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For the one-dimensional Holstein model, we show that the relations among the scaling exponents
of various correlation functions of the Tomonaga Luttinger liquid (LL), while valid in the thermo-
dynamic limit, are significantly modified by finite-size corrections. We obtain analytical expressions
for these corrections and find that they decrease very slowly with increasing system size. The inter-
pretation of numerical data on finite-size lattices in terms of LL theory must therefore take these
corrections into account. As an important example, we re-examine the proposed metallic phase
of the zero-temperature, half-filled one-dimensional Holstein model without employing the LL rela-
tions. In particular, using quantum Monte Carlo calculations, we study the competition between
the singlet pairing and charge ordering. Our results do not support the existence of a dominant
singlet pairing state.

PACS numbers: 71.10.Fd, 71.30.+h, 71.45.Lr

I. INTRODUCTION

The study of quantum fluctuations arising from dy-
namical phonons and their effects on the charge order-
ing instability of one-dimensional systems has a long
history.1 One of the simplest models to describe a one-
dimensional solid under the influence of the quantum
fluctuations is the molecular-crystal or Holstein model,2,3

which is given by the following Hamiltonian:

H = Hel +Hph +Hel−ph, (1)

where

Hel = −t
∑

i,s

(c†i,sci+1,s +H.c.) , (2)

Hph =
∑

i

(
p2i
2M

+
K

2
q2i ) , (3)

Hel−ph = gep
∑

i,s

qini,s . (4)

In this model, the electrons move in a tight-binding
band interacting with the lattice via the coupling between
the local electron density and the local lattice displace-

ment. In the Hamiltonian, c†i,s (ci,s) creates (annihilates)
an electron at site i with spin s, and ni,s is the electron
number operator. The ions are described by momentum
pi and displacement qi for site i. The mass of the ions
is M , and K is the harmonic lattice coupling constant,
so that the phonon frequency, ω0 =

√

K/M . Following
convention, we shall call these dispersionless optical ex-
citations “Einstein phonons”. The hopping energy of the
electrons between nearest neighbors is t, and gep is the
electron-phonon coupling energy. In what follows we will
use units such that t = M = 1, except where otherwise
specified. For the half-filled band, early work suggested
that the Holstein model displays dimerization and that

long-range charge ordering sets in at any finite phonon
frequency.4–9 These conclusions have been challenged by
various studies which find that for small enough electron-
phonon coupling, the system has zero charge gap and
thus no long-range order.10–24

A recent quantum Monte Carlo study25 further sug-
gested that the dominant power-law ordering is the sin-
glet BCS superconducting pairing (SS) correlation. This
conclusion was based on data from finite-size simulations
which shows that the Luttinger charge exponent (Kρ) is
larger than one.26 (It is important to realize at the out-
set that this is not an off-diagonal long-range ordering27,
as breaking the U(1) gauge invariance28,29 to generate a
mass gap is forbidden in one dimension.30–32 SS should
thus be understood as a charge gapless, dominant off-
diagonal power-law decaying ordering.) In the (possi-
bly singular) limit of infinite phonon frequency, the Hol-
stein model becomes equivalent to the attractive Hub-
bard model.4 For the attractive Hubbard model at half-
filling, the SS and the charge density wave (CDW) or-
der parameters are degenerate because of the particle-
hole symmetry. Moreover, both order parameters possess
continuous symmetry with respect to the spin rotation.4

Therefore, long-range ordering of either sort is forbidden
in this case. However, from the numerical simulations for
finite-size lattices, Kρ is always larger than one and con-
verges to one very slowly with increasing system size.33

The similar behaviors of Kρ for both the attractive Hub-
bard model and the Holstein model at finite phonon fre-
quency have led to the suggestion that the Holstein model
even at finite phonon frequency may have a charge gap-
less metallic phase with degenerate SS and CDW correla-
tions, even though Kρ > 1 from finite-size calculations.33

