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Motivated by recent Fermi surface and transport measurements on LaNiO3, we study the Mott
Metal-Insulator transitions of perovskite nickelates, with the chemical formula RNiO3, where R is a
rare-earth ion. We introduce and study a minimal two-band model, which takes into account only
the eg bands. In the weak to intermediate correlation limit, a Hartree-Fock analysis predicts charge
and spin order consistent with experiments on R=Pr, Nd, driven by Fermi surface nesting. It also
produces an interesting semi-metallic electronic state in the model when an ideal cubic structure
is assumed. We also study the model in the strong interaction limit, and find that the charge and
magnetic order observed in experiment exist only in the presence of very large Hund’s coupling,
suggesting that additional physics is required to explain the properties of the more insulating nick-
elates, R=Eu,Lu,Y. Next, we extend our analysis to slabs of finite thickness. In ultra-thin slabs,
quantum confinement effects substantially change the nesting properties and the magnetic ordering
of the bulk, driving the material to exhibit highly anisotropic transport properties. However, pure
confinement alone does not significantly enhance insulating behavior. Based on these results, we
discuss the importance of various physical effects, and propose some experiments.

PACS numbers:

I. INTRODUCTION

The Mott Metal-Insulator Transition (MIT) is a cen-
tral subject in the physics of correlated electron phenom-
ena and transition metal oxides.1 The perovskite nicke-
lates, RNiO3, where R is a rare earth atom, constitute
one of the canonical families of materials exhibiting such
an MIT. One of the most interesting features of the nick-
elates is the charge and spin ordering in the insulating
state, which is relatively complex yet in the ground state
is robust across the entire family.2–7 The explanation of
this ordering is still in many ways controversial. While
the MIT in bulk nickelates is an old subject, the topic
has been reinvigorated recently by attempts to grow thin
film heterostructures and observe unique quantum con-
finement effects.8–17 In this paper, we revisit the problem
of the MIT and ordering in the nickelates, both in bulk
and in heterostructures, from a very simple theoretical
viewpoint.

We begin by summarizing some salient features of the
nickelates. First, as the rare-earth ionic radius decreases,
the MIT temperature increases. Starting from R=La
which is metallic at all temperature, R=Pr, Nd have fi-
nite MIT temperatures TMIT = 120K, 180K respectively
(R=Eu has the highest MIT temperature TMIT = 480K)
and finally R=Lu is insulating at all temperatures. This
trend is understood due to the increasing distortions in-
troduced in the smaller rare earth materials, which in-
crease the Ni-O-Ni bond angle and hence reduce the
bandwidth. In the materials R=La, Pr, Nd, the elec-
trons can therefore be understood as more itinerant and
bandlike, while they are increasingly “Mottlike” for the
smaller rare earths.

Second, at low temperature, all the nickelates display a
magnetic ordering pattern with an “up-up-down-down”
spin configuration which quadruples the unit cell rela-
tive to the ideal cubic structure.2–7 This pattern coex-
ists with a “rock salt” type charge order – what is ac-
tually observed is expansion or contraction of the oxy-
gen octahedra – which alternates between cubic sites.
Such charge order must indeed always be present for this
magnetic state, on symmetry grounds, and can there-
fore be considered to this extent as a secondary order
parameter.18 Interestingly, for the more metallic nicke-
lates both charge and spin order appear simultaneously,
consistent with this view, while for the more insulating
nickelates, R=Eu, Ho, the charge ordering occurs in-
dependently in an intermediate temperature insulating
phase without magnetism.6,7,19

A variety of microscopic physical mechanisms have
been proposed for the nickelates. A näıve view of the
material would be to consider the nickel d electrons only,
occupying the nominal Ni3+ valence state which would
place one electron in the eg doublet, which is degenerate
with cubic symmetry. Early studies attributed the com-
plex spin pattern to orbital ordering, perhaps induced by
Jahn-Teller or orthorhombic distortions that split the eg
degeneracy. However, no Jahn-Teller distortion was ob-
served, and it was later suggested that orbital degeneracy
is removed by a separation of charge into Ni2+ and Ni4+

states (an extreme view of the charge order), which have
no orbital degeneracy.20 This was attributed to strong
Hund’s rule exchange on the nickel ion,21 but phonons
may also be involved. However, the observed and ro-
bust magnetic ordering is not so natural in this picture.
Another question mark is raised by spectroscopic mea-
surements, which seem to observe a significant of Ni2+
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occupation, suggesting that a model with holes on the
oxygens may be more appropriate.22 In this paper, we
reconsider the mechanisms for spin and charge ordering
in the nickelates, and specifically highlight the distinc-
tions between an itinerant and localized picture of the
electrons. Our main conclusion is that, at least for the
R=La, Pr, Nd materials where the MIT transition tem-
perature is low or zero, and in which a broad metallic
regime is observed, the itinerant picture is more appro-
priate. We summarize the main content of the paper
below.

The contrasts between the aforementioned models are
really sharp only deep in the Mott limit, in which or-
bital degeneracy, ionic charge, and Hund’s rule versus
superexchange are clearly defined and distinct. In an
itinerant picture, the precise atomic content of the bands
is not in itself important, but rather the physics should be
constituted from a model of the dispersion of the states
near the Fermi energy and the interactions amongst these
same states. In this view, the observed ordering may be
considered as spin and charge density waves (SDWs and
CDWs), and are tied to the Fermi surface structure. Re-
cent soft X-ray photoemission23 indeed observed large
flat regions of Fermi surface in LaNiO3, which appear fa-
vorable for a nesting-based spin density wave instability.

Specifically, in Sec. II we introduce a minimal two-
band model for the electronic states near the Fermi en-
ergy in the nickelates. While it is easiest to motivate
such a model from the näıve view of Ni3+ valence states
– which is questionable, as noted above – it can be
considered just as the simplest phenomenological tight
binding Hamiltonian which can produce electronic bands
with the appropriate symmetry, in agreement with LDA
calculations24. Within this model, the crucial parame-
ter controlling the shape of the bands is the ratio of the
second neighbor to first-neighbor d-d hopping. With a
small and reasonable ratio, the large closed Fermi sur-
face observed in experiments and LDA calculations is
reproduced.23,24 In addition, the same fermiology reason-
ably explains the resistivity, Hall effect and thermopower
measurements on LaNiO3

10, as well as the main features
of the optical conductivity below 2eV.11 We study the
effect of interactions in this model by a simple random
phase approximation (RPA) criterion for the spin density
wave instability, and by more detailed Hartree-Fock cal-
culations, in Sec. III. These mean-field type approaches
are, we believe, reasonably appropriate for the itinerant
limit. Interestingly, we find that the same hopping ra-
tio which reproduces the experimental Fermi surface also
turns achieves nearly optimal nesting, which further sup-
ports the itinerant view. The Hartree-Fock calculations
then predict the phase diagram as a function of spin-
independent and spin-dependent interactions, which we
include microscopically by Hubbard U and Hund’s rule
JH couplings in the tight-binding model.

We find that the Hartree-Fock calculations produce
two possible explanations for the observed spin and
charge ordering in the more itinerant nickelates. The-

oretically, these two scenarios can be best understood by
considering a hypothetical ideal cubic sample (the real
materials undergoing MITs are orthorhombic even in the
metallic state). In such a sample, we obtain two distinct
insulating ground states, characterized by “site centered”
and “bond centered” SDWs. If it occurred within an
otherwise cubic sample, the bond centered SDW would
have equal magnitude of moments on all sites, and would
not induce charge ordering. In the site centered SDW,
charge ordering is present, and there would be a vanishing
moment on one rock salt sublattice. In real orthorhom-
bic samples, the bond centered SDW will be driven off-
center, and charge order is induced. The latter off-center
SDW appears most consistent with experiment. It is also
the most favorable SDW state in the Hartree-Fock calcu-
lations, and dominates in the regime of relatively small
JH coupling.

