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Quasi-particle band structure of Zn-IV-N2 compounds.
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Electronic energy band structures of the Zn-IV-N2 compounds with IV=Si, Ge, Sn calculated in
the quasi-particle self-consistent GW approximation and using the full-potential linearized muffin-
tin orbital approach are presented. A comparison is made with local density approximation results.
The bands near the gap are fitted to an effective Kohn-Luttinger type Hamiltonian appropriate for
the orthorhombic symmetry and conduction band effective masses are presented. Exciton binding
energies and zero-point motion corrections to the gaps are estimated. While ZnSiN2 is found to
be an indirect gap semiconductor, ZnGeN2 and ZnSnN2 are direct gap semiconductors. The gaps
range from the orange-red to deep UV. The valence band maximum is split in three levels of different
symmetry even in the absence of spin-orbit coupling and should show transitions to the conduction
band each for a separate polarization. Spin-orbit effects are found to be surprisingly small, indicating
almost exact compensation of the N-2p and Zn-3d contributions.

PACS numbers: 71.20.Nr,71.15.Nc

I. INTRODUCTION

The II-IV-N2 compounds are closely related to the
group III-N semiconductors. They are obtained by re-
placing the group-III element alternately by a group II,
such as Zn, and a group IV, such as Si, Ge, Sn. While
this type of chemical substitution is well known for other
group V semiconductors and transforms the zincblende
structure in the chalcopyrite structure, a similar substi-
tution can also be done in the wurtzite structure, com-
monly found as the lowest energy crystal structure for the
group-III nitrides. As in the chalcopyrite case, it leads to
a well defined ordered crystal structure, with in this case
orthorhombic symmetry. This should be contrasted with
the substitution of different group III elements, which
usually leads to disordered alloys. We thus call the new
compounds heterovalent ternary compounds. Because of
their close relation to the group III-nitrides, one may ex-
pect similar but not identical properties. This provides
an alternative opportunity for band structure and other
property engineering to the usual III-N alloys.
Nitride compounds of this type have been known since

the 70s but the literature on them is still rather sparse.
The earliest report on the synthesis of ZnGeN2 is by Mau-
naye and Lang in 1970,1 and used a reaction of NH3 with
Zn2GeO4, the latter being separately obtained from re-
acting GeO2 with ZnO. The initial reports on the crystal
structure showed it to have a structure related to that
of wurtzite but with a lower, monoclinic symmetry. Be-
cause of the closeness in electron density and hence X-ray
and electron scattering factors between Zn and Ge, it was
impossible using X-ray diffraction to determine whether
the Zn and Ge atoms were ordered or disordered on the
cation lattice. A neutron diffraction study2 determined
the ordering of the Zn and Ge atoms, and thus estab-
lished the orthorhombic structure explained in more de-
tail below.

Larson et al3 used a vapor growth method for ZnGeN2

starting from elemental Zn and Ge in NH3 and reported
an absorption onset at 2.67 eV, which is probably an
underestimate resulting from defects. High-pressure syn-
thesis of ZnGeN2 and ZnSiN2 starting from mixtures of
Zn3N2 and Si3N4 or Ge3N4 was reported by Endo et al.4

They reported a band gap of 3.64 eV for ZnSiN2 based
on the optical absorption onset.

Metal-organic chemical vapor deposition (MOCVD)
was used by Zhu et al.5 to synthesize thin films of
ZnGeN2. The same group also reported ZnSiN2 growth
and alloy growth of ZnSi1−xGexN2 growth and these ma-
terials were investigated by a number of other collabora-
tors determining optical properties6,7, transistor devices
on SiC8, and even their suitability as magnetic semicon-
ductor host by implantation of Mn9. Muth et al.6 deter-
mined band gaps from optical absorption data as a func-
tion of alloy composition in ZnSi1−xGexN2 and found
it to vary between 3.1-3.2 eV for ZnGeN2 to 4.4 eV in
ZnSiN2. Cook et al.7 determined the indices of refraction
and Mintairov et al.10 determined the infrared reflection
relating to the vibrational spectrum.

Misaki et al.11–13 used remote plasma enhanced
MOCVD for thin film growth of ZnGeN2 and reported a
band gap of 3.3 eV. They also reported optical reflectiv-
ity in the UV up to 20 eV. Most of this work used r-plane
sapphire as the substrate. Cloitre et al. reported ZnSiN2

growth by MOVPE on c-plane sapphire.14 Kikkawa and
Morisaka15 reported RF-sputter deposition of ZnGeN2

thin films on Si and glass substrates and estimated the
gap to be about 3.1 eV. Viennois et al.16 performed the
first Raman spectroscopy study on powder samples of
ZnGeN2, synthesized by a similar approach as used by
Maunaye and Lang.