We note that this coexistence has been proposed years
ago.34

In the present article we present analytical and numer-
ical calculations of the LL relations in the 1D Holstein
model with finite-size corrections. Our results extend
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to Einstein phonons previous studies involving acoustic
phonons35,36 and complement prior multiscale functional
renormalization group studies of retardation effects due
to Einstein phonons.37 In essence, we seek to answer three
important questions raised by previous studies:(I) Are
the LL scaling relations valid in the 1D Holstein model?
(II) What are the dominant correlations in this model?
(III) What can be said about the possibility of a charge
gapless metallic phase at half-filling for weak electron-
phonon coupling? As we shall see, we are able to provide
clear answers to the first two questions but can only com-
ment on the third.
In section II of the paper, we begin our study by de-

scribing the forward scatterings of the Holstein model in
terms of bosonic fields. In section III, we solve analyt-
ically the forward scattering part of the Holstein model
to show that electron-phonon coupling modifies the rela-
tions between scaling exponents , and we calculate these
modifications for finite-size systems. This enables us to
answer question (I). In section IV, we employ quantum
Monte Carlo calculations for the full Hamiltonian (Eq.
1) to resolve Question (II) and to gain some insight into
Question (III). In section V, we discuss the reasons of
why all the perturbative renormalization group studies
obtain long-range CDW phase and under what circum-
stances the metallic phase can be obtained. Section VI
contains a brief conclusion.

II. FORWARD SCATTERINGS IN THE 1D

HOLSTEIN MODEL

To answer the question about the validity of the LL
relations for the Holstein model in the gapless regime,
including the gapless half-filled case if present, it is suffi-
cient to diagonalize exactly the forward scatterings (scat-
terings with zero momentum transfer, often denoted as
g2 and g4 in the “g-ology” terminology)38 of the Hamil-
tonian. The neglect of anything beyond forward scatter-
ings is unquestionably an assumption which cannot be a
priori justified in the full model, but this neglect is the
fundamental conjecture in the description of the gapless
one-dimensional system: any contributions beyond for-
ward scatterings can be incorporated into the renormal-
ization of the forward scatterings. Therefore, although
we are considering forward scatterings only, our approach
is completely general for the description of any gapless
regime regardless of the filling. In what follows, the right
hand side of the symbol, ≈, is understood to include only
those terms in which the forward scatterings exclusively
are retained.
By formulating the one-dimensional problem in the

continuum limit and retaining only the low-energy de-
grees of freedom, Hel, can be expressed in term of bosonic
fields, ϕν and their corresponding momenta Πν with ex-
plicit spin(σ) - charge(ρ) separation.39,40

Hel = Hρ +Hσ, (5)

Hν =

∫

dx[uνKνΠ
2
ν +

uν
Kν

(∂xϕν)
2].

For the Holstein model at half filling, the Fermi points
are at kF = −π/2 and π/2. Therefore uσ = uρ = 2t, and
Kσ = Kρ = 1.35,36,39 The values of these parameters,
uσ, uρ,Kσ,Kρ, can be renormalized by the interactions.
However, as long as the LL description is valid, the scal-
ings of the various correlation functions are determined
solely by these parameters.39,40 In particular, the CDW
correlation and the SS correlation scale as OCDW (x) ∝
x−Kρ−Kσ ≡ xαCDW and OSS(x) ∝ x−K−1

ρ −Kσ ≡ xαSS ,
respectively. This implies αCDWαSS = 1, when a spin
gap appears, in which case Kσ = 0.
Consider the electron-phonon coupling. As we include

only forward scatterings, only the phonons with momen-
tum k = 0 are coupled with the electrons. The Hamilto-
nian for the phonons with momentum k = 0 is

Hph ≈ 1

2

∫

dx[ζ−1Π2
d0

+ ζω2
0d

2
0], (6)

where ζ is the mass density, d0 is the phonon field with
momentum k = 0, and Πd is the conjugate momentum.
The Hamiltonian for the electron-phonon coupling is

Hel−ph ≈ gep
∑

s

∫

dx(ψ†
sψsd0). (7)

By keeping only the term which is linear in the
bosonic field to express the density operator, ψ†

sψs, we
obtain35,36,39

Hel−ph ≈ gep

∫

dx

√

2

π
(∂xϕρ)d0. (8)

The remaining terms will generate the back scatterings
and Umklapp scatterings. They also lead to spin-charge
coupling due to the retardation.39