For completeness, in Sec. IV we study the two-band
model in the strong coupling limit, in which U and/or
JH are much larger than the bandwidth. In this limit,
we find that an insulating state with charge order con-
sistent with experiment can be obtained, but only for
very large Hund’s exchange, JH/U > 4. The magnetic
order is found to be either ferromagnetic or of the site
centered SDW type. While the latter is quite close to
what is observed in experiment, it does not appear fully
consistent, and moreover the requirement of such large
JH to stabilize a charge ordered state seems to reaffirm
the unphysical nature of this limit.

After this detour to strong coupling, we return to
the reasonably successful model and Hartree-Fock ap-
proach, and apply it to finite thickness slabs in Sec. V.
This provides a minimal and highly idealized model for
a nickelate film. We find that quantum confinement
leads to substantial changes of the nesting properties of
ultra-thin slabs. The predicted consequences are modi-
fied magnetic ordering compared to bulk and and highly
anisotropic transport properties. One result we do not
find from this calculation is a substantial enhancement
of the Mott insulating state in films of just a few mono-
layers, a phenomena for which there is gathering ex-
perimental evidence.10,12–14,25 We take this as evidence
that the putative Mott insulating state in ultrathin LNO
films is driven not only by confinement but by additional
interface-sensitive effects.

Finally, we conclude in Sec. VI with a discussion of
experiments, models, and some open issues. In particular
we discuss the role of oxygen 2p orbitals, and a possible
physical mechanism behind the insulating state. We also
describe some experimental probes of the Mott transition
which may help to distinguish different mechanisms.

II. TWO-BAND MODEL AND NESTING
PROPERTIES

The simplest tight-binding model for the nickelates is
constructed based on the näıve Ni3+ valence. In this ionic
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FIG. 1: Fermi surfaces for the tight-binding model. In (a) and
(b), we show the conduction and valence band Fermi surfaces,
respectively, for t′/t = 0. For larger t′/t, the conduction band
Fermi surfaces become large and hole-like, as shown in (c) and
(d) for t′/t = 0.15. The approximate nesting in the latter case
is indicated schematically in (d).

configuration, the only partially occupied orbitals are the
two members of the eg doublet, containing one electron.
We consider the hopping through the neighboring oxygen
p states (σ-bonding) as dominant, and treat it as virtual.
This leads to strongly directional hopping, described as

Htb = −
∑
ij

tabij c
†
iaσcjbσ (1)

where i, j are site indices, a, b = 1, 2 are orbital indices
for 2z2 − x2 − y2 and x2 − y2 respectively and σ =↑, ↓
is the spin index. Comparison with LDA band calcula-
tion and with the experimentally measured Fermi sur-
face indicates that the nearest-neighbor hopping t and
the next-nearest-neighbor hopping t′ with σ-type bond-
ing is the most dominant. In detail, tabi,i±µ̂ = tφaµφ

b
µ and

ti,i±µ̂±ν̂ = t′(φaµφ
b
ν + φbµφ

a
ν) where φx = (− 1

2 ,
√

3
2 ), φy =

(− 1
2 ,−

√
3

2 ), φz = (1, 0) are the orbital wavefunctions for

the 2x2−y2−z2, 2y2−x2−z2 and 2z2−x2−y2 σ-bonding
orbitals along the three axes. We estimated t′/t ≈ 0.05
by fitting our tight-binding model with LDA band cal-
culation, while the best fits to experimentally measured
Fermi surface gives t′/t ≈ 0.15.23,24

The range 0.05 ≤ t′/t ≤ 0.2 reasonably explains
the observation of an hole-like Hall coefficient but an
electron-like thermopower in LaNiO3.10,26 This appar-
ently contradictory behavior of the Hall conductivity and
thermopower arises from the mixed electron and hole
character on the eg Fermi surface. The model also pre-
dicts inter-band optical spectral weight in reasonable cor-
respondence with experiment at low energy (less than
2eV).11

We now examine the Fermi surface in more detail in
search of nesting tendencies. Fig.1 shows representative
Fermi surfaces obtained from the tight-binding model as
a function of the ratio t′/t. With increasing t′/t from 0 to
0.15, the topology of the large Fermi surface is changing
as seen in Fig.1(a), (c) and (d). In the absence of next-
nearest-neighbor hopping t′/t = 0, the conduction band

Fermi surface has an open topology as seen in Fig.1 (a).
With increasing t′/t, this Fermi surface becomes closed,

H000L H100L H110L H111L H000L H101L
0.0

0.2

0.4

0.6

0.8

k@ΠD

Χ
0H

kL

t'�t=0.15
t'�t=0.1
t'�t=0.05

FIG. 2: Zero frequency spin susceptibility for the tight-
binding Hamiltonian for t′/t = 0.05, 0.1, 0.15, as a function
of momentum k in the cubic Brillouin zone. Note that for the
best nested situation, t′/t = 0.15, the susceptibility is sharply
peaked close to the wavevector 2π( 1

4
, 1
4
, 1
4
).

comprising a large “pocket” centered at the zone corner.
In the intermediate range (especially 0.1 ≤ t′/t ≤ 0.2),
the pocket resembles a cube, as seen in Fig.1(c) and (d)
((d) shows both valence band and conduction band Fermi
surfaces). Contrary to the conduction band Fermi sur-
face, the valence band Fermi surface retains its spheri-
cal topology for all t′/t ( see Fig.1(b)). The experimen-
tal Fermi surface of LaNiO3 observed by Eguchi at al
strongly resembles Fig.1(d).23

The presence of large flat regions leads to nesting, and
a tendency for CDW and/or SDW instabilities.27 A sim-
ple understanding of the effect of nesting is obtained from
the Random Phase Approximation (RPA), in which the
effect of interactions on the spin susceptibility is approx-
imated by

χ(ω,k) =
χ0(ω,k)

1− Uχ0(ω,k)
, (2)

where χ0(ω,k) is the non-interacting spin susceptibil-
ity, and we took for simplicity a spin and momentum-
independent interaction U . An instability is signaled by a
divergence of χ(0,k), which occurs on increasing U when
the denominator in Eq. (2) vanishes. This occurs for the
k which maximizes χ0(k) ≡ χ0(0,k), which determines
the wavevector of the spin ordering. In the case of perfect
nesting, Eq = Eq+k for every q on Fermi surface with the
nesting vector k, and the non-interacting susceptibility is
itself divergent at this nesting wavevector, indicating an
instability for arbitrarily small U . Although this is not
true in general due to imperfect nesting, the flatness of
the Fermi surface greatly strengths the tendency to in-
stability.

To check this directly, we calculate the zero frequency
spin susceptibility, which in general in the Matsubara
formulation is given by
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χ0(iωn,k) = 〈SzkSz−k〉 (3)

=
1

2

∫
d3q

(2π)3

1

β

∑
Ωn

Tr[G0(iΩn,q)G0(i(Ωn + ωn),q + k)], (4)

where the free electron Green’s function is defined as
G0(iωn, q) = 〈c†qcq〉 = (iωn − Eq)

−1. More details
are explained in Appendix.A. Fig.2 shows the calcu-
lated zero frequency spin susceptibility χ0(k) as a func-
tion of k for different ratios of t′/t. As expected, the
spin susceptibility is sharply peaked at a particular cer-
tain wave vector in the physical range of t′/t. Specif-
ically, χ0(k) for t′/t = 0.15 shows the highest peak at
k = Qn = 2π( 1

4 ,
1
4 ,

1
4 ) which defines the nesting vector.