Recently a vapor-liquid-solid synthesis method was
used by Du et al.17 using pure Zn and Ge, and NH3,
at growth temperatures between 750◦C and 900◦C. Pho-
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toluminescence on these materials indicate a gap of
3.40±0.01 eV and a high ratio of band gap versus de-
fect luminescence.
The first band structure calculations of ZnGeN2 were

presented in 1999 by Limpijumnong et al.18 using the lo-
cal density approximation and linearized muffin-tin or-
bital method. They also investigated the linear and
non-linear optical properties such as the index of refrac-
tion and second harmonic generation coefficient. Other
groups also presented band structure calculations with
pseudopotential plane wave approaches19,20 and included
some other members of this family of II-IV-N2 com-
pounds.
Recently, Lambrecht et al.21–25 presented a series of pa-

pers mainly focusing on the lattice dynamics of ZnSiN2,
ZnGeN2 and ZnSnN2. As part of this work, the elec-
tronic band structures were also calculated using a pseu-
dopotential plane wave approach.26 All of these previous
works on the band structure however suffer from the lim-
itations of the local density approximation. Although
some earlier estimates of the band gaps going beyond
LDA were mentioned in Paudel et al.24, there is still con-
siderable uncertainty on the band structures both from
the theory and experimental point of view.
In this paper we present quasi-particle self-consistent

GW (QSGW) calculations of the band structures of
ZnSiN2, ZnGeN2, and ZnSnN2. The QSGW method has
been shown to provide reliable predictions of the band
gaps of a large variety of semiconductors.27 The calcu-
lations are performed using an accurate full-potential
linearized muffin-tin orbital method.28,29 The crystal
structure and symmetry is discussed first. We re-
optimized crystal structure parameters using the FP-
LMTO method in the local density approximation be-
fore proceeding with the GW calculations. After a dis-
cussion of the differences between LDA and GW and
the atomic orbital character of the energy bands over a
wide energy range, we focus on the region near the band
gap. Besides the band gaps, it is of interest to determine
some details of the valence band maximum splittings and
the effective masses. We present a generalization of the
Kohn-Luttinger Hamiltonian suitable for crystals of or-
thorhombic symmetry based on the method of invariants
and determined the relevant inverse effective mass pa-
rameters in this model. We also include and discuss the
spin-orbit splittings of the VBM. We use our calculated
effective masses to estimate exciton binding energies and
estimate other corrections to the band gaps such as the
zero-point motion electron-phonon renormalization cor-
rection.

II. CRYSTAL STRUCTURE

The prototype for the crystal structure of the II-IV-N2

compounds is β-NaFeO2, which is actually a I-III-VI2
compound but is related in a similar way to the wurtzite
structure of a II-VI compound. This crystal structure
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FIG. 1. (Color online) Projection of crystal structure of Zn-
IV-N2 compounds on c-plane with symmetry elements. Large
open circles indicate cations in bottom plane, small open cir-
cles in top plane, filled circles are N atoms above them as
indicated. The symmetry elements are indicated and chosen
so that the 21 axes passes through the origin.

can be viewed as a 2×
√
3 superlattice of wurtzite along

ortho-hexagonal axes as illustrated in Fig.1 showing a
projection on the c-plane. It has 16 atoms per unit cell.
The b/a and c/a can both adjust as well as the internal
positions x, y, z of each of the 4 types of atoms, the group
II, group IV and two inequivalent N positions, NII be-
ing on top of the group II and NIV being on top of the
group IV element. We choose the a axis to be 2aw and
b ≈

√
3aw unlike the commonly found choice in the crys-

tallography literature, which interchanges a and b from
ours.
The space group is Pbn21, (space group No. 33, or

C9
2v) meaning that there is a 2-fold screw axis along the

z direction with translation 1/2c, a diagonal glide plane
n perpendicular to b with translations 1/2(a+c) and an
axial glide plane perpendicular to the a-axis with trans-
lation 1/2b. These symmetry elements are indicated in
the figure.
The point group is thus C2v. The character table for

this group was given in Ref.23. We here just note that
the a1, b1 and b2 irreducible representations correspond
to z,x and y basis functions with x along a, y along b
and z along the c-axes. The a2 irreducible representation
is even under the two-fold rotation but odd under both
mirror-planes and corresponds to an xy basis function.

III. COMPUTATIONAL METHOD

Density functional theory in the local density approxi-
mation (LDA) as well as the generalized gradient approx-
imation (GGA)30 are used to optimize the lattice con-
stants and atomic positions in side the unit cell. These
calculations are carried out using a full-potential lin-
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earized muffin-tin orbital (FP-LMTO) method.28,29

We use a 4 × 4 × 4 k-point sampling for the Brillouin
zone integration in the self-consistent LDA or GGA cal-
culations. The basis set contains two sets of smoothed
Hankel function decay parameters κ and smoothing radii,
Rsm and includes spd functions in the first and the sec-
ond set for Zn and includes spd functions in the first and
sp in the second set for Si, Ge, Sn and N. In addition we
add Zn-4d as local orbitals.

The quasi-particle band structure is calculated using
the quasi-particle self-consistent GW approach imple-
mented in the same FP-LMTO method as described
in Refs.27, 31, and 32. In this approach, Hedin’s
GW approximation33,34 for the self-energy, schematically
Σ(12) = iG(12)W (1+2), with G(12) the one-electron
Green’s function and W (1+2) the screened Coulomb in-
teraction —written in position, spin, time coordinates
1 = {r1, σ1, t1}, with 1+ = t1 + δ, is applied not as a
single-shot correction to LDA, as is usual, but starting
from a self-consistently determined static (but non-local)
exchange correlation potential

