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We provide an effective description of fractional topological insulators that include the fractional
quantum spin Hall effect by considering the time-reversal symmetric pendant to the topological
quantum field theories that encode the Abelian fractional quantum Hall liquids. We explain the
hierarchical construction of such a theory and establish for it a bulk-edge correspondence by deriving
the equivalent edge theory for chiral bosonic fields. Further, we compute the Fermi-Bose correlation
functions of the edge theory and provide representative ground state wave functions for systems
described by the bulk theory.

I. INTRODUCTION

Laughlin initiated the theoretical exploration of the
fractional quantum Hall effect (FQHE) by proposing
wave functions for the ground states of interacting elec-
trons in the lowest Landau level at filling fractions
ν = 1/(2m + 1), m ∈ Z.1 The experimental observa-
tion of a plethora of fractional Hall plateaus at other
filling fractions lead to the construction of a hierarchy
of wave functions out of Laughlin’s wave function,2–7

and the development of the composite fermion picture.8

These approaches were later reconciled, and unified by
the effective description of the FQHE in terms of multi-
component Chern-Simons theories in (2+1)-dimensional
space and time.9–15 These topological effective theories
for the hierarchy of FQHE deliver a correspondence be-
tween the physics in the two-dimensional bulk and the
physics along one-dimensional boundaries at which the
two-dimensional sample terminates.16–21

It is possible to double the Chern-Simons effective the-
ory representing the universal properties of the FQHE at
some filling fraction ν = 1/(2m+ 1), m ∈ Z so as to ob-
tain a time-reversal symmetric theory. This approach has
been used to interpret a fully gaped superconductor as
an example of a topological phase,22–24 and – more gen-
erally – to explore the universal properties of interacting
theories with an emergent local gauge Z2 symmetry (see
Refs. 25–29) that signals the phenomenon of spin and
charge separation.30–34

A more urgent impetus for the construction of effec-
tive time-reversal symmetric topological field theories in
(2 + 1)-dimensional space and time arose with the theo-
retical prediction of time-reversal symmetric topological
band insulators, shortly followed by their experimental
discovery.35–39 These band insulators realize the counter-
parts to the integer quantum Hall effect and their discov-
ery suggests that a time-reversal symmetric counterpart
to the FQHE might emerge from interacting itinerant
electrons in a crystalline environment.

From the outset, this endeavor follows a different line
of logic than the FQHE, as it is not based on pre-existing
experimental evidence. Past experience with the FQHE

has thus guided recent attempts to either construct time-
reversal symmetric edge theories or to construct time-
reversal symmetric bulk wave functions supporting local
excitations carrying fractional quantum numbers.37,40–45

While numerical support for a time-reversal symmet-
ric topological phase of matter was given by Neupert
et al. in their study of a lattice model for interacting
itinerant electrons,44 a description in terms of an effec-
tive theory is desirable to reveal the universal proper-
ties of such a phase. In Ref. 44, the universal proper-
ties such as the topological degeneracies of the ground
state manifold were explored with the help of a family of
edge theories. In this paper, we are going to construct
the corresponding bulk topological theory by generaliz-
ing the hierarchy of Abelian FQHEs to the hierarchy of
Abelian fractional quantum spin Hall effects (FQSHEs)
in Sec. II. We will show in Sec. III the correspondence
between the bulk theory and the edge theory whose sta-
bility to the breaking of translation invariance and resid-
ual spin-1/2 U(1) symmetry was studied in Ref. 44. Fi-
nally, we shall generalize in Sec. IV the wave functions
supporting the Abelian FQHE for a fractional filling of
the lowest Landau level to wave functions supporting
an Abelian FQSHE. These time-reversal symmetric wave
functions are built from the holomorphic and antiholo-
morphic single-particle wave functions belonging to the
lowest Landau level when the applied uniform magnetic
field is pointing down or up, respectively. For the reader
who wants to skip the derivations, we provide a detailed
summary of our results in Sec. V.

II. TIME-REVERSAL SYMMETRIC ABELIAN

CHERN-SIMONS QUANTUM FIELD THEORY

Let us start by summarizing some of the results that
we will derive in this section. We shall construct a class of
incompressible liquids, each of which is the ground state
of a time-reversal symmetric (2+1)-dimensional Chern-
Simons quantum field theory that depends on 2N flavors
of gauge fields ai,µ(t,x), where i = 1, . . . , 2N labels the
flavors and µ = 0, 1, 2 labels the space-time coordinates
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xµ ≡ (t,x), and with the action

S :=

∫

dt d2x ǫµνρ
(

−
1

4π
Kij ai,µ ∂ν aj,ρ

+
e

2π
Qi Aµ ∂ν ai,ρ +

s

2π
Si Bµ ∂ν ai,ρ

)

.

(2.1a)

Here, Kij are elements of the symmetric and invertible
2N × 2N integer matrix K. The integer-valued com-
ponent Qi of the 2N -dimensional vector Q represents
the i-th electric charge in units of the electronic charge
e, which couples to the electromagnetic gauge poten-
tial Aµ(t,x). Similarly, Si is an integer-valued com-
ponent of the 2N -dimensional vector S that represents
the i-th spin charge in units of s associated to the up
or down spin projection along a spin-1/2 quantization
axis, which couples to the Abelian (spin) gauge potential
Bµ(t,x). The operation of time reversal maps ai,µ(t,x)

into −gµν ai+N,ν(−t,x) for i = 1, · · · , N and vice versa.

Here, gµν := diag(+,−,−) ≡ gµν is the Lorentz met-

ric. In Eq. (2.1a) x ∈ Ω, where Ω ⊂ R2 is a region of
two-dimensional Euclidean space, which for the discus-
sion of the bulk theory we consider to have no boundary,
∂ Ω = ∅. The domain of integration R is unbounded in
time t. We will show that time-reversal symmetry im-
poses that the matrix K and the vectors Q and S are of
the block form

K =

(

κ ∆
∆T −κ

)

, Q =

(

̺
̺

)

, S =

(

̺
−̺

)

, (2.1b)

with ̺ an integer N -vector, while κ = κT and ∆ = −∆T

are symmetric and antisymmetric integer-valued N ×N
matrices, respectively.
The doubled structure of the theory is even more evi-

dent if we express it as a BF theory,46,47 i.e., by defining

a
(±)
i,µ :=

1

2

(

ai,µ ± ai+N,µ

)

, i = 1, . . . , N , (2.2a)

for µ = 0, 1, 2. This basis allows to re-express the effec-
tive action (2.1a) as

S :=

∫

dt d2x ǫµνρ
(

−
1

π
κij a

(+)
i,µ ∂ν a

(−)
j,ρ

+
e

π
ρi Aµ∂ν a

(+)
i,ρ +

s

π
ρi Bµ∂ν a

(−)
i,ρ

)

.