Note that this is precisely the magnetic ordering wavevec-
tor (in the cubic convention) observed in the insulating
low temperature phase of the nickelates. Estimating the
instabilty from Eq. (2), we obtain Uc ≈ 1/χ0(Qn) ≈ 2
(see Fig.2).

III. HARTREE-FOCK THEORY

A. Restricted Hartree-Fock Method

Having established the nesting wavevector, we proceed
to a (restricted) Hartree-Fock treatment of the ordering
and MIT. We include interactions in the two-band model
via an on-site Coulomb term U and Hund’s coupling JH ,
defined from H = Htb +Hint,

Hint = U
∑
i

n2
i − JH

∑
i

S2
i , (5)

where ni =
∑
aα niaα and Si =

∑
aαβ c

†
iaα

σαβ
2 ciaβ . As

discussed earlier, what is important here, because of
the nesting physics, is the interaction between states
near the Fermi surface. As such, the U and JH terms
may be thought of as simply a convenient parameteriza-
tion of the spin-independent and spin-dependent parts of
these interactions, rather than literally in terms of atomic
Coulomb and Hund’s rule terms.

To treat the problem in Hartree-Fock, we define a vari-
ational wavefunction as the ground state of a fiducial
mean-field Hamiltonian, which has the form of a non-
interacting two-band hopping model plus linear “poten-
tials” arising from coupling to SDW and CDW order
parameters. Experimental results predominantly favor
collinear magnetic ordering, of the form

〈Si〉 ∝ hi = ẑRe[ψeiQn·ri ] (6)

with complex variable ψ ≡ |ψ|eiθ. Fig.3 shows different
spin configurations which depend on the phase of θ. For
instance, θ = 0 corresponds to “site-centered” spin or-
dering in which the spin pattern is “up-zero-down-zero”

(a) (b) (c)

FIG. 3: Spin configurations depending on the phase of ψ,
θ, along x̂ axis. (a) shows “site-centered” spin ordering for
θ = 0, (b) for intermediate θ = π/8 and (c) is “bond-centered”
ordering for θ = π/4

moving along a cubic axis, while θ = π/4 gives “bond-
centered” ordering, and an “up-up-down-down” pattern.
In the intermediate regime 0 < θ < π/4, the order is
“off-center” as shown in Fig.3(b).

As already discussed above and in Ref.18, a CDW
order parameter will be induced with Qcdw = 2Qn =
π(1, 1, 1) as observed in experiment. This charge ordering
is commonly known as “rock-salt” ordering and implies
the electron density at site i is represented as

〈ni〉 ∝ ρi = (−1)xi+yi+ziΦ, (7)

where Φ is an Ising-type order parameter for the charge
ordering.

The full mean-field Hamiltonian from which the
Hartree-Fock variational ground state is constructed then
takes the form

Hvar = H̃tb +Hdw, (8)

Hdw = −
∑
i

hi · Si −
∑
i

ρini. (9)

The local exchange field hi and the charge ordering ρi
couple to the spin operator Si and the electron number
operator ni respectively. Note that we allow additional
freedom in the variational state by letting the hopping
parameters renormalize. That is

H̃tb = Htb[t→ t̃, t′ → t̃′]. (10)

The restricted Hartree Fock calculation proceeds by
finding the ground state of Hvar:

Hvar|Ψ0〉 = E0|Ψ0〉, (11)

with the constraint of quarter-filling, i.e. one electron
per site,

∑
i ni = N , where N is the number of sites.

The Hartree-Fock ground state |Ψ0〉 is then a function
of four dimensionless parameters: t̃′/t̃, |ψ|/t̃,Φ/t̃ and θ.
For each set of parameters, we calculate the variational
energy

EHF = 〈Ψ0|H|Ψ0〉, (12)
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which is then minimized over the dimensionless parame-
ters, for fixed physical parameters t, t′, U and JH .

To find |Ψ0〉 in practice, we work in the reduce Bril-
louin zone (BZ) determined by the four site magnetic
unit cell. We thereby end up with instead of two bands
8 magnetic ones, constructed from the different pieces of
the original BZ folded into the magnetic one,

cnaα(k) = caα(k + nQsdw), (13)

with n = 0, 1, 2, 3 (for four magnetic sublattices), where
a is for two eg orbitals and α is for spin ↑↓. In this basis,

H̃tb =

′∑
k

∑
n

H̃ab(k + nQsdw)c†naα(k)cnbα(k) (14)

The prime on k sum means the sum over the reduced
BZ. In the same way, the density wave Hamiltonian in k
space is represented as,

Hdw =

′∑
k

∑
n

αψ

4
c†n+1aα(k)cnaα(k) + h.c.

+Φc†n+2aα(k)cnaα(k) (15)

We then find the single-particle eigenstates by diagonal-
izing the 8 × 8 matrix of the variational Hamiltonian
Eq. (9), and construct |Ψ0〉 by filling the states up to
the Fermi energy, determined by the requirement of 1/4
filling. It is then straightforward to express EHF in terms
of the single-particle states and occupation numbers, and
perform the minimization procedure (see Appendix.B for
more details).

B. Hartree-Fock Phase Diagram

1. Two SDW states

The resulting Hartree-Fock phase diagram for a typical
situation with t′/t=0.15 is shown in Fig. 4. We observe a
metallic regime at small U and JH , and two main ordered
phases with stronger interactions. For large JH , site-
centered SDW ordering with θ = 0 occurs, concurrent
with strong charge order, generating an insulating state.
This is natural because the large JH favors pairing of
electrons into spin S = 1 moments, requiring neighboring
empty sites. More mathematically, such Hartree-Fock
states minimize the Hund’s term. For large U , the bond-
centered SDW with θ = π/4 occurs instead. This is
again natural because the U term prefers uniform charge
density, and with θ = π/4 in the cubic system (which we
discuss here) no CDW order occurs.

2. semi-metallic B-SDW

Somewhat surprisingly, the bond-centered SDW state
remains semi-metallic even at relatively large U within

0.5 1.51 2
U/t

J/
t

M

5.5

4.5

3.5

2.5

1.5

0.5

0.0

S-SDW

B-SDW

FIG. 4: MIT bulk phase diagram for the model with cubic
symmetry as a function of U/t and JH/t, with t′/t = 0.15.
Here U is the on-site Coulomb interaction, JH is the Hund’s
coupling and t is the nearest-neighbor hopping magnitude.
The main phases which appear are a paramagnetic metal-
lic state (M), metallic SDW (wavy region close to M),
insulating site-centered SDW (S-SDW), and semi-metallic
bond-centered SDW (B-SDW). In between the S-SDW and
B-SDW state, one observes an off-center SDW phase with
0 < θ < π/4 (shaded region). The black colored shapes show
the points for which the optical conductivity is plotted in
Sec.VI

the Hartree-Fock approximation. Indeed, examination
shows that the density of states is almost linearly van-
ishing approaching the Fermi energy in this region, with
a small non-zero value at EF , which decreases with in-
creasing U . This unusual behavior arises from the specific
“up-up-down-down” magnetic ordering in this phase. To
understand it, recall that the cubic lattice, viewed from
the [111] direction, forms stacks of triangular lattice lay-
ers. In the limit of strong bond-centered ordering, the
spins on each triangular plane are fully polarized. More-
over, electrons of one spin polarization are confined to a
pair of parallel [111] planes, which together forms a hon-
eycomb lattice when connected by the dominant nearest-
neighbor hopping t. Thus in the limit of large U/t in the
bond-centered SDW state, the appropriate tight-binding
model is that of doubly degenerate eg orbitals on honey-
comb lattice.