V QSGW
xc =

1

2

∑

nm

|Ψn〉ℜ[Σnm(En) + Σnm(Em)]〈Ψm|,

(1)
Here Ψn are the one-electron Kohn Sham eigenstates
and ℜ means taking the Hermitian part. This approach
is designed so that the eigenvalues of the Kohn-Sham
independent particle equations ǫnk approach the quasi-
particle energies Enk in the GWA. W is calculated as
W = (1−vΠ)−1v and Π(12) = −iG(12)G(21) in the ran-
dom phase approximation (RPA). A mixed plane wave
and product basis set35 is used to express all two particle
operators. For details, we refer the reader to the above
mentioned papers by the van Schilfgaarde group. Let us
here just remark that this method provides very accurate
results for a wide range of solids, including all standard
III-V and II-VI semiconductors.31 Most important, the
method has highly systematic small remaining errors: it
gives a slight overestimate of the gaps compared to ex-
periment. This remaining discrepancy is thought to arise
from the under-screening by the RPA. It can be corrected
by scaling the final ∆Vxc = V QSGW

xc − vLDA
xc by about

80 % as obtained empirically by comparing QSGW with
experiment for a wide variety of semiconductors.31 We
refer to this as the 0.8Σ approximation. Within this ap-
proximation most band gaps are obtained to better than
0.1 eV. The ∆Vxc represented in a muffin-tin orbital ba-
sis set can be Fourier transformed to real space and then
Bloch summed for arbitrary k-points on a finer mesh than
the one on which the time consuming GW calculation is
carried out. This allows us to obtain accurate effective
masses and band plots along symmetry lines.

As explained in Ref. 32 the ∆V xc
ñm̃(k) in the basis set

of the LDA Hamiltonian eigenstates (as indicated by the
˜over the indices) can be approximated to be linear in the
LDA eigenvalue: aǫLDA

ñk + b for energy bands above some
cut-off energy Ecut. We find it is important to take this

cut-off sufficiently high for the nitrides, say Ecut = 3 Ryd
above the Fermi level to obtain well converged results.
The gaps for Ecut = 2.5 Ryd were still underestimated
by 5-10 %. As k-point sampling set for the GW self-
energy we use a 2 × 2 × 2 mesh corresponding to the
16 atom unit cell. This is more or less equivalent to a
8× 8× 4 sampling for wurtzite.

IV. RESULTS

A. Structural results.

The lattice constants obtained by energy minimization
in both LDA and GGA are presented in Table I compared
to experimental values where available. We note that
even for ZnGeN2, the most studied of these materials,
there is still considerable variation between experimental
results on the lattice constants obtained from different
growth methods, reflecting for example film strain con-
ditions, as discussed in more detail in Du et al.17 and
that ZnSnN2 has not yet been synthesized. For exam-
ple, Du et al.17 obtain a b/aw ratio of 1.741 and c/aw
of 1.627 with a lattice constant a = 6.314 Å. This gives
V = 178.24 Å3. We also compare our results with those
of a previous calculation by Paudel et al.24. The aver-
age deviation of the lattice constants from experiment
is most easily seen by comparing the volumes. We see
that, as usual, LDA slightly underestimates the volume
while GGA overestimates it. For ZnSiN2, GGA appears
closer to the experiment and for ZnGeN2 LDA is slightly
closer but neither has a clear advantage. The ratios b/aw,
c/aw are slightly larger in our calculated results than
in experiment and LDA seems closer to experiment for
those than GGA. The remaining discrepancies in b/aw
and c/aw with experiment are of order 1 % compara-
ble with the experimental uncertainty. Therefore in the
remainder of the paper we will calculate the band struc-
tures at the LDA equilibrium lattice parameters. Com-
pared to the pseudopotential plane wave calculations of
Paudel et al.24 the present results are slightly closer to
the experimental values.
Table II gives the reduced coordinates (x, y, z) of the

atomic positions after relaxation. All atoms occur in
4(a) Wyckoff positions: (1) x, y, z (2) −x,−y, z + 1

2 , (3)

x + 1
2 ,−y + 1

2 , z, and (4) −x + 1
2 , y + 1

2 , z + 1
2 . Com-

pared to the results given in Paudel et al.24 we here use
a different setting of the unit cell with the two-fold screw
axes passing through the origin, as recommended in the
International Tables of Crystallography. All coordinates
are relaxed relative to the position of the two fold screw
axes but one finds generally that the Zn and IV atoms
are almost exactly shifted by 0.5a from each other. The
relaxation consists mainly in an adjustment of each N
atom inside its surrounding tetrahedron, approaching the
group-IV atom and moving away from the Zn atom. The
average bond-lengths are summarized in Table III and
are in good agreement with Paudel et al.24 and with ex-
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TABLE I. Lattice parameters a, b, and c (Å), lattice volume
V (Å3), the average error with respect to experiment ( σ =
[(δV/V ) − 1]/3), lattice constant ratio (aw = a/2) in Zn-IV-
N2.

Compound LDA GGA LDA-ABINIT a Exptb

ZnSiN2 a 6.08 6.16 6.01 6.18

b 5.27 5.41 5.28 5.35

c 5.02 5.11 4.98 5.05

V 160.85 170.29 158.02 166.97
δV
V

0.96 1.02 0.95

σ −0.012 0.007 −0.018

b/aw 1.733 1.756 1.757 1.731

c/aw 1.651 1.659 1.657 1.634

ZnGeN2 a 6.38 6.42 6.33 6.44

b 5.45 5.54 5.36 5.45

c 5.22 5.27 5.11 5.19

V 181.50 187.44 173.38 182.16
δV
V

0.996 1.03 0.952

σ -0.001 0.009

b/aw 1.708 1.726 1.693 1.693

c/aw 1.636 1.641 1.614 1.612

ZnSnN2 a 6.59 6.70 6.76

b 5.70 5.80 5.85

c 5.41 5.53 5.58

V 203.21 214.89 220.67

b/aw 1.730 1.731

c/aw 1.642 1.651

a From Ref. 24
b For ZnSiN2 from Ref. 10, for ZnGeN2 from Ref. 2

perimental data for ZnGeN2.
In the process of obtaining the optimum lattice volume,

we fitted the Vinet equation of state, given by

E(V ) = E0 +
2B0V0

(B
′

0 − 1)2
(2− (5 + 3B

′

0((V/V0)
1/3 − 1)

−3(V/V0)
1/3)e

3

2
(B

′

0
−1)(V/V0)

1/3
−1)) (2)

to the energy vs. volume relation and obtained from
this fit, values for the bulk modulus, B0, its pressure
derivative, B′

0 and the equilibrium volume, V0. These
are given in Table IV and are in good agreement with
Paudel et al.24,25 This establishes that our FP-LMTO
calculations describe the structure adequately so we can
move on to a study of the electronic band structure in
the next section.

