total angular
momentum index, and εi is the energy measured from
the fermi level. Here we consider that the magnetization
is saturated and thus assume M = Mêz. We rewrite the
Hamiltonian Hp in the diagonal basis of the exchange
term and obtain

Hp =
∑
α

εiαĉ
†
iαĉiα −

∑
iα,jβ

tiα,jβ ĉ
†
iαĉjβ , (1)

where εiα = εi + Mταα. The hopping matrix tij is
generally off-diagonal due to SO coupling. For exam-
ple, for the dilute Ga1−xMnxAs, the matrix tiα,jβ de-
scribes the hopping of the holes localized on the Mn
impurities. Under the spherical approximation tiα,jβ
can be obtained based on a unitary rotation U(Rij)
from the êz direction to the hopping direction i →
j23. We thus have tiα,jβ = [U†(Rij)tdiagU(Rij)]αβ
with tdiag = diag[t3/2, t1/2, t−1/2, t−3/2] representing the
situation that the hopping direction is along the z
axis. Another example is for the localized s-orbital elec-
trons. In this case, the hopping matrix is given by
tij = U†(Rij)[t̃ij(1 + i~vij · ~σ)]U(Rij)

20. Here t̃ij =

diag[t1/2, t−1/2] and ~vij = α
~
∫ ~rj
~ri

(∇V (r)× d~r′) with V (r)

including the ion and external potentials, the SO cou-
pling coefficient α = ~/(4m2c2) and m the effective mass
of the electron. The localization regime has the condi-
tion |tiα,jβ | � |εi − εj | in average. The specific form of
the relevant parameters (tij , M , spin operator ταβ) are
material dependent and do not affect the scaling relation
between σAHxy and σxx.

Considering the dominant contributions to the longi-
tudinal and Hall transports, which include the one- and
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FIG. 2: (Color online) The hopping processes through triads
with up to two real phonons absorbed or emitted. (Top) Typ-
ical diagrams of the two-phonon direct and indirect hopping
processes. (Bottom) One-phonon direct process and typical
three-phonon (one real phonon) indirect hopping processes.

two-real-phonon processes through triads (Fig. 2)18, we
obtain the charge current between i and j sites in a single
triad with applied voltages21:

Iij = GijVij + Gijk(Vik + Vjk), (2)

where the direct conductance

Gij =
2λ0e

2

kBT

∑
αβ

|tiα,jβ |2T (2)
ij , (3)

with T
(2)
ij = |∆ij |e−

1
2β(|εiα|+|εjβ |+|εiα−εjβ |), ∆ij = εiα −

εjβ , εiα = εi + Mταα, and the constant λ0 ∝ η218. The
second term in Iij is responsible for the Hall transport
and

Gijk =
4λ2

0e
2

kBT

∑
αβγ

[Im(tiα,jβtjβ,kγtkγ,iα)T
(3)
ijk ], (4)

where T
(3)
ijk = T

(3)
i,jk + T

(3)
k,ij + T

(3)
j,ki, with T

(3)
i,jk =

|∆ij∆ik|e−
1
2β(|εjβ |+|εkγ |+|εiα−εkγ |+|εiα−εjβ |). The function

Im(tiα,jβtjβ,kγtkγ,iα) gives a geometric phase term corre-
sponding to the closed path hopping i → j → k → i.
The formula of Iij gives the microscopic conductance in
any single triad. To evaluate the macroscopic AHC, one
shall properly average it over all triads in the random sys-
tem. This is achieved with the aid of percolation theory,
a fundamental tool to understand the hopping transport.

III. PERCOLATION THEORY

We first map the random impurity system to a ran-
dom resistor network by introducing the connectivity be-
tween impurity sites with the help of a cut-off Gc(T ).
When the conductance between two impurity sites sat-
isfies Gij ≥ Gc, we consider the i, j sites are connected
with a finite resistor Zij = 1/Gij . Otherwise, they are
treated as disconnected, i.e. Gij → 0. The Hall effect

will be treated as a perturbation to the obtained resis-
tor network. The cut-off Gc should be properly chosen
so that the long-range critical percolation paths/clusters
appear and span the whole material, and dominate the
charge transport in the hopping regime. The macroscopic
physical quantities will finally be obtained by averaging
over the percolation path/cluter.