When only forward scatterings are considered, the
electron-phonon coupling affects only the charge part of
the Hamiltonian, and we will thus focus on the charge
part only in the following. The spin part is unchanged
from the standard Luttinger model.35,36,39 The charge
part of the Hamiltonian (Eq. 1) arising solely from for-
ward scatterings is

Hforward ≈
∫

dx[uρKρΠ
2
ρ +

uρ
Kρ

(∂xϕρ)
2] + (9)

1

2

∫

dx[ζ−1Π2
d0

+ ζω2
0d

2
0] + gep

∫

dx

√

2

π
(∂xϕρ)d0.

Since the phonon fields appear at quadratic order, we can
follow the work by Martin and Loss,35,36 who considered
the case of acoustic phonons (as opposed to the Einstein
phonon case we are considering here) to integrate out the
phonon fields, d0, which results in the collective inverse
propagator for the charge field, ϕρ,

Dρ(k, ω) =
1

Kρuρ

[

(ω2 + u2ρk
2)− b(kω0uρ)

2

ω2 + ω2
0

]

, (10)
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where b = 2Kρg
2
ep/πuρω

2
0 . The first part of the in-

verse propagator is the contribution from the bosonized
electrons, and the second part comes from the electron-
phonon coupling. The crucial difference between Einstein
phonons and acoustic phonons is that the coupling be-
tween the two bosonic modes (ϕρ and d0) is symmetric
for acoustic phonons (∂xϕρ∂xd0)

35,36, but asymmetric for
Einstein phonons (∂xϕρd0). As a result, the dispersion
relations for the collective modes are linear for acoustic
phonons but nonlinear for Einstein phonons. Therefore,
the acoustic phonon case can be solved exactly, but the
Einstein phonon case, in general, cannot be solved ex-
actly.

III. MODIFICATIONS OF SCALING

EXPONENTS

It is generally believed that the spin part of the half-
filled Holstein model is always gapped due to the back
scatterings.4,25,33 (The spin-gapped but charge-gapless
LL is often referred as Luther-Emery liquid.41) As a con-
sequence, the Luttinger spin exponent Kσ renormalizes
to zero. We take this as an assumption and will not elab-
orate on it here. Therefore, the boundary of the transi-
tion between the charge ordering and the singlet pairing
is determined by the points where the Luttinger charge
exponent crosses the value one, providing that the Lut-
tinger liquid description survives.
It has previously been shown that the LL scaling

relations are modified by the coupling with acoustic
phonons.35,36 The analogous exact relations cannot be
obtained for the Holstein model, which has Einstein
phonons. Nevertheless, we can still extract the power-law
decaying terms asymptotically (i.e., long-distance, low-
energy limit, x→ ∞, k → 0). We find

αCDW = − uρ
v−
Kρ; (11)

αSS = − uρ
v−Kρ

(1 − b), (12)

to the lowest order in the momentum. At this order, the
velocity of the lower branch, v− is uρ

√
1− b. Hence the

relation αCDWαSS = 1 is preserved.42 We reiterate that
these asymptotic results are strictly correct only at long-
distance, even apart from any oscillatory contributions.
In addition, the power-law decay of the correlations is
also valid at long distances only.
The exact results for the charge density, OCDW , and

the singlet pairing, OSS , correlation functions can be ex-
pressed in term of two series:

ln(OCDW (b, x)) =
−1

2π

∑

k

uKρ

ω−

(

1− ω2
0 − ω2

+

ω2
− − ω2

+

)

[1− cos(kx) exp(−ω−t)], (13)

ln(OSS(b, x)) =
−1

2π

∑

k

u

Kρω−

[

1− (1− b)ω2
0 − ω2

+

ω2
− − ω2

+

]

[1− cos(kx) exp(−ω−t)], (14)

where

ω2
±(k)=

ω2
0 + (uρk)

2 ±
√

[ω2
0 − (uρk)2]2 + 4b(ω0uρk)2

2
.(15)

We have omitted oscillatory contributions. In addition,
the upper branch of the collective modes is ignored due to
the gap with magnitude, ω0; this differs from the acoustic
case35,36 in which both branches are gapless and must be
included.
To investigate the validity of the relation αCDWαSS =