B. Band structures

The LDA and QSGW band structures of ZnSiN2,
ZnGeN2 and ZnSnN2 are compared with each other in

TABLE II. Wyckoff 4(a) positions (reduced coordinates) in
the unit cell.

Compound Atoms x y z

ZnSiN2 Zn 0.623 0.089 0.000

Si 0.126 0.074 0.000

NSi 0.102 0.057 0.346

NZn 0.649 0.109 0.402

ZnGeN2 Zn 0.625 (0.620)a 0.085 (0.083) 0.000 (0.000)

Ge 0.126 (0.125) 0.079 (0.083) 0.001 (0.000)

NGe 0.113 (0.115) 0.069 (0.070) 0.360 (0.365)

NZn 0.637 (0.640) 0.096 (0.095) 0.389 (0.385)

ZnSnN2 Zn 0.626 0.084 0.000

Sn 0.127 0.083 0.002

NSn 0.125 0.081 0.377

NZn 0.622 0.085 0.372

a For ZnGeN2, the numbers in parentheses are the experimental
values from Wintenberger et al.2

TABLE III. Average bond lengths in Å.

Compound Zn-N (Å) IV-N (Å)

ZnSiN2 2.02 1.74

ZnGeN2 2.03 (2.01)a 1.88 (1.88)

ZnSnN2 2.04 2.02

a Experimental values from Wintenberger et al.2 in parentheses.

Fig. 2 Before discussing the differences we discuss the
atomic orbital character of the bands. The bands fall in
three regions, the lower valence band, near -15 eV is the
N-2s like band, bands in the range from -5 to 0 eV are
mostly N-2p but near 5 eV in LDA and about 2 eV lower
in GW we find the Zn-3d bands overlapping with them.
The N-2p bands are fairly strongly hybridized with cation
s and p orbitals as can be seen in the partial density of
states shown in Fig. 3. A more detailed examination of
the orbital character of the conduction band minimum
(CBM) indicates that the CBM has slightly higher group-
IV than group-II cation-s character. Thus to maximally
change the band gap it is more efficient to vary the group
IV rather than group-II element.
The band gaps are summarized in Table V. First, we

note that ZnSiN2 has an indirect minimum gap slightly
lower than the lowest direct gap. All compounds have
their conduction band minimum (CBM) at Γ but the
valence band maximum (VBM) in ZnSiN2 occurs at a
point along the Γ− Y direction close to Y .
Before comparison with experiment, we add an esti-

mated zero-point motion band gap renormalization cor-
rection ∆(0) and exciton binding energy correction Exb.
The former were tabulated by Cardona and Thewalt36
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TABLE IV. Bulk moduli and their pressure derivatives of Zn-
IV-N2 compounds obtained from fit to Vinet equation of state.

Compound B0 (GPa) B′

0

LDA GGA LDA GGA

ZnSiN2 234 (228)a 208 4.4 (4.4) 4.4

ZnGeN2 207 (197) 178 4.8 (4.4) 4.9

ZnSnN2 177 (184) 150 4.9 (4.8) 4.8

a Values in parentheses from Paudel et al.24
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FIG. 2. (Color online) Electronic band structure of ZnSiN2,
ZnGeN2 and ZnSnN2.
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FIG. 3. (Color online) Total and partial densities of states
: N-2s, 2p, IV-ns, np, with n = 3, 4, 5 for Si, Ge, Sn, Zn-
4s, 4p, 3d, of ZnSiN2, ZnGeN2 and ZnSnN2.

for various semiconductors. We find that for the III-N
semiconductors this correction is approximately propor-
tional to the band gap itself and approximately given
by −50− 31Eg meV. This gives ∆(0) as −227, −162 and
−117 meV for ZnSiN2, ZnGeN2 and ZnSnN2 respectively.
The exciton binding energies are estimated from

Exb =
µ

ε20
Rydberg (3)

where we use the reduced mass µ = mcmv/(mc + mv)
with mc,mv a directional averaged conduction and va-
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TABLE V. (Color online) Band gaps (in eV) of Zn-IV-N2 compounds in various approximations.

Compound LDA GGA QSGW 0.8Σ 0.8Σ +∆(0) + Exb
a Expt.