The hopping coefficient generally has the form tiα,jβ =

t
(0)
iα,jβe

−aRij , with a−1 the localization length and Rij =

|Ri−Rj |. The direct conductance holds the form Gij =

G0(T )e−2aRij− 1
2β(|εiα|+|εjβ |+|εiα−εjβ |), and then the cut-

off can be introduced by Gc = G0e
−βξc(T )24. Here βξc

is a decreasing function of T , indicating the material in
the insulating regime. The number of impurity sites con-
nected to a specific site i with energy εi can be calculated
by

n(εi, ξc) =

∫
dεj

∫
d3 ~Rijρ(εj , ~Ri)Θ

(
Gij −Gc

)
. (5)

Here Θ(x) is the step function and the DOS ρ(ε, ~Ri) ≈
1
V

∑
i δ(ε − εi) is approximated to be spatially homo-

geneous. The number n(εi, ξc) can also be given by
n(εi, ξc) =

∑
n Pn(εi, ξc), with Pn(εi, ξc) being the prob-

ability that the n-th smallest resistor connected to the
site i has the resistance less than 1/Gc. The function Pn
reads25

Pn(εi, ξc) =
1

(n− 1)!

∫ n(εi)

0

e−xxn−1dx, (6)

which can be derived according to the Poisson distri-
bution. The percolation path/cluster appears when
the average connections per impurity site n̄ = 〈n(εi)〉c
reaches the critical value n̄c, where the definition of
〈...〉c is given in Eq. (7). Suppose a physical quantity
F (ε1, ..., εm;~r1, ..., ~rm) being a m-site function, requiring
the i-th site to have at least ηi sites connected to it. The
averaging of F (ε;~r) reads

〈F (ε;~r)〉c =
1

NF

∫
dε1...

∫
dεm

∫
d3~r12...

∫
d3~rm−1,m

×
m∏
i=1

Pηi(εi)F (ε1, ..., εm;~r1, ..., ~rm), (7)

where NF is a normalization factor and the probabil-
ity function Pηi(εi) = ρ(εi)

∑
k≥ηi Pk(εi). The term∑

k≥ηi Pk(εi) entering the probability function has im-
portant physical reason. The configuration averaging is
not conducted over the whole impurity system, but over
the percolation cluster which covers only portion of the
impurity sites. Therefore the probability that an im-
purity site belonging to the percolation cluster must be
taken into account for probability function. Moreover,
this probability function also distinguishes the physical
origins of the AHC and σxx. For σAHxy one has ηi = 3,
and for σxx one has ηi = 2. This indicates the averag-
ing of σxx is performed along the one dimensional (1D)
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percolation path, while for AHE which is a two dimen-
sional (2D) effect, one shall evaluate AHC over all triads
connected in the 2D percolation cluster.

IV. CONFIGURATION AVERAGING OF THE
ANOMALOUS HALL CONDUCTIVITY

According to the formula (7), the average value of the
1-site function n(εi, ξc) in the percolation cluster is cal-
culated by

n̄ =

∫
dεin(εi)ρ(εi)n(εi)∫
dεin(εi)ρ(εi)

. (8)

When the DOS ρ(εi) = ρ0 is a constant, the number
n(εi) is given by n(εi) = 2π

3
ρ0

(2akBT )3 (ξc−|εi|)2(ξ2
c −|εi|2).

Then we have n̄ = 0.406π ρ0
(2akBT )3 ξ

4
c . The hopping con-

duction occurs when the average value n̄ reaches the crit-
ical value n̄c. We obtain then the cut-off value ξc by

ξc(T ) =
[ (2akBT )3n̄c

0.406πρ0

]1/4
. Thus it gives

βξc =

(
T0

T

)1/4

, T0 = 16
a3n̄c
kBρ0

, (9)

which is the Mott law17. Accordingly, if we assume the
density of states ρ(ε) ∼ ε2, we obtain straightforwardly

the E-S law βξc =
(
T0

T

)1/226,27.
Numerical solutions show the critical site connectivity

is n̄c = 2.6 ∼ 2.7 for the appearance of a percolation
path/cluster in three dimensional (3D) materials28,29.
This indicates the triads are sparsely distributed in the
percolation cluster, as shown in Fig. 3. The AHC can be
derived by examining the transverse voltage V Hy (along
the y-axis) induced by the applied longitudinal current
I0. Denote by N(x) the number of triads distributed

FIG. 3: (Color online) Typical resistor network in the ma-
terial. The present situation indicates V HN−2 and V HN in the
region from x−∆x to x+ ∆x are zero, where no triads form.