1 at finite distance we take the continuum limit, which
amounts to replacing the summation over the momentum
by an integral; and we have to introduce the low momen-
tum cutoff ǫ35,36 and the high momentum cutoff is set
to 2uρ. For the following numerical calculations, we fix
the phonon frequency, ω0 = 1. The asymptotic results
indicate that the relation, αCDWαSS = 1, is valid inde-
pendent of any parameter. In particular, it is valid in-
dependent of the electron-phonon coupling, which enters
via the parameter b. Therefore, the ratio of the product
of the singlet pairing and the charge ordering correlations
at b 6= 0 and b = 0,

R(b, x) ≡ ln[OCDW (b, x)]ln[OSS(b, x)]

ln[OCDW (0, x)]ln[OSS(0, x)]
, (16)

should be equal to one when x→ ∞, that is,

lim
x→∞

R(b, x) =
αCDW (b 6= 0)αSS(b 6= 0)

αCDW (b = 0)αSS(b = 0)
= 1. (17)

While Eq. 17 is exact in the asymptotic limit, using
the analytical expressions we obtained for OSS(b, x) and
OCDW (b, x), we find that R(b, x) deviates from one for
non-zero scaled electron-phonon couplings, b; even at
rather long distances, x. This is shown in detail in Fig.
1. Importantly, this deviation depends not only on the
distance but also on the value of the electron-phonon cou-
pling. The ratio is clearly larger than one and seems to
converge to the asymptotic value, one, very slowly and
at distances that are likely beyond the reach of exist-
ing numerical calculations, which typically study systems
up to a few hundred sites. This behavior is also likely
to preclude a reliable scaling estimate of its asymptotic
value. Our results suggest that the product of the expo-
nents of the singlet pairing and of the charge ordering is
larger than one at finite distance for non-zero electron-
phonon coupling. Consequently, observing a charge ex-
ponent larger than one does not automatically imply that
the singlet pairing correlation is the dominant instability.
Thus although αCDWαSS = 1 in the asymptotic limit, in
a finite-size system the value of αCDWαSS not only de-
pends on the system size but also on the forward scatter-
ings strengths.
The deviation from one is enhanced by the scaled

electron-phonon coupling, b, and suppressed by the dis-
tance, x. These results are consistent with the charge
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FIG. 1: Plot of the ratio, R(b, x) ≡ ln[OCDW (b,x)]ln[OSS(b,x)]
ln[OCDW (0,x)]ln[OSS(0,x)]

,

versus the scaled electron-phonon coupling, b, at various dis-
tances, x, for t → 0+

exponent obtained in a Quantum Monte Carlo study,25

in which the charge exponent is larger than one and in-
creases with electron-phonon coupling. In addition, the
Quantum Monte Carlo calculations also found that the
charge exponents decrease with increasing system size.33

Our results show that even if all the non-linear op-
erators, which are always present and especially impor-
tant in the half-filling case, are irrelevant and renor-
malized to zero and the Holstein model is in the gap-
less regime which can be described in terms of LL,
the charge exponent alone at finite distance cannot re-
solve the competition between the charge ordering and
the singlet superconducting pairing. In fact, the “two-
cutoff” renormalization group6,43–45 calculations have
shown that the charge gap is always opened by the Umk-
lapp scatterings.46 (One should note that this method
may give defective results for phonon energy larger than
the Fermi energy.6) Similarly, multiscale renormalization
group approaches which systematically renormalize the
frequency dependences of the couplings47–49 have also
ruled out the existence of dominant singlet pairing due
to the contribution from the dynamical Umklapp scat-
terings at high energy.37 Further, a recent study once
again confirmed the CDW phase and further discussed
the quantum-classical crossover.50

From the results of the correlation functions for the
forward scatterings of Eq. 1, it is quite clear that using
the relation, αCDWαSS = 1, to decide the dominating
correlations in the gapless phase of the half-filled Hol-
stein model can lead to misleading results. The viola-
tion of this relation for finite-size systems arises because
of the non-linear collective modes from the asymmetric
coupling between the bosonized electrons and the dynam-
ical phonons (see eq. 8 and the discussion in section
II). This result is not due to the oscillating phase fac-
tor from normal-ordering procedure for the correlation
functions.36