H7 = −
∑
ij

tabij c
†
iacjb (16)

This model has four orbitals per unit cell due to the dou-
bly degenerate eg orbitals and the bipartite honeycomb
lattice. Fig.5(a),(b),(d) and (e) shows the dispersion
and the DOS of this tight-binding model for the cases
t′/t = 0 and 0.15. Without second-nearest-neighbor
hopping t′/t = 0, the result contains two bands which
are identical to those of the canonical nearest-neighbor
tight-binding model for graphene, possessing two Dirac
cones with linear dispersion at Fermi level. The similar-
ity with graphene has led to the suggestion that such sys-
tems might be used to engineer a topological insulator.28
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With increasing t′/t, the DOS saturates at a small non-
zero value approaching the Fermi level. This is because
finite t′/t introduces both second-nearest-neighbor hop-
ping and, more importantly, coupling between the honey-
comb bilayers. The latter expands the Dirac points into
small electron and hole pockets, in a similar manner as
inter-layer coupling does in graphite.

3. effects of orthorhombicity

As discussed in Ref.18, the bond-centered ordering in
the large U region is actually unstable to orthorhom-
bicity (GdFeO3 distortion) , which is present in all the
nickelates save LaNiO3. This is expected on symmetry
grounds to drive the SDW off-center. The off-centering in
turn induces charge order. Thus at the symmetry level,
when orthorhombicity is taken into account, the large U
region is completely consistent with experiment.

What of the metallicity in this region? In the
graphene-like honeycomb bilayer, the Dirac point de-
generacy is protected, as it is in graphene, by inversion
symmetry. Inversion is indeed preserved by the bond-
centered SDW in the ideal cubic system. It is, however,
violated when both the SDW and orthorhombic distor-
tion are present. Hence, we expect that orthorhombicity
not only affects the centering of the SDW, it also tends to
open a gap in the electronic density of states, converting
the semi-metal to a true insulator.

We now study this microscopically. A leading effect of
the orthorhombic distortion is expected to be a crystal
field splitting of the eg orbitals at each Ni site. Therefore,
we add the on-site orbital splitting term

Hortho =
∑
i

Di · c†iaτabcib (17)

Here we have suppressed the (diagonal) spin indices, and
introduced Pauli matrices τ in the orbital space. Us-
ing the symmetries of the Pbnm space group of the or-

thorhombic structure, we find (see Appendix.C) that the
“orbital fields” Di are all expressible in terms of a single
vector D :

Di = ((−1)xi+yiDx, (−1)xi+yiDy, Dz) (18)

For simplicity, we consider this term in the effective hon-
eycomb lattice model, Eq.16, relevant for the large U
case. Fig.5 shows how the the DOS changes in the pres-
ence of an orthorhombic distortion. A gap indeed opens
for sufficiently large D, as plotted in Fig. 6.

4. Limitations of the restricted HF theory

Because we consider a restricted Hartree-Fock ansatz,
some lower energy states that do not fit this ansatz
may be missed in Fig.4. For example, near the onset
of SDW order, at relatively weak interactions, there is
the possibility of an incommensurate SDW. This may
be expected since the best nesting vector determined by
the maximum of the susceptibility is not exactly at the
commensurate value, but rather at Q ≈ 0.4π(111) (see
Fig.2). Generally, commensurate states are preferred
at strong coupling, and if incommensurate phases ex-
ist, they would be expected to change to the commen-
surate ones with increasing interaction strength, via a
commensurate-incommensurate transition.29

We have also neglected the possibility of spontaneous
orbital ordering, which could occur in the cubic model at
large U . Indeed, orbital degeneracy is crucial to the semi-
metallicity found in the B-CDW phase, as we have seen
above via the introduction of orthorhombicity. Sponta-
neous orbital splittings (ordering) provide a mechanism
for the cubic model to achieve a truly insulating state,
which it must at sufficiently large U . However, we ar-
gue that the absence of any observed orbital ordering or
Jahn-Teller distortion is evidence that this physics is not
relevant for the nickelates.

IV. STRONG COUPLING LIMIT

The Hartree-Fock approach of the previous section is
reasonable for weak to intermediate strength interac-
tions, which we believe is most relevant for the more
itinerant nickelates with R=Pr,Nd. For completeness, in
this section we study the complementary limit of strong
interactions, U/t, JH/t � 1. Here the two-band model
is suspect, so the connection to experiment is less clear.
However, we can at least qualitatively attempt to address
the question of the interplay of charge and spin order in
the strong coupling regime. Specifically, note that in the
more insulating nickelates, with R=Eu,Ho,30 charge or-
dering appears first upon lowering temperature from the

paramagnetic metallic state, with magnetism occurring
only at lower temperature. Thus it seems that in these
materials there is a separation of scales, with the primary
mechanism for the MIT being charge ordering, and mag-
netism being secondary. In this section, we will see that
this is indeed the case in one regime of the strong cou-
pling limit of the two band model. The specific param-
eters of this region do not, however, seem very physical,
supporting the idea that in the more insulating nickelates
a description beyond the two band model is needed.

The strong coupling limit may be considered an ex-
pansion in the hopping t, t′ about the limit t = t′ = 0.
In the extreme limit, the behavior is determined entirely
by the “atomic” Hamiltonian Hint in Eq. (5), which can
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FIG. 5: Dispersion (panels (a),(b) and (c)) and density of states (DOS, panels (d),(e),(f)) for the eg tight-binding model on
honeycomb lattice. In (a) and (d), t = 1 and t′ = 0, we observe Dirac points with clear linear dispersion and corresponding
linear DOS. The Dirac cone is stable to small t′ = 0.15 as shown in (b) and (e). In (c) and (f), an orbital splitting induced by
the orthorhombic distortion of the lattice is included, with t′ = 0.15 and D = 1.5/

√
3(1, 1, 1). An induced gap is clearly seen.
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FIG. 6: Plot of the single-particle gap ∆ versus the orbital
field |D|, for the honeycomb model with nearest-neighbor t =
1 and t′ = 0.15. Here we have arbitrarily taken the orbital
field of the form D = (D,D,D)/

√
3.

be solved independently at each site, subject to the con-
straint of proper total electron occupation (quarter fill-
ing). There are two regimes, determined by the parame-
ter α = U/JH . For α > 1/4, the atomic ground state is
one with one electron per site. In this regime every site
is equivalent, and has four states available to it, due to
the spin and orbital degeneracy. Further perturbation in
t, t′ will therefore result in a spin-orbital Hamiltonian of
the Kugel-Khomskii type.

The other regime occurs when α < 1/4, and in this case
the electrons prefer to segregate into two sets of sites with
equal numbers in each: doubly occupied sites with total
spin S = 1, and empty sites. The ground state energy
in this regime is E0 = −(1 − 2α)NJH , where N is the
number of sites. Here there are two sorts of degeneracies.
First, for t = t′ = 0 the location of the paired sites is un-
determined, so there is a degeneracy of N !/[(N/2)!]2 as-
sociated with the different possible location of the pairs.
In addition, for each of the paired sites, there are 3 spin
states available.

In the remainder of this section, we will focus on this

latter regime. Physically, we may consider the paired
sites as bosons with spin S = 1. By introducing hop-
ping perturbatively, we may introduce hopping and in-
teractions between the bosons. In the perturbative treat-
ment, we will, in addition to t/U, t/JH � 1, further as-
sume t′/t� 1, which simplifies the algebra considerably.
Below, we argue that the leading effects of hopping, at
O(t2), induce charge ordering of the bosons, reducing the
problem to an effective spin S = 1 model. The spin de-
generacy of the bosons is split only at the next non-trivial
order, O(t4). This qualitatively agrees with the separa-
tion of scales observed between charge and spin order in
the nickelates.