(2.2b)

In this representation, the indices in sans serif fonts i, j
run from 1 to N . The coupling between the pair of gauge
fields a(+) and a(−) is off-diagonal in the BF labels ±.
This is a consequence of time-reversal symmetry, which
is implemented by

a(±)
µ (t,x)

T
→ ∓gµν a(±)

ν (−t,x) , (2.2c)

that leaves the action (2.2b) invariant. In this represen-
tation, the electromagnetic gauge potential A couples to

the +-species only, while the spin gauge potential B cou-
ples to the −-species only. The N × N integer-valued
matrix κ in the BF representation is related to the block
matrices κ and ∆ contained inK from Eq. (2.1b) through

κ = κ−∆. (2.2d)

The degeneracy of the ground state is obtained for ei-
ther description, i.e., the one in terms of the flavors ai
with i = 1, · · · , 2N or the one in terms of the flavors a

(±)
i

with i = 1, · · · , N , from

NGS =

∣

∣

∣

∣

det

(

0 κ

κT 0

)∣

∣

∣

∣

= (detκ)
2
. (2.3)

If the underlying microscopic theory describes fermions
with a residual spin-1/2 U(1) (easy planeXY ) symmetry,
it is then meaningful to define the quantized spin Hall
resistance

σsH :=
e

2π
× νs . (2.4a)

The filling fraction νs is here defined so that it is unity for
the integer quantum spin Hall effect and therefore given
by

νs :=
1

2
QTK−1 S

= ̺T κ
−1 ̺.

(2.4b)

We now turn to the hierarchical construction of the
states described by thisS quantum field field theory.
As a warm-up, we begin by reviewing how a one-
component Chern-Simons quantum field theory in (2+1)-
dimensional space and time is related to the quantum
Hall effect. We then construct recursively the multi-
component Chern-Simons quantum field theory in such
a way that it respects time-reversal symmetry.

A. Brief review of the one-component

Chern-Simons theory

We start from the Lagrangian density

LCS := −
p

4π
ǫµνλ aµ ∂ν aλ +

e

2π
ǫµνλ Aµ ∂ν aλ (2.5a)

in (2 + 1)-dimensional space and time with the action

SCS :=

∫

R

dt

∫

Ω

d2xLCS (2.5b)

and partition function

ZCS[A] :=

∫

D[a] e
i
~
SCS . (2.5c)

The dimensionless integer p is positive. The electro-
magnetic coupling (electric charge) e is dimensionfull.
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It measures the strength of the interaction between an
external electromagnetic gauge field A with the compo-
nents Aµ ≡ (A0,A) and a dynamical gauge field a with
the components aµ ≡ (a0,a). The symbol D[a] repre-
sents the measure of all gauge orbits stemming from the
Abelian group U(1).
The operation T for reversal of time is defined by

aµ(t,x)
T
→ +gµν aν(−t,x), (2.6a)

Aµ(t,x)
T
→ +gµν Aν(−t,x), (2.6b)

for µ = 0, 1, 2. We also posit that T is an anti-unitary
linear transformation. If so, one verifies that LCS is odd
under reversal of time.
Define the electromagnetic current to be the 3-vector

Jµ
CS :=

1

~

δSCS

δAµ

=
e

2π~
ǫµνλ ∂ν aλ

(2.7a)

for µ = 0, 1, 2. Because the Levi-Civita tensor with the
component ǫ012 ≡ 1 is fully antisymmetric, this current
is conserved,

∂µJ
µ
CS = 0. (2.7b)

Now, the equations of motions

0 =
δSCS

δaµ
= −

p

2π
ǫµνλ ∂ν aλ +

e

2π
ǫµνλ ∂ν Aλ (2.8)

can be used in conjunction with Eq. (2.7) to yield the
conserved electromagnetic current

Jµ
CS =

1

p

e2

h
ǫµνλ ∂ν Aλ (2.9)

which allows us to identify the filling fraction ν = p−1

in this simple example, so that the quantum Hall con-

ductance is given by σH = ν e2

h . From now on, we adopt
units in which ~ = 1.

B. One-component BF theory

We start from the Lagrangian density in (2 + 1)-
dimensional space and time

LTRS
BF := −

p

π
ǫµνλ a(+)

µ ∂ν a
(−)
λ

+
e

π
ǫµνλ Aµ ∂ν a

(+)
λ +

s

π
ǫµνλ Bµ ∂ν a

(−)
λ

(2.10a)

with the action

STRS
BF :=

∫

R

dt

∫

Ω

d2xLTRS
BF (2.10b)

and partition function

ZTRS
BF [A,B] :=

∫

D[a(+), a(−)] eiS
TRS
BF . (2.10c)

Equation (2.10) is a BF theory made of two copies of the
Chern-Simons theory (2.5) with the specificity that the
integer p enters with opposite signs in the two copies. We
have also introduced two external gauge fields A and B
with the couplings e and s, respectively. For the gauge
field A, e will be interpreted as a total U(1) charge. For
the gauge field B, s will be interpreted as a relative U(1)
charge. If the underlying microscopic model is built from
itinerant electrons, the gauge field A is the U(1) electro-
magnetic gauge field that couples to the conserved elec-
tric charge whereas the gauge field B is the U(1) gauge
field that couples to the conserved projection along some
quantization axis of the electronic spin, i.e., s = 1/2.
This theory is invariant under the operation of time

reversal defined by the anti-linear extension of

a(±)
µ (t,x)

T
→ ∓gµν a(±)

ν (−t,x) ≡ ∓a(±)µ(t̃, x̃), (2.11a)

Aµ(t,x)
T
→ +gµν Aν(−t,x) ≡ +Aµ(t̃, x̃), (2.11b)