along the y-axis in the region around position x (Note M
is along the z-axis, hence we assume the system in this
direction to be uniform). The transverse voltage equals
the summation over the voltage drops of the N(x) triads:

V Hy (x) =

N(x)∑
l=1

V Hl . (10)

For the general situation we allow some V Hi ’s to be
zero (see Fig. 3). In that case no triad forms for
the incoming current Ii under the condition that all di-
rect conductances in a triad must be no less than Gc.
To calculate V Hi , the voltage contributed by the i-th
triad, we employ perturbation theory to the equation30

Iij = GijVij +
∑
k Gijk(Vik + Vjk). First, in the zeroth

order, we consider only the normal current, namely, the

Hall current is zero and thus
∑
j Iij =

∑
j GijV

(0)
ij =

0, with which one can determine the voltage V
(0)
i at

each site. Then, for the first-order perturbation, we

have
∑
j Iij =

∑
j GijVij +

∑
j J

(H)
ij = 0, which leads

to J
(H)
i =

∑
j J

(H)
ij =

∑
j

∑
k Gijk(V

(0)
jk + V

(0)
ik ) =

−
∑
j GijVij . The current J

(H)
i can also be written as

J
(H)
i =

3

2

∑
jk

GijkV (0)
jk . (11)

For the hopping regime, the triads are dilutedly dis-
tributed and the Hall voltages induced by different triads
are considered to be uncorrelated. Therefore, we obtain
the Hall voltage of the i-th triad from the transformation
indicated in Fig. 4 that

V
(H)
i =

3IiG(i)
i1i2i3

Gi1i2Gi2i3 +Gi1i3Gi2i3 +Gi3i1Gi1i2
. (12)

From the resistor network configuration one can see

FIG. 4: (Color online) Resistor network transformation.

∑N(x)
i Ii = 2I0. For convenience, we denote Ii =

2I0λi(x) with
∑
i λi = 1. For a macroscopic system,

one has N(x)→∞. Furthermore, we consider at the po-
sition x, for each λi there are ni(x) triads that have such
same current fraction λi. Then the average transverse
voltage reads
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V̄ Hy = 6I0
1

Lx

∫
dx
∑
{ni}

λi

ni�1∑
j=1

G(j)
j1j2j3

Gj1j2Gj2j3 +Gj1j3Gj2j3 +Gj3j1Gj1j2
. (13)

To simplify this formula we extend the current distribu-
tion {λi} for the region between x −∆x and x + ∆x to
the whole space along x direction, and then we can ex-
change the order of the integral and the first summation:
1
Lx

∫
dx
∑
{ni} λi

∑ni�1
j=1 →

∑
{λi} λi

1
Lx

∫
dx
∑ni(x)
j=1 . In

the limit N(x) → ∞ and when the length Lx is much
larger than the typical length L of the triad, the calcula-

tion 1
Lx

∫
dx
∑ni(x)
j=1 gives the average of all possible con-

figurations of the triads through the percolating cluster.
This leads to

V̄ Hy = 6I0
∑
{λi}

n̄iλi〈
G(i)
i1i2i3

Gi1i2Gi2i3 +Gi1i3Gi2i3 +Gi3i1Gi1i2
〉c,

with n̄i = (1/Lx)
∫
dxni(x) the average number of triads

with in/outgoing current Ii. Note the identity
∑
i niλi =

1 is independent of position x, and therefore we have also∑
i n̄iλi = 1. For this we obtain the AHC

σAHxy = 3Lσ2
xx

kBT

e2
〈
∑
αβγ

[
Im(tiα,jβtjβ,kγtkγ,iα)T

(3)
ijk

]∑
i↔j↔k |tijtjk|2T

(2)
ij T

(2)
jk

〉c,

(14)

where L is the correlation length of the network. Note
the configuration integral given by Eq. (7) is first derived
for the AHC in this work. This is an essential difference
from the former theory by Burkov et al21, where the con-
figuration averaging applies to the whole system rather
than to 2D percolation cluster. With our formalism the
key physics that Hall currents are averaged over perco-
lation clusters can be studied, which is a crucial step to
understand the insulating regime of the AHE phase dia-
gram. The above configuration integral cannot be solved
analytically. In the following we study the upper and
lower limits of the AHC with Eq. (14) by considering dif-
ferent extreme situations for the triad distribution, with
which the range of the scaling relation between σAHxy and
σxx can be determined.