A. O(t2/JH): charge ordering

We first consider the effective Hamiltonian for the sys-
tem at the leading non-vanishing order in perturbation
theory, which is second order in hopping, for the case of
α < 1/4. To formulate the perturbation theory , we treat
the Hund’s and Coulomb part as the unperturbed Hamil-
tonian, H0 = Hint, and the hopping as the perturbation,
H1 = H0. We denote the projection operator onto the
ground state manifold of H0 at quarter filling by P. If
|Ψ〉 is an exact eigenfunction of the system with energy
E, then its projection into the ground state subspace,
|Ψ0〉 = P|Ψ〉 satisfies

[
E0 + PH1

1

1−RQH1
RH1

]
|Ψ0〉 = E|Ψ0〉, (19)

where R = (H0 − E)−1 is the resolvent and Q = 1 − P
. Eq. (19) is an implicit non-linear eigenvalue problem
and we will only evaluate it perturbatively in H1, then it
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becomes

Heff |Ψ0〉 ≡ (E − E0)|Ψ0〉

≈ PH1

3∑
n=0

(−1)n (RQH1)
n |Ψ0〉, (20)

where to this order of accuracy, we can safely approxi-
mate R ≈ (H0 − E0)−1.

The second order term in degenerate perturbation the-
ory corresponds to n = 1 in Eq. (20), in which electrons
make two consecutive virtual hopping transitions. The
terms for three different types of hops can be combined
(see Appendix.D for more details), up to an additive con-
stant, into

H(1−3)
eff =

∑
〈ij〉

[4t2
JH

1

1− 4α
+

2t2

JH

1

5 + 4α

(
~Si · ~Sj − 1

) ]
NiNj . (21)

Eq. (21) gives the effective Hamiltonian at leading or-
der for α < 1/4. To solve it, we note that Ni commutes

with H(1−3)
eff and is thus a good quantum number at ev-

ery site. We then can easily see that the charge ordered
states with Ni = 0, 2 on the two rock salt fcc sublattices

saturate a lower bound on the energy, of H(1−3)
eff = 0.

This follows because, since the eigenvalues of ~Si · ~Sj are
bounded by -2, hence the effective boson-boson repulsion
(the term in the square brackets in Eq. (21)) obeys

Veff =

〈
4t2

JH

1

1− 4α
+

2t2

JH

1

5 + 4α

(
~Si · ~Sj − 1

)〉
> 0.

(22)

Thus, regardless of the specific spin states of the boson
pairs, their nearest-neighbor interaction is always repul-
sive for 0 ≤ α < 1

4 . The lower bound and hence charge
order in the ground state follows.

B. Magnetic interactions

Notably, although the effective interaction Veff ∼
t2/JH determines the charge order in the ground state
(and defines the energy scale separating it from uniform
states), the spin degrees of freedom on the doubly oc-
cupied sites remain undetermined at leading order. The
spin physics is dictated by subdominant terms. Thus
the appearance of charge order at a higher temperature
than magnetism is a feature of this limit of the two-band
model. Let us now consider the magnetic interactions in
more detail.

First we focus on the spin exchange between nearest-
neighbor sites on the fcc sublattice, i.e. second nearest-
neighbor sites on the original cubic lattice. There are
three lowest orders that we will consider: O(t4/J3

H),
O(t2t′/J2

H), O(t′2/JH). Although the effects of the t′

hopping is a relatively small correction to the dominant
t hopping, in the strong J limit, it is not negligible be-
cause it can contribute at second and third order to the
exchange between spins. Formally all these terms are
on an equal footing if we take t′ ∼ t2/JH . We com-
bine the contributions from different orders together (see
Appendix.D for more details). The total spin exchange
between nearest-neighbor sites on the fcc sublattice is

J1 = − t4

J3
H

1

(1− 4α)2

[ 8(5 + 4α)

(1− 4α)(5− 4α)
− 5

5 + 4α
− 1

1− 4α

]
+
t2t′

J2
H

1

1− 4α

[
10

5 + 4α
+

5

1− 4α

]
+
t′2

JH

5

5 + 4α
. (23)

Next we focus on the spin exchange between next
nearest-neighbor sites. Calculation then shows

J2 =
t4

J3
H

1

(1− 4α)2

[
16

5− 4α
+

8

5 + 4α

]
(24)

From the expression of J1 and J2, we obtain that if
both t′ and α are reasonably small, there’s ferromagnetic
interactions between nearest-neighbors and antiferro-
magnetic interactions between second nearest-neighbors
on the fcc lattice. Case (1) for O(t4/J3

H) term is the
dominant term for the ferromagnetic interaction. The
negative sign for that case can be understood as arising
due to the Hund’s rule coupling on the intermediate k
site, which prefers the two transferred virtual electrons

to be in a triplet state. For the J2 exchange, however,
because i, j, k are all along a single cubic axis, only one
orbital can hop. For this reason, in the first hopping
procedure (which is dominant) that contribute to J2 it
is impossible to obtain a triplet intermediate state, since
two electrons in a single orbital must form an antisym-
metric singlet. This explains the antiferromagnetic sign
of this exchange.

Let us see what magnetic structure is expected from
this exchange Hamiltonian. Since the fcc lattice is a Bra-
vais lattice, we can use the Luttinger-Tisza method to
find the classical ground states. We simply Fourier trans-
form the exchange couplings to obtain the energy of spiral
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FIG. 7: Phase diagram of the classical ground state as a
function of two dimensionless parameters α ≡ U/JH and
β ≡ t′JH/t2.

states with wavevector k. One finds

Ek = −6J2 + 4J2

3∑
µ=1

x2
µ + 4J1

∑
µ>ν

xµxν , (25)

where xµ = cos kµ. Since this energy is quadratic in the
xµ, we can consider it as a quadratic form. The eigen-
values of the form are 8(J1 + J2) and 8J2 − 4J1 (the
latter is twofold degenerate). It is therefore positive def-
inite if J2 > Max(−J1, J1/2). When this is satisfied,
the minimum energy states are those with xµ = 0, i.e.
kµ = ±π/2. These are exactly the magnetic states ob-
served experimentally. The phase diagram in Fig.7 shows
the classical magnetic ground state for different values of
α and β ≡ t′JH/t

2. We note that if t′ = 0 (β = 0) and
α = 0, the ground state appears to be ferromagnetic.
When t′(β) is included, the ferromagnetic J1 interaction
is decreased, and the antiferromagnetic state will be sta-
bilized. For the region α < 0.1, the magnetic ground
state is antiferromagnetic when t′ ∼ t2/JH . It is remark-
able that one can obtain in this way the same magnet-
ically ordered state as found from the itinerant nesting
picture.