ZnSiN2 indirect 3.60 3.23 6.01 5.70 5.44

direct 3.84 3.45 6.26 5.92 5.66 4.46b

ZnGeN2 direct 1.66 1.57 3.99 3.60 3.42 3.40±0.01c

ZnSnN2 direct 0.55 0.35 2.64 2.15 2.02

a ∆(0) is the estimated zero-point motion renormalization correction (see text) and Exb the exciton binding energy.
b Osinksy et al.8
c Du et al.17

lence band hole mass as obtained in the next section. We
here neglect the interaction of the different valence bands
and take only the highest VBM into account (which is
justified by the fairly large crystal field splittings) and
average the inverse masses over direction. This gives mc

values of 0.293, 0.185 and 0.141 for ZnSiN2, ZnGeN2,
ZnSnN2 respectively. The corresponding mv values are
0.520, 0.530 and 0.392 and the reduced exciton masses
0.188, 0.137, 0.104. For ZnSiN2, we use the actual VBM
not at Γ so the exciton binding energy corresponds to
the indirect gap. For the direct gap we do not include
an exciton binding energy. With high-frequency dielec-
tric constants from Paudel et al.24 averaged arithmeti-
cally over x, y, z, we obtain ε∞ value of 5.00, 5.37 and
6.37. This would give exciton binding energies 102 meV,
64 meV and 35 meV respectively. Using static dielec-
tric constants 9.33, 9.70, 12.71 instead, we would obtain
exciton binding energies of 29, 20 and 9 meV. These are
comparable to the value in GaN of 25 meV.37 Since these
are smaller than the LO-phonon energies, it makes sense
to incude the ionic screening. The gaps including both
zero-point motion renormalization correction and exciton
binding energy are given in Table V.
For ZnGeN2, our best converged QSGW calculations

overestimates the gap by about 0.5 eV, which is typi-
cal for QSGW, while 0.8Σ is very close to the exper-
imental value and is even closer after adding the above
mentioned corrections. This experimental gap was deter-
mined by photoluminescence at 4 K and thus should be
very close to our calculated gap. Spin-orbit corrections
turn out to be negligibly small for these nitrides as will
be discussed below. The LDA and GGA as usual under-
estimate the gap significantly. The GGA underestimates
it a bit more than LDA but this is mostly because this
calculation was done at the GGA lattice constants which
are slightly larger and hence the gap is expected to be
lower.
For ZnSiN2, even our 0.8Σ gap is significantly larger

than the experimental value. The zero-point motion and
exciton binding energy corrections here are larger but
even so, our value is about 1 eV larger than the ex-
perimental value. We note however, that the latter is
obtained from absorption measurements at room tem-
perature. The temperature effect could be at most 0.2

eV. So, even taking these corrections into account, there
remains a significant discrepancy. Early absorption mea-
surements for ZnGeN2 also gave significantly lower values
of the gap, e.g. 2.67 eV in Larson et al.3, 3.1-3.2 eV8,
3.3 eV11. Defect band tails might be responsible for an
experimental underestimate of the gap. Earlier work by
Endo et al.4 gave an even lower estimate of the onset of
absorption in ZnSiN2 of 3.64 eV.
Previous calculations also obtained an indirect gap for

ZnSiN2,
20 of 3.32 eV in LDA. For ZnGeN2 they obtained

an LDA gap of 1.67 eV close to ours. The small dis-
crepancy in LDA values is likely to arise from the use
of different band structure methods or slighty different
lattice constants.
Our predicted gap (including the various corrections)

for ZnSnN2 corresponds to 614 nm wavelength which
is in the orange-red region of the spectrum while for
ZnGeN2 the corresponding wavelength is 362 nm and for
ZnSiN2,the indirect direct gaps correspond to 228, 218
nm, well in the UVC range.
Next, we discuss individual band state shifts due to

GW. In an electron gas or metal, the GW self-energy
Σxc(ǫF ) = 0 at the Fermi level and furthermore one
knows that near the Fermi level |ImΣxc(ω)| ∝ (ω − ǫF )

2

and leads to an increasing shift of the levels away from the
Fermi level.34 In a semiconductor we can no longer do this
expansion around the Fermi level and the zero of energy
of the Σxc(ω) is set by that of the Green’s function of the
underlying one-electron Hamiltonian. Although there is
no physical meaning to eigenvalues on an absolute scale
in a periodic system, we can use the average electrostatic
potential as the zero of energy. Quasi-particle shifts of
eigenvalues between single-shot GW and the correspond-
ing one-electron Hamiltonian are well defined, because
they correspond to the same electron density. We ob-
tain this shift by comparing the QSGW eigenvalues with
the LDA eigenvalues obtained with the charge density
generated by QSGW. We refer to it as the ”pure quasi-
particle shift” Σi for a given level i. On the other hand,
we can also compare the shifts between the QSGW quasi-
particle energies and the LDA eigenvalues for the LDA
charge density, where the latter are given with respect to
the average electrostatic potential, calculated in the same
way by setting the reciprocal lattice vectorG = 0 compo-
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FIG. 4. (Color online) Fine structure of the bands near the va-
lence band maximum with symmetry labeling at Γ for ZnSiN2,
ZnGeN2 and ZnSnN2.

nent of the Madelung potential equal to zero. The bands
in Fig. 2 were aligned by this procedure. The QSGW
and LDA eigenvalues were both determined relative to
their average electrostatic potentials and then shifted to
the VBM of the LDA as zero of energy. In Table VI, we
include both the pure quasiparticle shifts and the shifts
between QSGW and LDA. The difference in these two
shifts provides an estimate of the error to expect in band
offsets from 1-shot GW calculations based on the LDA.
These absolute shifts are mainly useful in the context

of band-offset calculations between two materials. Once
we determine from an interface calculation, how the av-

TABLE VI. Absolute shifts (Ei − ǫi) in eV between QSGW
and LDA relative their own average electrostatic potentials
and pure quasiparticle shift Σi (in parentheses) for various
levels.

level ZnSiN2 ZnGeN2 ZnSnN2

CBM 1.6 (1.5) 1.7 (1.5) 1.8 (1.6)

VBM −0.5 (−0.5) −0.1 (−0.4) 0.2 (−0.3)

Zn-3d −2.3 (−2.2) −2.0 (−2.0) −1.5 (−1.9)