Before proceeding further we would like to present a
few remarks on Eq. (14). First of all, this formula is
generally valid for the disordered insulating regime, as
long as the triads are sparsely distributed in the per-
colation cluster. Second, for different types of hopping
regimes (Mott, ES, and activation E3 hopping regimes),
the functions of the DOS ρ(ε) and connectivity n(εi) in
the configuration integral are different.

V. SCALING RELATION BETWEEN
ANOMALOUS HALL CONDUCTIVITY AND

LONGITUDINAL CONDUCTIVITY

The lower (upper) limit of the AHC can be formulated
by keeping only the maximum (minimum) term in the
denominator and the minimum (maximum) term in the
numerator. In this section we shall study the scaling rela-
tion in the Mott, ES, and activation E3 hopping regimes,
respectively.

A. Mott variable range hopping regime

In this regime we first approximate the DOS to be con-
stant although this approximation is relaxed later. Under
this condition one obtains straightforwardly the probabil-
ity Pn(εi) from the number n(εi). Note in the hopping
conduction mechanism temperature dependence of the
conductivities are dominated by exponential functions.
It can then be expected that the scaling relation between
σAHxy and σxx will be governed by the exponential func-
tions in Gijk and Gij . To focus on the scaling relation, we
first drop off the summation of the spin states. This pro-
cedure ignores an important physical consequence that
the summation over spin-up and spin-down states con-
tribute oppositely to the AHE (we shall return to this
discussion later), but keeps the central result of the scal-
ing relation unchanged between σAHxy and σxx. As a re-
sult, with further simplification we find

{σAHxy }min
max
' 3Lσ2

xx

kBT

e2t
(0)
max/min

〈R
min
max
ijk 〉c〈ε

min
max
ijk 〉c, (15)

where 〈Rminijk 〉c = ea〈Rij+Rjk−Rik〉c |Rij ,Rjk<Rik , 〈εminijk 〉c =

e0.5β〈|εi|+|εj |+|εj−εk|−|εi−εk|〉c ||εi|<|εj |<|εk|, 〈Rmaxijk 〉c and

〈εmaxijk 〉c hold the same form for the calculation but the

restrictions change to be Rij , Rjk > Rik and |εi| > |εj | >
|εk|, respectively. The coefficient t

(0)
max/min represents the

maxmimum/minimum element in the matrix t
(0)
ij . In ob-

taining Eq. (15) we have approximated the configuration
averaging of the exponential functions to be the config-
uration averaging of the exponents. This approximation
loses the information of the power-law dependence of the
AHC on the temperature, and it requires the dominant
temperature dependence of the AHC should be in the
exponential form. In the hopping conduction regime this
condition is satisfied.

It is instructive to point out the underlying physics of
the two limits. In the hopping regime, charge transport
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may prefer a short and straight path in the forward di-
rection with larger resistance than a long and meandrous
path with somewhat smaller resistance16,25. This pic-
ture introduces an additional restriction complementary
to the percolation theory for charge transport. What
bonds in a triad play the major role for the current flow-
ing through it is determined by the optimization of the
resistance magnitudes and spatial configuration of the
three bonds. A quantitative description can be obtained
by phenomenologically introducing an additional proba-
bility factor to restrict the charge transport16,25. Here
we only need to adopt this picture to present the two
extreme situations corresponding to {σAHxy }min/max. To
get the upper limit we assume that for each triad of the
percolation cluster the two bonds with smaller direct con-
ductance dominate the charge transport, i.e. the product
of two smallest conductances minimize the denominator,
and take the maximum value for the numerator of Eq.
(14). For the opposite limit, the situation that the two
bonds with larger conductances in each triad dominate

the charge transport corresponds to the lower limit of the
AHC.

We study first the lower limit of the AHC. For con-
venience we neglect the spin indices. According to Eq.
(7), we know the configuration averaging 〈Rij + Rjk −
Rik〉c|Rij ,Rjk<Rik is a nine dimensional (9D) integral over

the position
∫
d3 ~Rij

∫
d3 ~Rjk and the on-site energies∫

dεidεjdεk. We shall first perform the integral over posi-

tion. Denote by ~R1 = ~Rij , ~R2 = ~Rjk for convenience, and

then R3 = Rik = (R2
1 + R2

2 − 2R1R2 cos θ)1/2. We then

study the integral I = 1
Nr

∫
d3 ~R1

∫
d3 ~R2(R1 + R2 − R3)

with Nr =
∫
d3 ~R1

∫
d3 ~R2. Note in the configuration

integral we have the restrictions: Ri ≤ Ri,max and
R1, R2 ≤ R3, with Ri,max determined through 2aRmaxij +
1
2β(|εi| + |εj | + |εi − εj |) = βξc (from the condition