IV. MONTE CARLO CALCULATIONS OF THE

CORRELATION FUNCTIONS

Our previous results make clear that we cannot rely
on the LL relations for the thermodynamic limit to de-
termine the correlation exponents from finite-size sim-
ulations of the Holstein model. Hence we turn in-
stead to a numerical study of the full model (Eq. 1).
The stochastic series expansion used in the previous
studies,25,33,51 while highly efficient, faces considerable
challenges in measuring the pairing correlation for the
Holstein model.33,52 Therefore, we use instead the pro-
jector determinantal Monte Carlo53–56 (DQMC) to de-
termine the “ground state” and its correlation functions
of finite-size systems. The “ground state” (|GS〉) is ob-
tained by projecting the free fermion trial state (|ΨT〉)
as |GS〉 = limβ→∞exp(−βH )|ΨT〉, in practice β is set
between 10 − 20. Since the Green functions are directly
accessible in the DQMC, the pairing correlation can be
readily calculated using the Wick’s theorem.53 However,
the Monte Carlo sampling of the projection operator re-
quires the manipulations of the Slater determinant which
scales as the third power of the system size and thus only
relatively small system sizes can be studied. We use the
|GS〉 to calculate the pairing correlation, OSS , and the
charge ordering correlation, OCDW , in the real space di-
rectly,

OCDW (x) =
1

N
|

N
∑

i=1

〈nini+x − 1〉|; (18)

OSS(x) =
1

N
|

N
∑

i=1

〈c†i,↑c
†
i,↓ci+x,↓ci+x,↑ +H.c.〉|,(19)

where N is the number of lattice sites. In the Monte
Carlo calculation, we set t = 1, M = 1/2, and ω0 = 1,
so that the gep defined in Eq. 1 is the same as the
electron-phonon coupling g defined in the Ref. [25].
We show the correlation functions at different electron-
phonon couplings in Fig. 2. At zero electron-phonon
coupling, the Holstein model is a free fermion theory,
and the singlet pairing and charge ordering are degen-
erate (the 1st row in the Fig. 2). When the electron-
phonon coupling is turned on, the charge ordering tends
to decay more slowly, while the singlet pairing tends to
decay faster, than in the free fermion case. The differ-
ence between them is expectedly small, possibly due to
the exponentially small charge gap with respect to the
electron-phonon coupling.4 Turning to larger electron-
phonon couplings, the difference between the two dif-
ferent orderings becomes more obvious. As we are us-
ing systems of modest sizes (22 and 46 sites with peri-
odic boundary conditions) only, it is difficult to deter-
mine whether the charge ordering is long-range or de-
cays as a power law, but the data clearly show that the
charge ordering is enhanced and the singlet pairing is
suppressed as the electron-phonon coupling is increased.
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FIG. 2: Singlet pairing correlations (open circles) and charge
ordering correlations (open squares) functions as a function
of real space distance for gep = 0.0 (the 1st row), gep = 0.2
(the 2nd row), gep = 0.4 (the 3rd row), gep = 0.6 (the 4th
row), gep = 0.8 (the 5th row) and gep = 1.0 (the 6th row).
The left and right columns are for the lattices of N = 22 sites
and N = 46 sites, respectively.

For fairly large electron-phonon couplings, e.g., gep = 1.0
(the 6th row in Fig. 2), our data show a clearer signal
that the charge ordering tends to become long-range, as
the charge correlation changes only very slowly beyond a
few lattice sites.
We also calculate the Luttinger charge exponent by the

same method used previously for the Holstein model,25

which found Kρ > 1. Using the set of data obtained in
the same run for the correlation functions presented in
Fig. 2, we reproduce the result that the Luttinger charge
exponent is clearly above one at least for gep ≤ 0.6 (see
Fig. 3). Using the LL relations would imply the dom-
inant singlet pairing state for the model in this region;
however, from the correlation functions we know that
the singlet pairing decays faster than the charge order-
ing and is thus not dominant. The Kρ > 1 obtained from
finite-size calculations is not incompatible with the CDW
correlation decaying slower than that of the SS.
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FIG. 3: The Luttinger charge exponents Kρ and spin expo-
nents Kσ for different electron-phonon couplings. N is the
number of lattice sites.