Bµ(t,x)
T
→ −gµν Bν(−t,x) ≡ −Bµ(t̃, x̃), (2.11c)

for µ = 0, 1, 2. The component A0 of the external elec-
tromagnetic gauge field A is unchanged whereas its vec-
tor component A is reversed under reversal of time, just
as the vector components of a(−). This behavior is re-
versed for the components of the external gauge field B
that couples to the conserved U(1) spin current and the
gauge field a(+).
Since this theory is equivalent to two independent

copies of the Chern-Simons theory (2.5), there are two
independent conserved currents of the form (2.7),

Jµ
± :=

e

π
ǫµνλ∂νa

(±)
λ , (2.12)

for µ = 0, 1, 2. Their transformation laws under reversal
of time are

Jµ
±(x)

T
→ ±gµνJ

ν
±(x̃), (2.13)

for µ = 0, 1, 2. If the microscopic model is made of itin-
erant electrons, we can thus interpret Jµ

+ as the charge
current and, if the model has a residual U(1) rotation
symmetry of the electronic spin, Jµ

− represents the con-
served spin current. The equations of motions

0 =
δSTRS

BF

δa
(±)
µ

(2.14a)

for the dynamical compact gauge fields a(−) and a(+),
respectively, deliver the relations

ǫµνλ ∂ν a
(+)
λ =

s

p
ǫµνλ ∂ν Bλ (2.14b)
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and

ǫµνλ ∂ν a
(−)
λ =

e

p
ǫµνλ ∂ν Aλ, (2.14c)

for µ = 0, 1, 2, respectively. We conclude that, on the
one hand, the charge current obeys the Hall response

Jµ
+ = 2s×

e

2πp
ǫµνλ ∂ν Bλ, (2.15a)

with µ = 0, 1, 2 while, on the other hand, the spin current
obeys the Hall response

Jµ
− = 2e×

e

2πp
ǫµνλ ∂ν Aλ, (2.15b)

with µ = 0, 1, 2.

C. Time-reversal symmetric hierarchy

The generic structure of the hierarchical construction
is the following. Let n > 0 be any positive integer. Define
at the level n of the hierarchy the quantum field theory
with the partition function

ZTRS
n [A,B] :=

∫

D
[

a
(+)
1 , · · · , a(+)

n , a
(−)
1 , · · · , a(−)

n

]

× eiS
TRS
n ,

(2.16a)

where the action is

STRS
n :=

∫

R

dt

∫

Ω

d2xLTRS
n (2.16b)

and the Lagrangian density is

LTRS
n := −

n
∑

i,j=1

1

π
κ
(n)
ij ǫµνλ a

(+)
i,µ ∂ν a

(−)
j,λ

+

n
∑

i=1

e

π
̺
(n)
i ǫµνλ Aµ ∂ν a

(+)
i,λ

+

n
∑

i=1

s

π
̺
(n)
i ǫµνλ Bµ ∂ν a

(−)
i,λ .

(2.16c)

Here, the dynamical gauge fields a(±) are the n-tuplet
with the components

(

a
(±)
i

)

≡
(

a
(±)
1 , · · · , a(±)

n

)T

. (2.17a)

Moreover, the n×n matrix κ(n) is invertible and has, by
assumption, integer-valued matrix elements. The charge
vector ̺(n) has the integer-valued components

̺(n) = (1, 0, · · · , 0)T ∈ Z
n. (2.17b)

Finally, the compatibility condition

(−)κ
(n)
ii = (−)̺

(n)
i (2.17c)

for i = 1, · · · , n is also assumed.
The operation of time reversal is the rule

xµ T
→ x̃µ := −gµν x

ν (2.18a)

together with the anti-linear extension of the rules

a
(±)µ
i (x)

T
→ ∓gµν a

(±)ν
i (x̃), (2.18b)

for µ = 0, 1, 2 and i = 1, · · · , n that leaves the Lagrangian
density (2.16c) invariant.
The level n+ 1 of the hierarchical construction posits

the existence of the pair of quasiparticle 3-currents j±,n+1

that are conserved, i.e.,

∂µ j
µ
±,n+1 = 0. (2.19)

It also posits the existence of some even integer pn+1

and 2n integers l
(+)
i , l

(−)
i with i = 1, · · · , n such that the

constraints

jµ±,n+1 =
ǫµνλ

πpn+1

n
∑

i=1

l
(±)
i ∂ν a

(±)
i,λ (2.20)

for µ = 0, 1, 2 hold. The constraint (2.20) means that

any pair of flux quanta, arising when a
(+)
i and a

(−)
i each

support a vortex, creates a quasi-particle with charge

2 l
(+)
i /pn+1 and spin 2 l

(−)
i /pn+1 for i = 1, · · · , n.

This construction can be achieved from the partition
function

ZTRS
n+1 [A,B] :=

∫

D
[

a
(+)
1 , · · · , a

(+)
n+1, a

(−)
1 , · · · , a

(−)
n+1,

]

× eiS
TRS
n+1 ,

(2.21a)

with the action

STRS
n+1 :=

∫

R

dt

∫

Ω

d2xLn+1 (2.21b)

and Lagrangian density

LTRS
n+1 :=LTRS

n

−
pn+1

π
ǫµνλ a

(+)
n+1,µ ∂ν a

(−)
n+1,λ

+
1

π
ǫµνλ

n
∑

i=1

l
(+)
i a

(+)
i,µ ∂ν a

(−)
n+1,λ

+
1

π
ǫµνλ

n
∑

i=1

l
(−)
i a

(−)
i,µ ∂ν a

(+)
n+1,λ.