Gminij = Gc or Zmaxij = 1/Gc). For this we can show
the integral satisfies

I ≤ 1

Nr
8π2

∫ R2max

0

dR2R
2
2

[ ∫ π

π/2

dθ

∫ R1max

0

dR1R
2
1 sin θ(R1 +R2 −

√
R2

1 +R2
2 − 2R1R2 cos θ)

+

∫ π/2

π/3

dθ

∫ R1max

2R2 cos θ

dR1R
2
1 sin θ(R1 +R2 −

√
R2

1 +R2
2 − 2R1R2 cos θ)

]
, (16)

where Nr = 8
3π

2R3
2max

∫ π
π/2

dθ
∫ R1max

0
dR1R

2
1 sin θ +

8π2
∫ R2max

0
dR2R

2
2

∫ π/2
π/3

dθ
∫ R1max

2R2 cos θ
dR1R

2
1 sin θ. By a

straightforward calculation we obtain further

I ' 0.424π2R7
max/Nr, (17)

with the normalization factor Nr = 23
18π

2R6
max. Here

Rmax = max{R1max, R2max}. We should emphasize that
to this step we cannot cancel the function R7

max in the
numerator of the Eq. (17) by the normalization factor

Nr. This is because both of them are only part of the
original configuration averaging 〈Rij +Rjk −Rik〉c. The
final result needs to further integrate over onsite energies,
and gives that

ln〈Rminijk 〉c ' 0.156βξc. (18)

Now we evaluate the configuration averaging 〈εminijk 〉c,
which corresponds to a 3D integral over onsite energies.
Similarly, the formula is given by

ln〈εminijk 〉c =
0.5β

∫
dεidεjdεkρ(εi)

∑
l≥3 Pl(εi)ρ(εi)

∑
l≥3 Pl(εj)ρ(εk)

∑
l≥3 Pl(εk)(|εi|+ |εj |+ |εj − εk| − |εi − εk|)∫

dεidεjdεkρ(εi)
∑
l≥3 Pl(εi)ρ(εi)

∑
l≥3 Pl(εj)ρ(εk)

∑
l≥3 Pl(εk)

.(19)

To simplify the above integral, we check |εj−εk|−|εi−εk|
with the restriction: |εi| < |εj | < |εk|. For the case
i) sgn(εi) = sgn(εj) = sgn(εk) = ±1, we have |εj −
εk| − |εi − εk| = −|εi − εj |; For ii) sgn(εi) = sgn(εj) =
−sgn(εk) = ±1, we have |εj − εk| − |εi − εk| = −|εi − εj |;
For iii) sgn(εi) = sgn(εk) = −sgn(εj) = ±1, we have
|εj−εk|−|εi−εk| = −|εi−εj |; For iv) sgn(εj) = sgn(εk) =

−sgn(εi) = ±1, we have |εj − εk| − |εi − εk| = |εi − εj |.
For this we obtain that 〈|εi|+ |εj |+ |εj−εk|−|εi−εk|〉c '
〈|εi|+ |εj | − 1

2 |εi − εj |〉c. Then by a straightforward cal-
culation one can verify that

ln〈εminijk 〉c = 0.086βξc. (20)

Together with the results in Eq. (18) and Eq. (20) we
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get

〈Rminijk 〉c〈εminijk 〉c ' e0.242βξc , (21)

The lower limit of the AHC is then obtained by

{σAHxy }min = 3Lσ2
xx

kBT

e2

1

t
(0)
max

e0.242βξc . (22)

Note the longitudinal conductivity σxx is calculated
based on the 2-site function of Gij which should be no
less than Gc in a percolation path. The evaluation of
σxx with percolation theory has been well studied in the
published literatures16,24,25. It can be shown that the re-
sult of σxx equals Gc divided by the correlation length of
the network and takes the form σxx = σ0(T )e−βξc , where
σ0(T ) gives at most a power-law on T 24,25. Comparing
this form with the lower limit of the AHC obtained above,
we reach that

{σAHxy }min = 3Lσ0.242
0

kBT

e2

1

t
(0)
max

σ1.758
xx . (23)