C. Comparison with weak coupling limit

According to the perturbation theory of the large
Hund’s coupling, charge order first appears at O(t2/JH)
and then magnetic ordering occurs due to perturba-
tion at O(t4/J3

H),O(t′2/JH) and O(t2t′/J3
H) . Since

the magnetic ordering arises from a temperature scale
smaller than the charge ordering phase, this agrees with
the experimentally observed intermediate charge order-
ing phase without magnetism. On the other hand, in the
weak coupling limit, the charge ordering is always slaved
to the primary magnetic ordering.18

V. CONFINEMENT EFFECTS IN THIN FILMS

The success of the Hartree-Fock theory in reasonably
predicting the charge and spin ordering in the more itin-
erant nickelates undergoing a MIT suggests that the ap-
proach may also be profitably applied to films. Recently,
various growth issues have been overcome leading to epi-
taxial films of good quality on several substrates with
layer by layer control. One may expect that the MIT and
related charge and spin ordering can be strongly modi-
fied in thin films, due to both distortions (dependent on
details of the substrate and growth conditions), effects of
changes in chemistry at interfaces, and to quantum con-
finement effects. Because of the difficulty of controlling
the former two effects (which in any case are better stud-
ied by first principles methods), we focus here entirely
on the latter, and consider in this section the simplest
possible model of a finite thickness film. That is, we sim-
ply take the bulk tight-binding Hamiltonian and apply it
to a finite thickness slab consisting of L unit cells in the
confined direction, with effectively “vacuum” outside the
slab, i.e. open boundary conditions. Given the impor-
tance of Fermi surface shape in determining the nesting
properties, we expect that quantum confinement alone
can significantly modify the MIT properties and the or-
dering in the insulating state.

A. Single Layer, L = 1

First of all, we consider the extreme case of a single
NiO2 layer, following the methods used for the bulk.
Here and throughout this section, we will neglect the
symmetry-lowering effects that must be present in such
a two dimensional structure, and in particular any tetrag-
onal orbital splitting which is likely to be the dominant
effect of this type. With this proviso, the Fermi surface
and nesting properties are shown in Fig.9(a). The two di-
mensional Fermi surfaces show large flat regions similar
to the bulk case. The zero frequency spin susceptibil-
ity, χ2d

0 (k), is shown in Fig.9(e) (see Appendix.A). It
is sharply peaked at Q2d

sdw = 2π( 1
4 ,

1
4 ). Repeating the

Hartree-Fock calculations for this case, using this SDW
vector, we obtain the phase diagram in Fig.8(a). The
results are quite similar to the bulk case, except that the
bond-centered SDW is insulating in this case, as the hon-
eycomb lattice structure does not arise for a single square
lattice layer. Somewhat surprisingly, the location of the
MIT (U/t)c ≈ 2 at JH/t = 0 remains almost unchanged
from the bulk case. Näıvely, one would expect a decrease
in (U/t)c in 2d, because the bandwidth is reduce by con-
finement. We attribute the lack of such a decrease to
decreased nesting in the two dimensional case, as can be
seen by comparing Fig.2 and Fig.9: the susceptibility has
a higher peak in bulk than in the single layer.
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FIG. 8: Panel (a) shows the zero temperature phase diagram for a single layer L = 1 with the nesting vector Q2d
sdw = 2π( 1

4
, 1
4
).

As in the bulk case, the paramagnetic metallic phase (M) is stable for weak interactions. The wavy region indicates a metallic
SDW state, and the shaded region indicates an insulating off-center SDW. Panel (b) shows the phase diagram for three layers,
L = 3, with the nesting vector QL=3

sdw = 2π( 1
4
, 0, 0). This nesting vector leads to a metallic B-SDW phase, which persists even

for large U/t. The dark gray region between the S-SDW and B-SDW phases is a metallic off-center SDW.

B. Intermediate thickness films

We now consider the intermediate cases with L ≥ 2
NiO2 layers along the ẑ direction. In this case, the
single-particle states can be taken as standing waves in
the vertical (ẑ) direction, with kz = πl/(L + 1) where
l = 1, 2, · · · , L. One obtains correspondingly 2L sub-
bands (2 arising from the orbital degeneracy), each of
which may have a Fermi surface. The calculated non-
interacting Fermi surface and spin susceptibility for sev-
eral values of L are shown in Fig.9 (see Appendix.A for
more details of the calculation of the spin susceptibility).

From Fig.9(g), we see that the peak of the susceptibil-
ity varies considerably and in a non-monotonic fashion
with L. While the case L = 2 (orange points in Fig.9(f))
is quite similar to the result for the single layer, L = 3, 4
are considerably distinct. For larger L, there is a slower
variation of behavior, and by increasing the thickness
to L = 30 (purple points in Fig.9(f)), the bulk behav-
ior (black line in Fig.9(f)) is almost perfectly recovered.
Thus we expect particularly distinct phase diagrams for
the cases L = 3, 4, and focus on these below.

1. L = 3

For L = 3, one observes comparable peaks in the
susceptibility at two wavevectors: Q = π/2(100) and
Q = π/2(110). The former is quite distinct from the
ordering in the single layer and bulk cases. To decide
amongst the two possibilities, we compared the varia-
tional energy in the Hartree-Fock approximation for the
two choices, and found that, over the full range of U and
J , the total energy is lower for Q = π/2(100). Thus the
model predicts quite distinct ordering in the trilayer case.

The full Hartree-Fock phase diagram, assuming this
wavevector, is shown in Fig.8(b). Details of the calcu-
lations for finite L, which are somewhat complicated by
the many subbands, are given in App.B. Once again both
site-centered and bond-centered SDW states appear, but
the site-centered SDW occurs here only at very large val-
ues of the Hund’s coupling, JH/t & 10, making it prob-
ably entirely unphysical. Another distinction from the
cases discussed previous is that the bond-centered SDW
for L = 3 appears to be fully metallic. This is because the
SDW with wavevector Q = π/2(100) describes stripes of
electrons with all spins parallel in vertical stripes along
the y direction. Thus the electrons are free to hop in
this direction – actually they form “ladders” of two par-
allel spin-aligned chains – and one has a sort of quasi-
one-dimensional metallic state. Instabilities of the one-
dimensional ladders would probably be expected beyond
the Hartree-Fock approximation, and could lead to fur-
ther charge/spin/orbital ordering and insulating behav-
ior, but this is not within the scope of our study.

2. L = 4

One more noticeable feature in the spin susceptibil-
ity plotted Fig.9(f), is the large Q ≈ 0 peak for L = 4
(see open squares). The Q = 0 (uniform) susceptibility
is simply proportional to the density of states, which is
apparently enhanced for this film thickness. The origin
of this enhancement is seen by inspecting separately the
Fermi surfaces associated with individual sub-bands with
discretized kz = πlz/(L + 1), shown in Fig.10. One sees
that the L = 4 case is unique in having three distinct
Fermi surfaces (two hole and one electron) for the lz = 1
sub-band. Since the density of states is proportional to
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FIG. 9: The zero frequency spin susceptibility, χ0(k), for finite thickness slabs of L layers, for the free electron tight-binding
Hamiltonian with t′/t = 0.15. Plot (a) shows the purely two-dimensional single layer case. Here χ0(k) is sharply peaked at
k = Q2d

sdw = π/2(11). Plot (b) shows several cases with varying thickness with 2 ≤ L ≤ 30, compared with the bulk case
L =∞. One sees that large L = 30 (filled circles) agrees well with the bulk susceptibility (black solid line). For smaller L, we
see that the nesting properties change considerably. This is especially pronounced for L = 3 (filled squares), for which χ0(k) is
sharply peaked at k = Q ≈ π/2(100), and for L = 4 (open squares), for which it is peaked at k ≈ 0.

lz=1 lz=3lz=2 lz=4 lz=5
L=5

lz=1 lz=2 lz=3

L=3
lz=1 lz=2 lz=3 lz=4
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FIG. 10: The Fermi surfaces for different subbands in the kx-ky plane with discretized kz = πlz/(L+ 1) for the cases L = 3, 4
and 5. The dotted (solid) lines correspond to conduction (valence) subbands. In the case L = 4, we see two valence subband
Fermi surfaces at kz = 0.2π (lz = 1), which is responsible for an enhancement of the DOS at Fermi energy.

the Fermi surface area, this explains the observed en-
hancement. Some understanding of this is obtained by
inspecting the bulk Fermi surface, Fig.1(d). It contains
a large hole-like surface which has rather flat faces, par-
allel to [001] planes. For the specific case L = 4 and
lz = 1, the discretized kz = 0.2π cuts across this rather

flat when lz = 1. As a result, the flat face, leading to the
multiple two-dimensional sub-band Fermi surfaces. This
enhanced density of states could potentially lead to fer-
romagnetism for this case, but since ferromagnetism is
notoriously over-estimated by the Hartree-Fock approxi-
mation, we do not pursue this further here.