(2.21c)

Indeed, we can then define the conserved quasiparticle
currents of type n to be

jµ±,n+1 :=
1

π
ǫµνλ ∂ν a

(±)
n+1,λ (2.22)
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for µ = 0, 1, 2 and use the equations of motion

0 =
δSTRS

n+1

δa
(∓)
n+1,µ

⇐⇒

pn+1

π
ǫµνλ∂νa

(±)
n+1,λ =

ǫµνλ

π

n
∑

i=1

l
(±)
i ∂ν a

(±)
i,λ

(2.23)

obeyed by the dynamical gauge fields a
(±)
n+1,µ to estab-

lish that they indeed obey the constraints imposed in
Eq. (2.20).
Observe that if we introduce the two (n + 1)-tuplets

a(±) given by

(

a
(±)
i

)T

≡
(

a
(±)
1 , · · · , a

(±)
n+1

)T

(2.24a)

of dynamical gauge fields, then the Lagrangian LTRS
n+1 de-

fined in Eq. (2.21c) takes the same form as LTRS
n defined

in Eq. (2.16c) after the substitution n → n + 1. The
(n+ 1)× (n+ 1) matrix κ(n+1) is then given by

κ
(n+1) =

(

κ(n) −l(+)

−l(−)T pn+1

)

. (2.24b)

The (n+ 1)-component charge vector ̺(n+1) is given by

̺(n+1) = (1, 0, · · · , 0)T ∈ Z
n+1, (2.24c)

thus imposing a vanishing coupling of the external gauge

fields A and B to a
(±)
n+1. The compatibility condition

(−)κ
(n)
ii = (−)̺

(n)
i (2.24d)

for i = 1, · · · , n+ 1 holds if and only if the integer pn+1

is even.
The representation (2.24) is called the hierarchical rep-

resentation.
The operation of time reversal obtained from Eq. (2.18)

by allowing i to run from 1 up to n + 1 leaves the La-
grangian of level n + 1 invariant. Therefore, we have
constructed a hierarchical time-reversal symmetric BF
theory.

D. Equivalent representations

We define an equivalence class on all the actions of the
form (2.2b) when there exists a linear transformation W
with integer valued coefficients and unit determinant
such that

κ = WT
κ
′ W (2.25a)

and

̺ = WT ̺′, (2.25b)

between any two given pairs (κ, ̺) and (κ′, ̺′) within an
equivalence class.

Example 1: The lower-triangular transformation

WT :=











1 0 · · · 0
1 −1 · · · 0
...

... · · ·
...

1 0 · · · −1











(2.26a)

relates the hierarchical basis characterized by the charge
vectors

̺ = (1, 0, · · · , 0)T (2.26b)

to the so-called symmetric basis characterized by the
charge vector

̺ = (1, 1, · · · , 1)T. (2.26c)

Example 2: The block-diagonal transformation

WT :=











11m−1

0 −1
11n−1−m

+1 0
11N−n











(2.27)

with 1 ≤ m < n ≤ N that interchanges κmm with κnn,
κmn with −κnm, while it substitutes −̺n for ̺m and
+̺m for ̺n.

III. EDGE THEORY

In this Section, we study the quantum field theory for
2N Abelian Chern-Simons fields as defined in (2.1a) or,
equivalently, (2.2b) in a system with a boundary by fol-
lowing a strategy pioneered in Refs. 48 and 49. However,
before relaxing the condition ∂ Ω = ∅, we decompose the
action (2.1a) of the bulk theory into

S := SK + SQ + SS , (3.1a)

SK := −
1

4π

∫

R

dt

∫

Ω

d2xKij ǫ
µνρ ai,µ ∂ν aj,ρ, (3.1b)

SQ := +

∫

R

dt

∫

Ω

d2x
e

2π
Qi ǫ

µνρ ai,µ ∂ν Aρ, (3.1c)

SS := +

∫

R

dt

∫

Ω

d2x
s

2π
Si ǫ

µνρ ai,µ ∂ν Bρ. (3.1d)

Notice that we have performed a partial integration in
Eq. (3.1c) and Eq. (3.1d) as compared to Eq. (2.1a), so
that the gauge fields A and B enter Eq. (3.1) in an ex-
plicitly gauge invariant form. In contrast, we are going to
make a gauge choice for the fields ai with i = 1, · · · , 2N
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to derive the gauge-invariant effective theory of the edge,
once we have relaxed the condition ∂ Ω = ∅.
Let us choose Ω to be the upper-half plane of R2, i.e.,

Ω :=
{

(x, y) ∈ R
2
∣

∣ y ≥ 0
}

(3.2)

for notational simplicity but without loss of generality.
Observe that under the 2N independent Abelian gauge
transformations of the dynamical Chern-Simons fields

ai,µ → ai,µ + ∂µχi (3.3a)

for µ = 0, 1, 2 where χi with i = 1, · · · , 2N are real-
valued and smooth, the action S defined in Eq. (3.1)
obeys the transformation law

S → S + δS (3.3b)

with

δS =

+∞
∫

−∞

d t

+∞
∫

−∞

dx
(

χi J
2
i

)

(t, x, 0) (3.3c)

and

J 2
i (t, x, y) := −

1

4π
Kij ǫ

2νρ
(

∂ν aj,ρ
)

(t, x, y)

+
e

2π
Qi ǫ

2νρ
(

∂ν Aρ

)

(t, x, y)

+
s

2π
Si ǫ

2νρ
(

∂ν Bρ

)

(t, x, y).

(3.3d)

The equations of motion

Kij ǫ
µνρ ∂ν aj,ρ = e Qi ǫ

µνρ ∂ν Aρ+s Si ǫ
µνρ ∂ν Bρ (3.4)

for the dynamical gauge field a dictate here that

J µ
i (t, x, y) = +

1

4π
Kij ǫ

µνρ ∂ν aj,ρ (3.5)

for i = 1, · · · , 2N and µ = 0, 1, 2. Hence, the 2N compo-
nents of the quasi-particle 3-current Ji obey the conti-
nuity equation ∂µJ

µ
i = 0 if

(

∂µ ∂ν − ∂ν ∂µ
)

ai,ρ = 0 holds
for any i = 1, · · · , 2N and ρ = 0, 1, 2.
We now assume that the 2N -tuplet χ is constant along

the boundary ∂Ω for all times,

(∂xχi) (t, x, y = 0) = (∂tχi) (t, x, y = 0) = 0 (3.6)

for i = 1, · · · , 2N . In this case, each component χi can
be pulled outside the integral in Eq. (3.3c) yielding

δS = χi

+∞
∫

−∞

d t

+∞
∫

−∞

dx J 2
i (t, x, 0). (3.7)

Gauge invariance, i.e., δS = 0, is then achieved if, in
addition to the restriction (3.6), we demand that there
is no net accumulation of quasi-particle charge along the

boundary arising from the quasi-particle current normal
to the boundary, i.e.,

0 =

+∞
∫

−∞

d t

+∞
∫

−∞

dx J 2
i (t, x, 0). (3.8)

Observe that the stronger condition

χi(t, x, y = 0) = 0 (3.9)

for i = 1, · · · , 2N achieves gauge invariance, i.e., δS = 0,
without imposing condition (3.8).
Now that we understand under what conditions the

quantum field theory with the action (3.1) is gauge in-
variant with the choice (3.2) for Ω, we are ready to con-
struct the bulk-edge correspondence. To this end, we
are going to extract from the dynamical gauge field a
degrees of freedom that are localized on the edge ∂Ω
and invariant under the gauge transformations induced
by Eqs. (3.3a), (3.6), and (3.8) on the edge ∂Ω.