The upper limit can be studied in the same way. Con-
sidering the different restrictions, we obtain 〈Rij +Rjk−
Rik〉c|Rij ,Rjk<Rik = 0.483βξc/a and 〈|εi| + |εj | + |εj −
εk| − |εi− εk|〉c||εi|>|εj |>|εk| = 0.275ξc. For this we obtain

〈Rmaxijk 〉c ' e0.483βξc , 〈εmaxijk 〉c ' e0.138βξc , and the upper
limit of the AHC by

{σAHxy }max = 3Lσ0.621
0

kBT

e2t
(0)
min

σ1.379
xx ∝ σγxx. (24)

Comparing the above results with the AHC, we reach

{σAHxy }min/max ∼ σ
2−γa/b
0 σ

γa/b
xx with γa = 1.76 and γb =

1.38. This leads to the scaling relation between σAHxy and
σxx of the AHE in the Mott VRH regime:

σAHxy ∝ σγxx, 1.38 < γ < 1.76. (25)

The maximum (minimum) of the AHC corresponds to
the smaller (larger) power index γb (γa). This scaling
range can be confirmed with a numerical calculation of
the Eq. (15). Furthermore, a direct numerical study for
the configuration integral (14) gives the scaling exponent
γ ≈ 1.62, which is consistent with the analytical predic-
tion of the lower and upper limits.

It is noteworthy that the configuration averaging over
the position 〈Rijk〉c undergoes a relatively large change
in magnitude between the upper and lower limits. This
result reflects an important property of the (variable
range) hopping conduction regime presented below. In
the VRH, the hopping process allows to go beyond be-
tween nearest neighbor impurity sites to minimize the re-
sistivity. The optimization of the typical hopping length
plays a major role in determining the scaling of the con-
ductivities with respect to temperature17. The lower and
upper limits correspond to the opposite extreme situa-
tions of the triad distribution which have distinct influ-
ences on the optimization of the hopping distances for

the Hall transport and thus lead to very different results
for the AHC after spatial averaging. We should empha-
size that this remarkable difference between 〈Rmaxijk 〉c and

〈Rminijk 〉c is obtained in the case of a constant DOS around
Fermi energy. One can expect this effect will be sup-
pressed in the E-S hopping regime where the DOS is a
parabolic function of the onsite energy and the difference
between configuration integrals with respect to energies
become more important (refer to the discussion in the
next subsection).

We make a further remark here to compare our results
with those obtained by Burkov et al21. In the final result
of the AHC in Ref. 17, the configuration averaging was
actually not performed but simply replaced by the max-
imum value of the integrand in their formalism. This
procedure, not surprisingly, cannot predict the correct
scaling relation. Here we have performed the exact cal-
culation of the lower and upper limits of the AHC based
on the correct configuration averaging formula. With our
procedure, the key physics that the Hall currents are av-
eraged over percolation cluster is completely considered
and reflected in our evaluation.

So far in the calculation we have assumed a constant
DOS. This approximation is applicable for the ferromag-
netic system with strong exchange interaction between
local magnetic moments and charge carriers (e.g. oxides,
magnetites) and half metals in general. In this case we
do not need to sum over spin-up and spin-down states
which contribute oppositely to the AHE, and the previ-
ous results are valid.

However, when the Fermi energy crosses both spin-up
and -down impurity states, a symmetric DOS with ρ(ε) =
ρ(−ε) leads to zero AHC. This is because under the trans-
formation εl,σ → −εl,−σ (l = i, j, k), Gijk changes sign,
while Gij is invariant. Thus the averaging for AHC over
all spin states and on-site energies cancels21. We relax the
previous simplifying restriction by expanding the DOS

by ρ(ε) =
∑
n

1
n!
dnρ0
dεnF

εn, where we consider ρ0 = ρ(εF )

is finite and has only a relatively small variation in the
range |ε| < ξc. Substituting this expansion into Eq. (14)

yields σAHxy =
∑∞
n=0 σ

(n)
xy , with the 1st and 2nd nonzero

terms respectively proportional to dρ0
dεF

and d3ρ0
dε3F

. We

can similarly evaluate the lower and upper limits of σAHxy
as before. The first two nonzero terms in the expan-

sion are {σ(1)
xy }min/max ∼ M dρ0

dεF
ξc(T )σ

2−γa/b
0 σ

γa/b
xx and

{σ(2)
xy }min/max ∼ 0.002M d3ρ0

dε3F
ξ3
c (T )σ

2−γa/b
0 σ

γa/b
xx . The

appearance of M is due to the summation over the spin-
up and -down states. We have also employed the result