VI. DISCUSSION

In the prior sections, we have studied a minimal two
band model for the perovskite nickelates, with a focus on

the MIT and the spin and charge ordering in the insulat-
ing state.
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A. Do we need the oxygen orbitals?

In the minimal model used in this paper, we have elim-
inated the oxygen orbitals to obtain an effective two or-
bital Hubbard model. Several papers in the literature,
however, claim that the oxygen states are crucial for the
physics of the nickelates. Here we will discuss this issue,
and argue that the importance of explicit inclusion of the
oxygen states depends upon the questions being asked.

In general, in the Fermi liquid paradigm, which applies
to weakly to moderately correlated itinerant systems, the
behavior of the electrons is dictated by the vicinity of
the Fermi surface(s) only, and by the effective interac-
tions amongst these states near the Fermi surface. The
great insight of Landau in developing Fermi liquid the-
ory was that the actual wavefunctions of these “quasi-
particle” states are largely unimportant. Thus when
it applies, any model which properly mimics the band
dispersion near the Fermi surface (and its symmetry),
and which captures sufficiently the interactions amongst
the near-Fermi surface states, serves to correctly model
the electronic behavior. It is well established now that
LaNiO3, the metallic end-member of the RNiO3 series,
has a Fermi surface which is obtained from the inter-
section of just two bands with the Fermi energy. These
bands have eg character, which can be mimicked by the
minimal tight-binding model used in this paper. Pro-
vided a band picture of the important electronic states
near EF is adequate, this basis is sufficient to describe the
nickelates. The extent of the microscopic oxygen versus
nickel character of the states is subsumed into the Bloch
wavefunctions, which do not appear in the band Hamilto-
nian, and to a lesser extent in the effective interactions.
We conclude that for low to intermediate energy prop-
erties for which the two-band description is adequate,
explicit treatment of the oxygen states is not important.

However, one may ask questions – and conduct exper-
iments – for which the oxygen states are obviously essen-
tial. For instance, inelastic x-ray scattering can measure
the relative fraction of Ni2+ and Ni3+ occupation of the
Ni 3d states. Estimates for NdNiO3 is that there is as
much as 40% Ni2+. By neutrality, the Ni2+ can only
arise through the presence of holes on the oxygen states.
This implies the Bloch wavefunction associated with the
the “oxygen bands” and “nickel bands” have in fact con-
siderably mixed character. However, this does not affect
the reliability of the two band model for the states near
the Fermi energy. Indeed, the measurement of the Ni va-
lence state is actually a measure of the occupied states,
and hence is really related to the character of the filled
valence band Bloch wavefunctions, not that of the near-
Fermi surface states. Of course, by orthogonality, if the
nominally oxygen states have mixed character, so too
must the nickel states.

Other high energy questions may be sensitive to the
oxygen character. For instance, let us consider the prop-
erties of an interface. In standard semiconductor sys-
tems, an interface can be understood through band di-

agrams, which include only the energies of the bands,
and not their wavefunctions. Thus when this approach
applies, the oxygen character is not important. In fact,
band diagrams rely upon a semiclassical treatment which
assumes that the electrostatic potential, carrier density,
etc. vary slowly with respect to the lattice spacing. This
in turn is correct in semiconductors due to their small
effective mass and large dielectric constant. There is no
need for this to apply to nickelate interfaces.

In fact, it would be natural to expect a change in the
oxygen character at an interface.31 Consider an interface
with a band insulator such as LaAlO3 (LAO), in which
there are no 3d orbitals near the Fermi energy. By neu-
trality, in LAO the oxygen valence should be “exactly”
(or at least much more so than in the nickelates) O2−.
This implies that the Ni 3d orbitals in the plane adjacent
to the LAO are less able to hybridize with the intervening
oxygens, since these states are “blocked”. One can con-
sider a simple model in which this physics is accounted
for by ascribing an oxygen orbital energy εp′ for the inter-
vening oxygens which is lower (so that here the electrons
are more strongly bound to their oxygen) than the energy
εp for the same orbitals inside the nickelate, i.e. εp′ < εp.
The larger energy separation εd − εp′ > εd − εp for the
interfacial states implies reduces mixing of the nickel and
oxygen states. Thus we expect that the Ni2+ character of
the interfacial nickel ions should be reduced. As already
remarked, this is a high energy property, related to the
occupied states. However, the reduced mixing has im-
plications at low energy as well. It implies reduced level
repulsion between the 3d (specifically the dz2) and 2p
states, so that the partially filled orbitals corresponding
to the near Fermi energy states should be lowered relative
to bulk nickelates near the interface. That is, the con-
duction electrons feel an attraction to the dz2orbitals in
the interfacial NiO2 plane. Note that, although oxygen
physics induces corrections to its Hamiltonian parame-
ters, the two-orbital model remains valid even for the
interface.

This physics may be relevant to recent experiments on
LNO heterostructures. Several experiments have indi-
cated the formation of an insulating state for very thin
LNO films with only a few unit thickness. This appears
at odds with the calculations in Sec. V, which find that
the metal-insulator transition point is largely unchanged
by confinement, even for very thin films. This model,
however, neglects the induced orbital potential at the in-
terface. One would expect this orbital potential to par-
tially polarize the orbitals at the interface in favor of the
dz2 states which conduct poorly in the xy plane. More-
over, the shift of these orbitals renders inter-layer tunnel-
ing non-resonant, which will further reduce the kinetic
energy. Thus it is natural to expect the insulating state
to be enhanced by this effect. In the future, we plan to
investigate this in more detail by including the interfacial
orbital attraction explicitly in the Hartree-Fock calcula-
tion.
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B. Strong versus intermediate correlation

In this paper, we have contrasted the limits of weak to
intermediate correlation (and Hartree-Fock theory) and
strong correlation (the perturbative approach in Sec. IV).
It was argued that the strong coupling limit seems not
very realistic. However, there are indications that some-
thing beyond the weak coupling view is needed, at least
for the more insulating nickelates, with R=Lu,Ho,Y. In
these materials, the charge ordering and insulating tran-
sition occurs above 500K but magnetism only sets in
around 100K. A factor of 5 or more discrepancy between
these two scales is hard to reconcile with a weak-coupling
picture. One type of strong-coupling picture is discussed
by Anisimov et al32, in which the nickel charge state is
regarded as Ni2+, which forms an S = 1 spin, while the
mobile charge is actually in the form of holes on the O
sites. The corresponding model would be a type of under-
screened Kondo lattice. Charge ordering of the type seen
in experiment is certainly possible, and would be viewed
as the formation of collective Kondo singlets between
two holes and a Ni2+ spin on half the lattice sites.33 To
our knowledge, whether this actually occurs for a Kondo
model of this type has not been established theoretically.
This is an interesting problem for future study. A likely
issue with such a Kondo description is that the band
structure appears very different from the bands with eg
character predicted and observed in LaNiO3. Instead,
the itinerant carriers must arise from oxygen bands, and
it is not clear why this should in any way mimic the eg
structure. But perhaps the bands in LuNiO3 etc. are rad-
ically different from those in LaNiO3. If so, this should
be testable experimentally.