A. Bulk-edge correspondence

We start by fixing the gauge of the 2N Abelian Chern-
Simons fields through the conditions

a0 = K−1 V a1. (3.10a)

We demand here that V is a symmetric, positive definite
2N × 2N matrix that satisfies

V = Σ1 V Σ1, (3.10b)

where the 2N × 2N matrices

Σρ := σρ ⊗ 11N , ρ = 1, 2, 3 (3.10c)

are defined by taking the tensor product between any
of the Pauli matrices σ1, σ2, and σ3 and the unit N ×
N matrix 11N . Condition (3.10b) guarantees that the
gauge condition (3.10a) is consistent with reversal of time
defined by

aµ(t, x, y)
T
→ −gµνΣ1 aν(−t, x, y). (3.10d)

Indeed, the gauge condition (3.10a) then transforms un-
der reversal of time into

− Σ1 a
0(−t, x, y) = K−1 V Σ1 a1(−t, x, y), (3.11)

which, upon using K−1 = −Σ1K
−1 Σ1, coincides with

Eq. (3.10a) if and only if we impose condition (3.10b).
Next, we use the gauge conditions (3.10a) to eliminate

the time components a0 of the dynamical gauge fields
from the theory. For that, observe that their equations
of motion

0 =
δSK

δa0
⇐⇒ ∂1a2 − ∂2a1 = 0, (3.12a)
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which require the vanishing of their field strengths, are
automatically satisfied if

a1 = ∂1Φ, a2 = ∂2Φ, (3.12b)

for

(∂1∂2 − ∂2∂1) Φ = 0 (3.12c)

then follows if the 2N components Φi of the vector field
Φ are smooth for i = 1, · · · , 2N .

We rewrite the kinetic part (3.1b) of the action (3.1a) using the gauge conditions (3.10a) and the equations of
motion (3.12a) and subsequently substitute the gauge fields Φ defined in Eq. (3.12b):

SK = −
ǫ0νλ

4π

+∞
∫

−∞

dt

+∞
∫

−∞

dx

+∞
∫

0

dy
(

−aTν K ∂0 aλ + aTν V ∂λ a1
)

= −
ǫ0νλ

4π

+∞
∫

−∞

dt

+∞
∫

−∞

dx

+∞
∫

0

dy (∂νΦ)
T (K ∂0 ∂λΦ− V ∂λ ∂1Φ)

= −
ǫ0νλ

4π

+∞
∫

−∞

dt

+∞
∫

−∞

dx

+∞
∫

0

dy ∂ν
(

ΦT K ∂0 ∂λΦ− ΦT V ∂λ ∂1Φ
)

.

(3.13)

We shall demand that Φ(t,x) vanishes for |x| → ∞, in which case

SK = −
1

4π

+∞
∫

−∞

dt

+∞
∫

−∞

dx
(

ΦT K ∂0∂1Φ− ΦT V ∂1 ∂1Φ
)

(t, x, 0)

=
1

4π

+∞
∫

−∞

dt

+∞
∫

−∞

dx
[

(∂1Φ)
T K ∂0Φ− (∂1Φ)

T V ∂1Φ
]

(t, x, 0).

(3.14)

Under the gauge transformation (3.3a) subject to the
constraints (3.6) and (3.8) the 2N -tuplet Φ transforms
as

Φ(t,x) → Φ(t,x) + χ. (3.15)

The fact that χ is independent of time t and space x
implies that (a) the edge theory (3.14) is unchanged un-
der Eq. (3.15), as anticipated, and (b) (∂1Φ) (t, x, 0) and
(∂0Φ) (t, x, 0) are unchanged under Eq. (3.15) and there-
fore are physical degrees of freedom at the edge. Their
dynamics are controlled by the non-universal matrix V ,
which is fixed by microscopic details of the physical sys-
tem near the edge.
So far, we have discussed only the kinetic part of the

action. Let us now discuss the couplings to the external
gauge potentials A and B given by the actions (3.1c)
and (3.1d), respectively. We assume that the external
gauge field A is chosen so that (i) all its components are
independent of y, i.e.,

Aµ(t, x, y) = Aµ(t, x), (3.16a)

for µ = 0, 1, 2 and (ii) they generate the Maxwell equa-
tions in a one-dimensional space defined by the boundary

y = 0, i.e.,

A2(t, x) = 0 (3.16b)

for all times t and for all positions x along the one-
dimensional boundary y = 0. Using (i) and (ii), we can
recast SQ as

SQ = +
e

2π

∫

R

dt

∫

Ω

d2xQi ǫ
2νρ ai,2 ∂ν Aρ

= +
e

2π

∫

R

dt

∫

Ω

d2xQi ǫ
2µν ∂2

(

Φi∂µ Aν

)

= −
e

2π

∞
∫

−∞

dt

∞
∫

−∞

dx
(

ǫµν Aµ Q
T ∂ν Φ

)

(t, x, 0).

(3.17)

On the last line, the Levi-Civita tensor is defined for
(1 + 1) space and time.

Furthermore, the very same manipulations that lead
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to Eq. (3.17) can be carried out on SS to deliver

SS = −
s

2π

+∞
∫

−∞

dt

+∞
∫

−∞

dx
(

ǫµν Bµ S
T ∂ν Φ

)

(t, x, 0).

(3.18)

Finally, the operation of time reversal stated in
Eq. (3.10d) in the bulk reduces on the boundary to the
transformation law

a1(t, x) = (∂xΦ) (t, x)

T
→ Σ1 a1(−t, x) = (∂x Σ1 Φ) (−t, x).

(3.19)

The transformation law of the 2N -tuplet Φ under reversal
of time is thus only fixed unambiguously up to an additive
constant 2N -tuplet. The choice

Φ(t, x)
T
→ Σ1 Φ(−t, x) + πK−1 Σ↓ Q, (3.20a)

with

Σ↑ :=
1

2
(Σ0 +Σ3) , Σ↓ :=

1

2
(Σ0 − Σ3) , (3.20b)

guarantees that at least one Kramers doublet of fermions
exists as local fields in the edge theory, as was shown in
Ref. 44.