〈|ε|〉c = 0.112ξc. Note that σ
(1)
xy and σ

(2)
xy have differ-

ent physical meanings. The term σ
(1)
xy dominates when

the DOS varies monotonically versus ε. Furthermore,
when the DOS has a local minimum at the Fermi level,
which may be obtained due to particle-particle interac-
tion (coulomb interaction), we have dρ/dεF = 0. Then

the term σ
(1)
xy varnishes and σ

(2)
xy dominates the AHE.
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The result that the AHC σAHxy proportional to dρ0/dεF
(when the DOS varies monotonically with respect to en-
ergy around Fermi energy) or d3ρ0/dε

3
F (when the DOS

has a local minimum at Fermi level) indicates an inter-
esting property that the AHC may change sign when the
first or third order derivative of DOS with respect to
energy changes sign. This result is consistent with the
observation by Allen et al et al7.

FIG. 5: (Color online) Scaling relation between the AHC and
longitudinal conductivity. The theoretical results are com-
pared with the experimental observations.

Fig. 5 shows our theoretical prediction is consistent
with the experimental observations of the scaling relation
in this regime, hence completing the understanding of the
phase diagram of the AHE.

B. Efros-Shkolvskii regime

In the case with strong coulomb interaction, the DOS
may be greatly reduced around the Fermi energy in dis-
ordered insulators26,27. In this case the assumption in
previous subsection that the DOS has a small variation
relative to ρ0 is not valid. The limit situation is that both
the DOS and the first derivative at Fermi level varnish
(i.e. the E-S hopping regime), which corresponds to the
appearance of a gap due to coulomb interaction. In this
case ρ0 = 0 and dρ/dεF = 0, and thus

ρ(ε) ' 1

2

d2ρ0

dε2
ε2 +

1

6

d3ρ0

dε3
ε3. (26)

The E-S hopping regime is different from the cases dis-
cussed in the previous section, since around the Fermi
energy DOS is not dominated by a constant but by a
parabolic function of on-site energy. This may lead to a
quantitative variation of the probability function in the

configuration averaging, and finally affect the quantita-
tive but not qualitative result of the scaling relation. The
formula of the connectivity n(εi, ξc) is now given by

n(εi, ξc) =
1

(2akBT )3

2π

3

d2ρ0

dε2
( 1

30
ξ6
c −

1

10
ξ5
c |εi|+

+
1

4
ξ4
c |εi|2 −

1

3
|εi|3ξ3

c +
3

10
|εi|5ξc −

− 3

20
|εi|6

)
. (27)

The configuration averaging of AHC can be calculated
following a similar procedure. Specifically, for the lower
limit we obtain

〈Rminijk 〉c ' e0.092βξc , 〈εminijk 〉c ' e0.29βξc . (28)

Comparing the above results with those obtained in the
Mott VRH regime with a constant DOS, we can see the
magnitude of energy averaging in the E-S hopping regime
increases, while the magnitude of position averaging de-
creases. This is reasonable since the DOS varies as a func-
tion of ε2, which increases the contribution to the Hall ef-
fect from the impurity states with energies far away from
the Fermi energy and accordingly, decreases the contri-
bution from hopping between impurity sites with large
distances. The lower limit of the AHC is then obtained
by

{σAHxy }min ' 0.059Lσ0.38
0 (T )

M0

e2

1

t
(0)
max

d3ρ0

dε3F
ξ3
c (T )σ1.62

xx .

(29)

For the upper limit of AHC, we get 〈Rmaxijk 〉c ' e0.29βξc

and 〈εmaxijk 〉c ' e0.38βξc . This leads to the scaling relation
in the upper limit

{σAHxy }max ' 0.026Lσ0.67
0 (T )

M0

e2

1

t
(0)
min

d3ρ0

dε3F
ξ3
c (T )σ1.33

xx .