From our Monte Carlo data, we can conclude that sin-
glet pairing is not the dominant instability for any range
of electron-phonon coupling (although, strictly speaking,
numerical data can hardly provide a conclusive answer
for gep → 0+). This provides a reasonably convincing an-
swer to Question (II). The most prominent open question
is whether the long-range CDW ordering or equivalently
the charge gap can be destroyed by the quantum fluctua-
tions from the dynamical phonons as the electron-phonon
coupling is decreased below a certain value.

V. DISCUSSION

Perturbative renormalization group approaches have
consistently shown that the charge part is gapped and
thus the CDW is long-range, at least for the cases
where the phonon energy is not larger than the Fermi
energy.7,9,37,44,46,50 This is ultimately related to the fact
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that the continuous spin rotation symmetry is broken by
any finite phonon frequency which leads to a relevant
Umklapp scattering. This result already appears in the
perturbative renormalization group approaches within a
second-order perturbation approximation. For a metallic
phase to be obtained in a perturbative renormalization
group approach for the Holstein model, in particular for
degenerate CDW and SS phase to be obtained, the sum-
mation of all the higher order terms in the perturbation
series would have to cancel exactly the second order con-
tribution to restore the spin rotation symmetry. This is
an unlikely scenario, and there is no convincing argument
for why this should happen.
On the other hand, to determine precisely the na-

ture of the ground state from numerical calculations
for very weak couplings is challenging, as the charge
gap is exponentially small with respect to the electron-
phonon coupling, even within the mean field approxima-
tion (∆ρ ∼ exp(−1/g2ep)). Quantum fluctuations from
the dynamical phonons will further suppress it, espe-
cially at large phonon frequency.4,7,8 Nonetheless, recent
density matrix renormalization group studies did argue
for the metallic phase, and further claimed that there
are two types of metallic phases in both Holstein and
Holstein-Hubbard model.21,22 One of the metallic phases
is gapless in both the spin and charge sectors, which nor-
mally implies that either triplet superconducting pairing
or spin density wave ordering is the dominant power-law
decaying ordering39, even though spin fluctuations are
completely absent in the Holstein model. More elabo-
rate calculations using Monte Carlo algorithms which can
directly extract the pairing correlations for much larger
system sizes may provide further insight.57

Although we cannot rule out the possibility of a metal-
lic phase from this study, it is quite clear that the Holstein
model in one dimension does not support dominant su-
perconducting correlations for the half-filled case. This is
due to the relevant Umklapp scattering from the perspec-
tive of the perturbative renormalization group,6,7,37,50

which is supposed to be reliable from weak to interme-
diate coupling. In general, breaking the particle-hole
symmetry alone,20 by, for example, including non-linear
terms for the phonon, is probably not sufficient to in-
duce dominant superconducting correlation.58 The cru-
cial point is to weaken the contribution from the particle-
hole channel by removing the nesting condition. Theo-
retically, this can be achieved by introducing long-range
hopping terms or doping away from the half-filling.20,33,59

VI. CONCLUSION

In this paper we have examined the nature and ap-
plicability of using the LL relations to determine the
possible existence and the nature of a proposed metallic
ground state of the one-dimensional half-filled Holstein
model. We conclude by reiterating our answers to the
three questions posed in our introduction. (I) The LL

scaling relation αCDWαSS = 1 is valid only in the limit
of infinite-size systems; for finite-size systems there are
corrections that lead to Kρ > 1. (II) For a wide range of
electron-phonon coupling, the dominant correlation for
finite-size systems in the Holstein model is the CDW.
(III) Although the CDW seems to be always the domi-
nant correlation, without a direct study of the gap–which
is expected to be exponentially small with respect to the
electron-phonon coupling and thus very challenging to
study numerically–we cannot rule out the possibility of a
charge gapless “metallic” phase for weak electron-phonon
coupling.
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