B. Fermi-Bose edge correlation functions

Local excitations on the edge can be classified into two
groups. There are quasiparticle excitations that carry
rational charges and obey fractional statistics. There
are Fermi-Bose excitations that carry integer charges and
obey Fermi or Bose statistics. The former excitations are
built from vertex operators of the form

V qp
i (t, x) := e−iΦi (t,x) (3.21a)

that are labeled by the flavor index i = 1, · · · , 2N . The
latter excitations are built from the vertex operators of
the form

V fb
i (t, x) := e−iKij Φj(t,x), (3.21b)

that are also labeled by the flavor index i = 1, · · · , 2N .
Establishing the statistics under exchange obeyed by
these vertex operators can be achieved by computing
their correlation functions, as we now show for the Fermi-
Bose operators.

We shall choose for Ω a disk of unit radius centered at
the origin of the complex plane with coordinate z ∈ C.
Thus, the boundary ∂ Ω is the unit circle centered at the
origin of C. We are after the correlation function

Ψ
({

z1,1, z̄1,1, · · · , z1,n1
, z̄1,n1

}

; · · · ;
{

z2N,1, z̄2N,1, · · · , z2N,n2N
, z̄2N,n2N

})

:=
〈

eQ V fb
1 (z1,1, z̄1,1)× · · · × V fb

1 (z1,n1
, z̄1,n1

)× · · · × V fb
2N (z2N,1, z̄2N,1)× · · · × V fb

2N (z2N,n2N
, z̄2N,n2N

)
〉 (3.22)

where the angular bracket denotes an expectation value
using the quantum field theory with the action (3.14)
and Q is a so-called background charge. This correlation
function fixes the positions of ni particles of flavor i =
1, · · · , 2N at the locations zi,1, zi,2, · · · , zi,n

i
along the

unit circle. We are omitting any reference to the time t
since all Fermi-Bose vertex operators are taken at equal
time.

We shall use the rules that

〈

Φ̃I(z, z̄)Φ̃J (w, w̄)
〉

=











log(z − w), if I = J = 1, · · · , N ,

log(z̄ − w̄), if I = J = N + 1, · · · , 2N ,

0 otherwise,

(3.23)

where the capitalized index I = 1, · · · , 2N labels the ba-
sis of R2N for which the K matrix is represented by the
diagonal matrix made of the signature of its eigenvalues

Σ3 =
(

W−1
)T

K
(

W−1
)

. (3.24)

Observe that the linear transformation W needs neither
be integer-valued nor have unit determinant. It is a mere
useful device to compute the correlation function (3.22).

The relationship between the co-ordinates Φ̃I and Φj is
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linear and given by

Φ̃I = WIj Φj , I = 1, · · · , 2N, (3.25)

where the summation convention for the repeated small

case indices is used.

In order to take advantage of Eq. (3.23) when evaluat-
ing Eq. (3.22), we use the decomposition

KijΦj(z, z̄) =WIi (Σ3)IJ WJj Φj(z, z̄)

=WIi

(

Σ↑
IJ − Σ↓

IJ

)

Φ̃J (z, z̄)

=
(

WIi Σ
↑
IJ Φ̃J

)

(z)−
(

WIi Σ
↓
IJ Φ̃J

)

(z̄)

(3.26a)

for i = 1, · · · , 2N where the matrices Σ↑ and Σ↓ were defined in Eq. (3.20b). Under the decomposition (3.26a), any
Fermi-Bose vertex operator (3.21b) occurring in the correlation function (3.22) becomes

V fb
i (z, z̄) = e−iKij Φj(z,z̄) = exp

(

−i
(

WIi Σ
↑
IJ Φ̃J

)

(z)
)

× exp
(

+i
(

WIi Σ
↓
IJ Φ̃J

)

(z̄)
)

. (3.26b)

We shall also decompose accordingly the background charge Q = Q↑ +Q↓. Now,

Ψ
(

· · · ; zi,1, · · · , z̄i,n
i
; · · ·

)

= exp






Q↑ +

1

2

〈



+

2N
∑

i=1

ni
∑

a
i
=1

(

WIi Σ
↑
IJ Φ̃J

)

(zi,a
i
)





2
〉







× exp






Q↓ +

1

2

〈



−
2N
∑

i=1

ni
∑

a
i
=1

(

WIi Σ
↓
IJ Φ̃J

)

(z̄i,a
i
)





2
〉







=





2N
∏

i=1

∏

1≤a
i
<b

i
≤n

i

(

zi,a
i
− zi,b

i

)WIiΣ
↑

IJ
WJi

(

z̄i,a
i
− z̄i,b

i

)WIiΣ
↓

IJ
WJi





×





∏

1≤i<j≤2N

ni
∏

a
i
,b

j
=1

(

zi,a
i
− zj,b

j

)WIiΣ
↑

IJ
WJj

(

z̄i,a
i
− z̄j,b

j

)WIiΣ
↓

IJ
WJj



 .

(3.27)

The role of the background charge is to guarantee “charge
neutrality”. Observe that for any pair i, j = 1, · · · , 2N ,
the exponents

αij := WIi Σ
↑
IJ WJj (3.28)

and

βij := WIi Σ
↓
IJ WJj (3.29)

can be an irrational number! Nevertheless if zi,a
i
6= zj,b

j

the correlation function (3.27) is single-valued, for it is
the product of functions of the form

f(zi,a
i
, zj,b

j
) :=

(

zi,a
i
− zj,b

j

)αij
(

z̄i,a
i
− z̄j,b

j

)βij

=
(

zi,a
i
− zj,b

j

)αij−βij+βij
(

z̄i,a
i
− z̄j,b

j

)βij

=
(

zi,a
i
− zj,b

j

)Kij
∣

∣

∣zi,a
i
− zj,b

j

∣

∣

∣

2βij

(3.30a)

where one verifies that

αij − βij = Kij (3.30b)

is integer valued. This is consistent with the fact that
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the vertex operators (3.21b) describe either Fermions or
Bosons.