N-2s −1.3 (−1.2) −1.2 (−1.1) −1.0 (−0.7)

erage electrostatic potentials in the two semiconductors
are placed relative to each other, and assuming that far
away from the interface, the material is bulk like, we can
then apply the shifts between LDA and QSGW relative
to this local average electrostatic potential reference and
thus obtain a GW correction to the LDA band offset.
One can also use core levels or any other “local poten-
tial marker” for this purpose, such as the potential at
the muffin-tin radius. These shifts also play a role in the
understanding of defect levels and alloys.38

With these cautions in mind, let us now inspect the
results as given in Table VI. We find the pure quasipar-
ticle shifts of the VBM to be negative and of the CBM
to be positive with the ratio of the CBM shift to the ab-
solute value of the VBM shift increasing from Si to Sn.
The dominant shift is always in the CBM. When consid-
ering the shifts relative to the pure LDA, which include
a change in charge density between LDA and QSGW,
we find also a downward shift of the VBM, except for
ZnSnN2, for which both the VBM and the CBM shift up
relative to LDA. The CBM of ZnSnN2 has a sizable Sn-s
contribution. On an absolute scale one expects Sn-s lev-
els to lie deeper than e.g. Ge-s levels because s-levels are
non-zero at the nucleus. This is of course the underlying
reason for the gap reduction from Si to Ge to Sn. Appar-
ently for ZnSnN2, the Sn-s states are positioned relative
to the electrostatic potential reference in such a way as
to behave almost like a N-2p level and hence the VBM
shift has the same sign as the CBM. The N-2s and Zn-3d
bands shift considerably more down, showing that the
GW shifts are orbital dependent: the Zn-3d shift down
more than the N-2s even though the N-2s lie below the
Zn-3d. These average band positions were taken as the
peak in the corresponding partial density of states.

C. Effective valence band Hamiltonian

In this section, we examine the energy bands near the
band gap in more detail. Fig. 4 shows the band struc-
tures near the the valence band maximum for the three
compounds. The states at Γ are labeled according to
the irreducible representations. We note that the con-
duction band minimum at Γ has a1 symmetry. Thus
direct optical transitions are allowed from a1 to a1 for
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E ‖ c, from b1 to a1 for E ‖ a and b2 to a1 for E ‖ b.
We see that in ZnGeN2 and ZnSnN2 the valence band
maximum is split in three levels even without including
spin-orbit coupling. The order of the different symmetry
levels is different in each case. In ZnSiN2 in addition, a
level of a2 symmetry lies in between these levels. This
level has no allowed dipole transitions to the CBM. When
adding spin-orbit coupling to the calculation, we find al-
most identical splittings. From the group theory point
of view, all transitions then become allowed because all
of them belong to the Γ5 irreducible representation of
the double group, using Koster and Slater’s character ta-
ble. However, the fact that spin-orbit coupling appears to
have negligible effect on the VBM states indicates that we
should discuss selection rules based on the single rather
than the double group. The selection rules mentioned
above imply that these materials might have opportuni-

ties for polarization sensitive detectors. Even for light
incident normally to the basal plane, there should be a
significant splitting between excitons or light absorbed
for the two in-plane polarizations. This results from the
low orthorhombic symmetry. At this point, however no
such exciton fine structure has been observed. This will
require high-quality films.

The effective masses of the valence bands at Γ are
different in each direction x, y, z and for each sepa-
rate valence band. Likewise the CBM has in princi-
ple an anisotropic mass tensor with three different di-
agonal components. The VBM manifold of states can
be described by a generalization of the Kohn-Luttinger
(for zincblende) or Rashba-Sheka-Pikus Hamiltonian for
wurtzite. Using the theory of invariants, we can write
the effective mass Hamiltonian as follows:

HC2v = ∆1cLz
2 +∆2c(Lx

2 − Ly
2) + ∆1soLzσz +

√
2(∆2soLxσx +∆3soLyσy)+

[A1 +A2Lz
2 +A3(Lx

2 − Ly
2)]kz

2 + [B1 +B2Lz
2 +B3(Lx

2 − Ly
2)](kx

2 + ky
2)+

[C1 + C2Lz
2 + C3(Lx

2 − Ly
2)](kx

2 − ky
2)+

D1{Lx, Ly}kxky +D2{Lz, Lx}kzkx +D3{Lz, Ly}kzky + E1Lxky + E2Lykx,

(4)

where {Li, Lj} are anti-commutators. This includes all
terms up to second order that can be formed from the
operators Li, ki and σi that are invariant (i.e. belong to
the a1 representation). At k = 0 we have two crystal field
splittings and three spin-orbit splitting parameters. The
remaining terms are inverse effective masses and the pa-
rameters E1 and E2 are linear in ki. We have neglected
purely relativistic linear terms involving σi and ki. If
∆2c = 0, ∆2so = ∆3so, A3 = 0, B3 = 0, C1 = C2 = 0,
C3 = 2D1, D2 = D3, and E1 = E2 the above Hamil-
tonian is reduced to the RSP Hamiltonian valid for C6v

symmetry. If we denote the RSP Hamiltonian parameters
as defined in Kim et al.39 by Ãi, we have the relations:

A1 = Ã1 A2 = Ã3

B1 = Ã2 B2 = Ã4

C3 = Ã5 D1 = 2Ã5

D2 = D3 =
√
2Ã6

E1 = −E2 =
√
2Ã7 (5)

For k = 0 and without spin-orbit splitting, the Hamil-
tonian in the basis of Y m

l with l = 1 and m = 1, 0,−1 is
of the form







∆1c ∆2c

0

∆2c ∆1c






(6)

The eigenvalues are

Ea1
= 0,

Eb2 = ∆1c +∆2c,

Eb1 = ∆1c −∆2c (7)

where we have used the usual sign convention of the

spherical harmonics Y ±1
1 = ∓

√

3
8π sin θe±iφ, so the x-

orbital, which gives the state with b1 = x symmetry cor-
responds to −Y 1

1 +Y −1
1 , which indeed corresponds to the

eigenvalue with the − sign in the above equation. Since
in all cases, we find Eb1 > Eb2 it means that ∆2c < 0.
The splittings and ∆1c, ∆2c parameters are given in Ta-
ble VIII. We find the hexagonal crystal field splitting ∆1c

to be significantly larger than in GaN and furthermore
the ∆2c is of comparable magnitude.