(30)

Therefore in the E-S hopping regime the scaling relation
between anomalous Hall and longitudinal conductivities
becomes σAHxy ∝ σγxx with 1.33 ≤ γ ≤ 1.62, which has a
small quantitative shift relative to the scaling obtained
in the case with a constant DOS. This result is consistent
with the observations in the experiments by Aronzon et
al4, and by Allen et al7, who found the scaling relation
as 1.4 ≤ γ ≤ 1.6 for the E-S hopping conduction regime.
Again, the AHC in the E-S regime σAHxy is proportional to

d3ρ0/dε
3
F , and thus may change sign when the third order

derivative of DOS with respect to energy changes sign.
Finally, it can be expected that the general situation with
a reduced DOS (not necessarily zero) at Fermi level will
be associated with a scaling falling in between the E-
S hopping regime and the case with a constant DOS.
This confirms that the scaling relation between σAHxy and
σxx is insensitive to what types of hopping conduction
the material belongs to, and is therefore generic for the
disordered insulating regime.
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C. Activation E3 hopping regime

Finally, we present a brief study on the AHE in the ac-
tivation E3 hopping regime, which dominates the charge
transport in the disordered insulating system when the
temperature T > T0. Here T0 is given by Eq. (9). In
the activation E3 hopping regime, the hopping between
nearest neighbor impurity sites dominates the charge
transport27,31. In this case the hopping configuration in
the position space is not affected by temperature. Thus
the configuration averaging over position space is inde-
pendent of temperature. The temperature dependence
of the conductivities is solely determined by the energy
configuration integral. Again we consider that the im-
purity sites are homogeneously distributed in position
space. Then connectivity n(εi) for a specific impurity
site with on-site energy εi is given by

n(εi) =
4πR3

c

3

∫
dεjρ(εj)Θ

(
E3 −

|εi|+ |εj |+ |εi − εj |
2

)
,

(31)

where E3 is the cut-off for on-site energy and Rc repre-
sents the typical distance between the neighbor impurity
sites. For a constant DOS, one has

n(εi) =
4

3
πR3

cρ0(2E3 − |εi|), (32)

with |ε| ≤ E3. It can be seen that for the present regime,
n(E3) = 4

3πR
3
cρ0E3 > 0. This is different from the situa-

tion in the VRH regime considered in previous sections.
Substituting the above formula into Eq. (8) one can cal-
culate the relation between the cut-off E3 and n̄ straight-
forwardly, with which one can verify that E3 is a constant
independent of temperature and E3 ∝ 1/(ρ0R

3
c)

31. The
longitudinal conductivity is then given by

σxx = σ0e
−E3/kBT . (33)

The AHC is still given by Eq. (14) with the function
of n(εi) given by Eq. (31), but now the configuration
integral over position is unrelated to that over on-site
energies and thus does not affect the temperature depen-
dence of σAHxy . For this we obtain the upper and lower
limits of the AHC that

{σAHxy }min
max
' 3Lσ2

xx

kBTe
aRc

e2t
(0)
max/min

〈ε
min
max
ijk 〉c. (34)

By a direct numerical evaluation we obtain that
〈εmax
ijk 〉c ≈ e0.61βE3 , 〈εminijk 〉c ≈ e0.34βE3 , with which we

obtain the scaling relation σAHxy ∝ σγxx, where 1.39 ≤ γ ≤
1.66. With this result we conclude that the scaling in
the activation E3 hopping regime has only a quantitative
small shift relative to the scaling in the VRH hopping
regimes.

VI. CONCLUSIONS

We have developed a theory based on the phonon-
assisted hopping mechanism and percolation theory to
study the anomalous Hall effect (AHE) in the disordered
insulating regime. A general formula for the anomalous
Hall conductivity (AHC) has been derived for the hop-
ping conduction regime, with the key physics that the
Hall currents are averaged over percolation cluster be-
ing completely considered. We calculated the lower and
upper limits of the AHC, and show it scales with the lon-
gitudinal conductivity as σAHxy ∼ σγxx with γ predicted to
be 1.33 ≤ γ ≤ 1.76. The predicted scaling only slightly
depends on the specific hopping types, and is quantita-
tively in agreement with the experimental observations.

From our theory the scaling relation in the insulat-
ing AHE is fully determined by the microscopic origin:
phonon-assisted hopping conduction mechanism, and by
the fact that the AHC is dominated by the percolation
clusters. It is clear that these two aspects are generic for
hopping conduction regime of the disordered insulators,
and therefore the obtained scaling in this regime is qual-
itatively generic in the disordered insulating AHE. We
have shown that this scaling remains similar regardless
of whether the hopping process is Mott-variable-range-
hopping, influenced by interactions, or activation E3 hop-
ping (nearest neighbor hopping) regime. Our results ex-
plain naturally how the scaling between the two quan-
tities remain true even when the diagonal conductivity
crosses regimes and why this type of scaling is so preva-
lent in the insulating regime. Our theory completes the
understanding of the AHE phase diagram in the insulat-
ing regime.
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