IV. WAVE FUNCTIONS

The family of topological quantum field theories de-
fined by Eqs. (2.2b) and (2.25) encode the universal prop-
erties of a family of time-reversal symmetric fractional
quantum liquids.
Any connection to a microscopic realization of a time-

reversal symmetric fractional quantum liquid whose uni-
versal properties are captured by Eqs. (2.2b) and (2.25)
must, however, be supplied.
For example, the very definition of an electron op-

erator is ambiguous for any equivalence class of topo-
logical quantum field theories defined by Eqs. (2.2b)
and (2.25). First, there is no unique definition of a lo-
cal fermion in any topological quantum field theory of
the form Eqs. (2.2b) and (2.25) that admits a hierar-
chical representation with one type of Kramers degener-
ate pairs of fermions, for this representation is equiva-
lent to the symmetric representation that admits N dis-
tinct types of Kramers degenerate pair of fermions [see

Eq. (2.26)]. Second, for any representation of the univer-
sal data (K,Q, S) from Eq. (2.1b) that admits fermions,
a basis set of functions must be supplied to construct a
representation of the microscopic electron operator. This
basis set of functions is usually provided by some refer-
ence single-particle electron basis.

In the context of the FQHE observed in a GaAs ac-
cumulation layer, the basis set of functions is the single-
particle basis of the Landau Hamiltonian describing an
electron moving in a plane perpendicular to a uniform
magnetic field. However, the Landau basis set and, in
particular, the basis set for the lowest Landau level, is not
appropriate for the recently discovered fractional quan-
tum Hall phases in lattice models without external mag-
netic field.50–53

With this caveat in mind, we are going to con-
struct some wave functions using the data (K,Q, S) from
Eq. (2.1b) as the universal input and using the Landau
wave functions spanning the lowest Landau level as the
microscopic input. We do this out of simplicity in view
of the elegant analytic properties of these single-particle
functions. Hence, we choose the symmetric gauge for
which the Slater determinant in the lowest Landau level
is

Ψν
i
=1

(

{zi , z̄i }n
i

)

:=





∏

1≤k<l≤n
i

(

zi,k − zi,l
)



×

ni
∏

k=1

exp

(

−
z̄i,kzi,k
4ℓ2

)

(4.1a)

for ni electrons labeled by the flavor index i = 1, · · · , N while it is

Ψν
i
=1

(

{wi , w̄i }n
i

)

:=





∏

1≤k<l≤n
i

(

w̄i,k − w̄i,l

)



×

ni
∏

k=1

exp

(

−
w̄i,kwi,k

4ℓ2

)

(4.1b)

for nN+i electrons labeled by the flavor index N + i =
N + 1, · · · , 2N . Here,

{zi , z̄i }n
i
:=
{

zi,1, · · · , zi,ni
, z̄i,1, · · · , z̄i,ni

}

(4.2)

denotes the complex coordinates of the particles of the
first N flavors, with z̄ denoting their complex conjugates,
and likewise {wi , w̄i }n

i

denotes the complex coordinates

for the last N flavors; ℓ2 := φ0/(2π|B|) is the square of
the magnetic length ℓ in the presence of the uniform
magnetic field of magnitude |B|, φ0 := 2 π/e is the quan-
tum of magnetic flux, |Ω||B| is the magnitude of the flux
threading the disk Ω, and νi := (ni φ0)/(|Ω||B|) repre-
sents the filling fraction of the lowest Landau level.
It remains to decide on the number of electron flavors,

a microscopic input. We shall assume that the hierarchi-
cal (symmetric) representation corresponds to a single
pair (N pairs) of microscopic flavors of electrons form-

ing a Kramers doublet (N Kramers doublets). We begin
with the wave function for N = 1, in which case there is
no distinction between the two representations. We then
work out examples with N = 2 in the symmetric and the
hierarchical representation.

A. Wave function for N = 1

We choose the universal data to be

K =

(

+m 0
0 −m

)

∈ GL(2,Z), Q =

(

1
1

)

∈ Z
2,

(4.3)
for some given positive odd integer m. The spin filling
fraction defined in Eq. (2.4) is

νs :=
1

m
. (4.4)
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The putative ground state wave function that generalizes
the ν = 1/m single-layer wave function from Laughlin

(see Ref. 1) to the time-reversal symmetric case is

Ψ1/m ({z, z̄}n | {w, w̄}n) =





n
∏

i=1

n
∏

j=i+1

(

zi − zj
)m (

w̄i − w̄j

)m



×
n
∏

i=1

exp

(

−
|zi |

2
+ |w̄i |

2

4ℓ2

)

. (4.5)

By construction, it is invariant under the operation of
time reversal represented by

zi
T
→ w̄i , wi

T
→ z̄i , i = 1, · · · , n. (4.6)

It thus realizes a time-reversal symmetric fractional in-
compressible state. Observe that this wave function
factorizes into an holomorphic and an antiholomorphic
sector. Time-reversal symmetry forbids a coupling be-
tween the holomorphic and antiholomorphic sector when
N = 1.

B. Wave functions in the symmetric

representation

We choose the universal data to be

K =

(

+κ +∆
−∆ −κ

)

∈ GL(4,Z), Q =

(

̺
̺

)

∈ Z
4.

(4.7a)
The 2× 2 matrix κ is given by

κ =

(

m1 n
n m2

)

∈ GL(2,Z). (4.7b)

We impose that the integersm1 andm2 are odd and posi-
tive while the integer n is positive [n ≥ 0 is not restrictive
in view of Eq. (2.27)] whereby

m1m2 − n2 > 0, (4.7c)

in order for κ to be maximally chiral. In turn,

∆ =

(

0 d
−d 0

)

, (4.7d)

where the integer d ≥ 0 is chosen to be non-negative.
Finally, the charge vector

̺ =

(

1
1

)

(4.7e)

enforces the presence of 4 fermions related pairwise by
reversal of time. We assume that the fermions with the
charge vector Q in the topological quantum field the-
ory represent 2N distinct flavors of electrons in a micro-
scopic theory. For example, each flavor of electrons could
be constrained to move with the dynamics dictated by
the single-particle Landau Hamiltonian in its own two-
dimensional layer in the presence of a uniform magnetic
field pointing up for the first N layers and down for the
next N layers. If the lowest Landau level of each layer is
partially filled, interactions might select an incompress-
ible ground state. The spin filling fraction defined in
Eq. (2.4) is

νs :=
m1 +m2 − 2n

m1 m2 − n2 + d2
. (4.8)

The putative ground state wave function that generalizes
the (m1,m2, n) bilayer wave function from Halperin (see
Ref. 2) to the time-reversal symmetric case is

Ψsymm
m1 ,m2 ,n,d

(

{z1, z̄1}n
1
; {z2, z̄2}n

2
| {w1, w̄1}n

1
; {w2, w̄2}n

2

)

=

Ψ1/m1

(

{z1, z̄1}n
1
| {w1, w̄1}n

1

)

×Ψ1/m2

(

{z2, z̄2}n
2
| {w2, w̄2}n

2

)

×

n1
∏

i=1

n2
∏

j=1

(

z1,i − z2,j
)n (

w̄1,i − w̄2,j

)n (
z1,i − w2,j

)d (
w̄1,i − z̄2,j

)d
.