For arbitrary k the 3× 3 Hamiltonian matrix without
spin-orbit coupling terms is of the form
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



























∆1c + (B1 +B2 + C1 + C2)k
2
x

+(B1 +B2 − C1 − C2)k
2
y

+(A1 +A2)k
2
z

(D2kzkx − iD3kzky)/
√
2

+E1ky − iE2kx

∆2c + (B3 + C3)k
2
x

+(B3 − C3)k
2
y +A3k

2
z

−iD1kxky

(D2kzkx + iD3kzky)/
√
2

+E1ky + iE2kx
(B1 + C1)k

2
x + (B1 − C1)k

2
y +A1k

2
z

(−D2kzkx + iD3kzky)/
√
2

+E1ky − iE2kx

∆2c + (B3 + C3)k
2
x

+(B3 − C3)k
2
y +A3k

2
z

+iD1kxky

(−D2kzkx − iD3kzky)/
√
2

+E1ky + iE2kx

∆1c + (B1 +B2 + C1 + C2)k
2
x

+(B1 +B2 − C1 − C2)k
2
y

+(A1 +A2)k
2
z





























(8)

If we now consider the bands in each of the orthogonal
directions, e.g. (kx = ky = 0), we can diagonalize the
Hamiltonian in the same way as for k = 0 and read off
the hole inverse masses. We will use the notation mλ

α

where λ gives the irreducible representation of the level
at Γ and α gives the Cartesian direction x, y, z. Thus, we
obtain the following relations for the inverse hole masses:

−(ma1

z )−1 = A1,

−(mb2
z )−1 = A1 +A2 +A3,

−(mb1
z )−1 = A1 +A2 −A3,

−(ma1

x )−1 = B1 + C1,

−(mb2
x )−1 = B1 +B2 +B3 + C1 + C2 + C3,

−(mb1
x )−1 = B1 +B2 −B3 + C1 + C2 − C3,

−(ma1

y )−1 = B1 − C1,

−(mb2
y )−1 = B1 +B2 +B3 − C1 − C2 − C3,

−(mb1
y )−1 = B1 +B2 −B3 − C1 − C2 + C3.

(9)

In Table VII we summarize the various VBM and CBM
effective masses and in Table VIII we summarize the
Ai, Bi, Ci parameters. The remaining parameters Di

only enter if we look at bands in directions intermediate
between in-basal-plane and out-of-basal-plane. Assum-
ing the crystal is not too far from hexagonal, which we
could call a quasi-hexagonal approximation, one would
have the relation D1 = 2C3. Furthermore, within the
quasi-cubic relation, one has the approximate relation
Ã6 = (4Ã5 − Ã3)/

√
2 in the wurtzite case. This leads

here to the relation D2 = D3 = 4C3 − A2. Thus the Di

parameters can be obtained approximately from the ones
already determined. The Ei linear in k-parameters are
related to the anti-crossing behavior of the bands one can
observe for example for the b2 and a1 bands along Γ− Y
in ZnGeN2. Since these occur well below the VBM, they
are of limited interest and were not determined.

Now, we return to the case k = 0 but add spin-orbit
coupling. The 6× 6 Hamiltonian breaks into two equiv-
alent 3× 3 Hamiltonians of the form







∆1c +∆so1 ∆so2 −∆so3 ∆2c

∆so2 −∆so3 0 ∆so2 +∆so3

∆c2 ∆so2 +∆so3 ∆c1 −∆so1






(10)

TABLE VII. Effective masses (in units of free electron mass
me).

ZnSiN2 ZnGeN2 ZnSnN2

mc
x 0.30 0.22 0.16

CBM at Γ mc
y 0.47 0.20 0.15

mc
z 0.21 0.15 0.12

ma1
x 4.80 1.90 1.79

ma1
y 0.80 2.02 1.98

ma1
z 0.21 0.15 0.12

mb1
x 0.37 0.21 0.15

VBM at Γ mb1
y 4.80 2.19 2.02

mb1
z 2.97 2.26 2.04

mb2
x 0.31 2.91 2.27

mb2
y 1.06 0.19 0.15

mb2
z 1.18 2.42 2.34

actual VBM mv
x 0.55

in ZnSiN2 mv
y 0.33

mv
z 1.09

The order of the basis function is m = 1 ↑, m = 0 ↓,
m = −1 ↑ or equivalently m = −1 ↓, m = 0 ↑
and m = 1 ↓. The eigenvalues are indeed doubly de-
generate in spin because of the Kramer’s theorem re-
lated to time reversal symmetry. If we assume that the
spin-orbit coupling parameters are essentially isotropic,
∆so1 = ∆so2 = ∆so3 = ∆s, which is usually a good ap-
proximation because spin-orbit coupling arises from the
inner part of the atom where the potential is close to
spherically symmetric, we can make some progress by
first applying the unitary transformation that diagonal-
ized the matrix without spin-orbit coupling. This leads
to