(4.9)

By construction, it is invariant under the operation of
time reversal represented by

zi,i
i

T
→ w̄i,i

i
, wi,i

i

T
→ z̄i,i

i
, ii = 1, · · · , ni ,

(4.10)

for i = 1, 2. It thus realizes a time-reversal symmetric
fractional incompressible state.



12

C. Wave functions in the hierarchical

representation

We choose the universal data to be

K =

(

+κ +∆
−∆ −κ

)

∈ GL(4,Z), Q =

(

̺
̺

)

∈ Z
4.

(4.11a)
The 2× 2 matrix κ is given by

κ =

(

+m +1
+1 −p

)

∈ GL(2,Z) (4.11b)

where m is a positive odd integer and p is an even integer
larger than zero. The 2× 2 matrix ∆ is given by

∆ =

(

0 +d
−d 0

)

(4.11c)

with d any positive integer. Finally, the charge vector

̺ =

(

1
0

)

(4.11d)

enforces the presence of 2 fermions related pairwise by
reversal of time. The spin filling fraction defined in
Eq. (2.4) is

νs :=
p

mp+ 1− d2
. (4.12)

The putative ground state wave function that generalizes
the ν = p

mp+1 single-layer wave function from Halperin

(see Ref. 2) to the time-reversal symmetric case is

Ψhier
m,−p,1,d

(

{z, z̄}pn | {w, w̄}pn

)

=





n
∏

i=1

∫

Ω

d2 ηi

∫

Ω

d2 ξi



×Ψ1/m

(

{z, z̄}pn | {w, w̄}pn

)

×Ψ1/p

(

{

ξ, ξ̄
}

n
| {η, η̄}n

)

×

pn
∏

i=1

n
∏

j=1

(

zi − ηj
) (

w̄i − ξ̄j
) (

zi − ξj
)d (

w̄i − η̄j
)d

.

(4.13)

By construction, it is invariant under the operation of
time reversal represented by

zi
T
→ w̄i , wi

T
→ z̄i , (4.14a)

for i = 1, · · · , pn and

ξi
T
→ η̄i , ηi

T
→ ξ̄i , (4.14b)

for i = 1, · · · , n. It thus realizes a time-reversal symmet-
ric fractional incompressible state.

V. SUMMARY

In this paper, we first derived a hierarchy of FQSHEs,
the universal properties of which are encoded by equiva-
lence classes of BF theories of the form

L = −
1

π
ǫµνλ a(+)T

µ κ ∂ν a
(−)
λ

+
e

π
ǫµνλ Aµ ̺

T ∂ν a
(+)
λ +

s

π
ǫµνλ Bµ ̺

T ∂ν a
(−)
λ .

(5.1)

The N ×N invertible and integer-valued matrix κ cou-
ples the N flavors of the dynamical gauge field a(+) to

the N flavors of the dynamical gauge field a(−). The N -
tuplets a(+) and a(−) also couple linearly to the external
gauge fields A and B, respectively, through the vector
̺ ∈ Z

N , where the integer ̺i shares the same parity as
the integer κii for i = 1, · · · , N . Correspondingly, there
exists two independent conserved currents, a charge cur-
rent associated to the gauge field a(+) and a spin current
associated to the gauge field a(−).
Time-reversal symmetry implies the vanishing of the

charge Hall conductivity

σH =
e2

2π
× ν = 0. (5.2)

The non-vanishing spin filling fraction

νs := ̺T κ
−1 ̺ (5.3a)

can be interpreted as the spin Hall conductance

σsH :=
e

2π
× νs (5.3b)

if the U(1) conservation law associated to the cur-
rent of a(−) arises microscopically from a residual spin-
1/2 U(1) (easy plane XY ) symmetry. The topological
ground state degeneracy, if two-dimensional space Ω has
a toroidal geometry,

(detκ)2 (5.4)
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is always the square of an integer as a consequence
of time-reversal symmetry. Equivalent pairs (κ, ̺) and
(κ′, ̺′), as defined by Eq. (2.25), share the same spin
Hall conductivity and topological degeneracy.
The theory (5.1) is topological when two-dimensional

space Ω has no boundary, i.e., the Hamiltonian den-
sity associated to the Lagrangian density (5.1) vanishes.
This is not true anymore if the boundary ∂Ω is a one-
dimensional manifold. We have shown that imposing
gauge invariance delivers a gapless theory with all ex-
citations propagating along the boundary ∂Ω. These ex-
citations can all be constructed out of N pairs of counter-
propagating chiral bosons whose non-universal velocities
along the boundary ∂Ω derive from a gauge-fixing con-
dition. The stability of this edge theory to the (time-
reversal symmetric) breaking of translation invariance
along the boundary (including the breaking of the spin
conservation law associated to the spin vector S) was

studied in Ref. 44. The correlation functions for the
Fermi-Bose excitations along the edge were computed
and shown to be a product over the functions (3.30a).

Finally, we have proposed a time-reversal symmetric
counterpart to the hierarchy of wave functions that have
been proposed in the context of the FQHE by way of
few examples, the νs = 1/m, νs = p/(mp+ 1− d2), and
νs = (m1 +m2 − 2n)/(m1m1 − n2 + d2) sequences.
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15 J. Fröhlich and E. Thiran, J. Stat. Phys. 76, 209 (1994).
16 R. B. Laughlin Phys. Rev. B 23, 5632 (1981)
17 B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
18 X.-G. Wen, Phys. Rev. Lett. 64, 2206 (1990).
19 X.-G. Wen, Phys. Rev. B 43, 11025 (1991).
20 X.-G. Wen, Phys. Rev. B 44, 5708 (1991).
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