∆c1 +∆c2

√
2∆s ∆s√

2∆s 0 −
√
2∆s

∆s −
√
2∆s ∆c1 −∆c2






. (11)

If we furthermore assume that the spin-orbit parameter is
small compared to the crystal field splitting of the levels,
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TABLE VIII. Parameters of Effective Hamiltonian : inverse
mass (~2/2me), energy splitting (meV).

parameter ZnSiN2 ZnGeN2 ZnSnN2 GaN

A1 -4.71 -6.87 -8.57 -6.4

A2 4.11 6.44 8.10 5.9

A3 -0.26 0.01 0.02

B1 0.73 -0.51 -0.53 -0.50

B2 -1.93 -2.19 -3.12 -2.55

B3 0.04 0.09 0.11

C1 -0.52 -0.02 -0.03

C2 -1.26 -0.05 -0.05

C3 -0.32 2.30 3.18 2.56

D1 -0.64 4.60 6.36 5.12

D2,D3 -5.41 2.76 4.62 4.33

∆1c 160 115 82 36

∆2c -20 -14 -94 0

then in second order perturbation theory we obtain

Ea1 = − 2∆2
s

∆c1 +∆c2
,

Eb2 = ∆c1 +∆c2 +
2∆2

s

∆c1 +∆c2
+

∆2
s

2∆c2
,

Eb1 = ∆c1 −∆c2 +
2∆2

s

∆c1 −∆c2
− ∆2

s

2∆c2

(12)

Strictly speaking all levels have symmetry Γ5 but we still
label them by the single group label from which they are
derived.
We carried out calculations including spin-orbit cou-

pling and found that the splittings were essentially indis-
tinguishable from the ones without spin-orbit coupling.
This indicates that the spin-orbit coupling parameter is
very small in these compounds and makes it at this point
unpractical and at the same time unimportant to try to
extract these small parameters.
The reason for this small spin-orbit coupling is worth

some discussion. For the parent compounds, GaN, we
find it is already rather small because (1) the N atom is
a low Z element for which relativistic effects are small, (2)
there is a negative contribution from the Ga-3d states ly-
ing below the VBM but which are nevertheless somewhat
hybridized with the VBM. In ZnGeN2, this negative con-
tribution which now derives from the Zn-3d must be even
stronger. In fact, we know that in ZnO, the spin-orbit
splitting becomes negative.40 On expects it here to be
intermediate between GaN and ZnO because only half
the cation sites contribute. The Ge-3d or Sn-4d states
lie significantly deeper so that their contribution must
be significantly smaller. Apparently, the 3d contribution
must almost perfectly cancel the N-2p contribution.

Now for ZnSiN2, the a2 valence band lies in between
the b1 and b2. Along Γ−Z the point group of the k-point
is still C2v so the band emanating from a2 retains a2 sym-
metry and cannot interact with the other bands. Thus it
is indeed seen to cross the b1 band as it disperses upward
in energy. Along Γ − X or Γ − Y the symmetry group
is reduced to a single mirror plane, σy, σx respectively.
Along Γ − Y , for example, a1 and b2 derived bands are
both even and a2 and b1 are odd under the σx. Thus one
can see an anti-crossing behavior of the a2 and b1 derived
bands along ΓY . However, the effective Hamiltonian de-
scribing the states near Γ loses its usefulness. In fact, this
Hamiltonian is mostly useful as a starting point for en-
velope function calculations of nanostructure or shallow
acceptor impurities or excitons. But the Γ-point VBM
lies about 0.2 eV below the actual VBM. Thus it is more
useful to give the anisotropic effective mass tensor of the
VBM at this k−point. The latter are also given in Table
VII.
Finally, it is instructive to compare these parameters

with those in GaN. Using the Eq. 5 we can rewrite the
RSP parameters of GaN derived in Kim et al.39 in our
present orthorhombic notation. These are included in
Table VIII as the last column. In that case Eb1 = Eb2

and the masses in x and y directions are the same. We
can see that the inverse mass parameters in GaN are
similar to those in ZnGeN2 but the crystal field splitting
is significantly smaller. In fact, the value given here from
Kim et al.39 was found to be an overestimate due to the
LDA compared to experiment.

V. CONCLUSIONS

We presented FP-LMTO LDA and GGA calculations
of the crystal structure parameters and QSGW band
structures of the Zn-IV-N2 semiconductors with IV=Si,
Ge and Sn. Excellent agreement is obtained for the struc-
tural parameters with experiment and previous calcula-
tions. As for the band structures, we find ZnSiN2 to be
an indirect gap semiconductor while the other two are
direct gap semiconductors. The band gaps versus lattice
constants are summarized in Fig. 5 compared with the
group-III nitride family and firmly establish that these
compounds are promising for similar opto-electronic ap-
plications as the III-N family. Gap corrections such as
exciton binding energy and zero-point motion phonon
renormalization of the gaps were included. Spin-orbit
coupling was also taken into account and found to have
negligible effect on the valence band splittings.
The orthorhombic symmetry reduction compared to

the III-nitrides, however has important consequences in
splitting the valence band according to x, y, z, like states.
The bands near the valence band maximum were ana-
lyzed in detail by generalizing the Kohn-Luttinger Hamil-
tonian for orthorhombic symmetry and the correspond-
ing parameters were extracted by fitting to the band
structure. Conduction band masses and exciton reduced
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masses and binding energies were estimated.
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