Some sort of intermediate coupling picture is also pos-
sible. Indeed, even if the most insulating materials are
at strong coupling, and, as we have suggested, PrNiO3

and NdNiO3 are better thought of in the SDW (weak to
intermediate coupling) limit, then there are compounds
in between. Here presumably a full description with all
the orbital involved and charge fluctuations allowed in
all orbitals is needed, and there is little simplicity to be
found. Probably an approach which combines elements
of ab initio theory and reasonable but ad-hoc treatment
of interaction physics such as DMFT is the best in this
regime.34 In this situation, it will unfortunately probably
be difficult to identify any single mechanism for charge
ordering.

In our opinion, it is likely that one physical effect we
have not so far discussed, the coupling to lattice phonons,
is important. The Kondo singlet formation mentioned
above would obviously benefit from a contraction of the
neighboring oxygens around the Ni2+ spin in question.
Indeed, it is this contraction which is actually observed
experimentally, rather than any real electric charge den-
sity. The same local phonon mode which would couple to
the Kondo singlet would also favor charge ordering in the
intermediate coupling view. It may be that this electron-
phonon interaction gives a reasonable mechanism for the

more insulating nickelates.

C. Experimental signatures

It is desirable to understand how the different scenar-
ios might be distinguished experimentally. We will focus
here primarily on the expected consequences in the itiner-
ant regime, as the primary focus of this work. However,
we briefly discuss expectations for the strong coupling
limits. In the strong coupling pictures, we would pre-
sumably expect the insulating states to have a full gap
to electron and hole quasiparticles. Moreover, local S = 1
moments would be well-formed on half the Ni sites (form-
ing an fcc sublattice), prior to ordering into an antiferro-
magnetic ground state. With these site-center local spins,
it seems difficult to imagine an antiferromagnetic state
with the symmetry of the bond-centered or off-center
SDW, and we would expect a site-centered SDW (an-
tiferromagnetic) order. This particular symmetry could
be distinguished by a careful determination of local mo-
ments at all the nickel sites from neutron or NMR/µSR
measurements.

Turning now to the itinerant regime, we consider the
experimental consequences of the nesting scenario. First
we discuss the thermal phase transition. In this limit,
since the SDW drives the charge order, the two types
of order should set in simultaneously at a single critical
temperature. In Ref.18, it was shown that this transi-
tion is theoretically expected to be first order for several
reasons. These two observations are consistent with ex-
periment.

More detailed comparison can be made with electronic
structure. We discuss in particular the implications of
the nesting scenario for dc transport and optical mea-
surements in the following.

1. Transport anisotropy

Transport is an important probe of the electronic struc-
ture. In the nesting picture, the SDW order is di-
rectly and strongly coupled to the quasiparticles, and
hence should strongly influence the transport. The most
qualitative feature of this coupling is that the SDW or-
der imposes its lower lattice symmetry, and in particu-
lar, spatial anisotropy, upon the quasiparticles. In con-
trast, within the strong coupling view, the charge or-
dering is dominant, and this charge ordering itself is
not anisotropic (it doubles the unit cell but is compat-
ible with cubic symmetry). We therefore expect that,
when the nesting picture is valid, prominent transport
anisotropy should be observed to set in for T < TMIT.

We focus first on the bulk case, for which the SDW
wavevector Qsdw = 2π(1/4, 1/4, 1/4) obviously breaks
cubic symmetry. As discussed in Sec. III B 2, the elec-
tronic structure in the B-SDW phase is describable as
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a set of weakly coupled honeycomb [111] bilayers, lead-
ing (neglecting orthorhombicity) to a semi-metallic state.
Hence we expect the B-SDW ordering to be accompanied
by strong electrical anisotropy, with much larger conduc-
tivity within the [111] plane than normal to it.

We have calculated this conductivity at zero temper-
ature using the Hartree-Fock quasiparticle Hamiltonian.
From the Boltzmann equation within relaxation time ap-
proximation, one has

σµν =
∑
n

e2τ

∫
d3k

8π3
[−f ′(εn)]vn,µ(k)vn,ν(k), (26)

where τ is a constant relaxation time, f is the Fermi dis-
tribution f(ε) = 1/(eβ(ε−µ) + 1) and vn,µ = ∂εn(k)/∂kµ,
where n is a band index. We have a total of 8 bands (2
eg orbitals × 4 magnetic sublattices = 8), and the band
energies and velocities must be found numerically. Using
k · p perturbation theory,35 one has:

vn,µ(k) = 〈ψnk|
∂H(k)

∂kµ
|ψnk〉, (27)

where H(k) is the 8×8 matrix Bloch Hamiltonian. From
the above formulae, we calculated the conductivity σ‖
parallel to the [111] axis and σ⊥ normal to it. The ratio
is plotted in Fig. 11 for the B-SDW state. As expected, a
large anisotropy is observed once a significant magnetic
order develops.
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FIG. 11: Bulk conductivity anisotropy in the B-SDW state, as
a function of the amplitude |ψ| of the SDW order parameter.

Note that the same result would be expected to ob-
tain for a thick film, where the behavior is predominantly
bulk-like. In this case, the measureable quantity is the ef-
fective two-dimensional conductivity tensor for the plane
of the layer, which is usually an [001] plane. By symme-
try, we expect the principle axes of the 2d conductivity
to be the [11] and [1-1] directions, with different conduc-
tivities along each in the SDW state. Note that in prac-
tice this is complicated by the effects of orthorhombicity,
which already should induce transport anisotropy even in
the metallic state. However, we expect that this intrin-
sic anisotropy is probably mild, and that a pronounced
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FIG. 12: Electrical conductivity for L = 3 and bulk with
fixed t̃ = 1, t̃′ = 0.15, θ = π/4 and Φ = 0. The isotropic
conductivity in the bulk case (dotted line), σBulk, decreases
to zero with as a gap in the DOS develops with increasing
SDW order. For the three layer case, L = 3, the conductivity
shows a large anisotropy in the x − y plane once the SDW
develops.

effect due to SDW ordering should be observable below
TMIT.

For thin films, confinement effects may contribute to
or modify the anisotropy. For instance, in the three layer
case, we observed a change in the nesting wavevector to
QL=3 = 2π(1/2, 0, 0). In this state, the anisotropy axes
imposed by the SDW are different. In particular, an“up-
up-down-down” magnetic configuration along the x̂ axis
is stabilized, so that the spin polarized electrons are free
to hop along ŷ direction. Hence, in this case the low and
high conductivity axes are the [10] and [01] axes, respec-
tively. This is shown in Fig.12, in which the magnitude of
SDW, |ψ|, is varied while fixing t̃ = 1, t̃′ = 0.15, θ = π/4
and Φ = 0. Indeed, in this case the anistropic behavior
is even more pronounced, for in the model the “hard”
axis conductivity σxx actually vanishes at T = 0 in the
limit of large SDW gap, while σyy saturates to a constant
for arbitrarily large |ψ|, because the spin polarized elec-
trons are free to hop along ŷ direction. In this case, the
formation of the SDW opens the Fermi surface.

2. Optical conductivity

Optical conductivity is an other important probe of
electronic structure. For LaNiO3, which is metallic at all
temperature, experiment shows a reduced Drude peak
compared to band theory,11 which may be considered
as evidence of moderately strong correlation. However,
apart from this quantitative renormalization of the low
energy Drude part, the theoretical optical conductivity
obtained from the simple two eg band model reproduces
experiment fairly well up to ω ≈ 2eV .11 Applying the
same analysis to the magnetically ordered phases in our
bulk phase diagram, Fig.4, we obtained strikingly differ-
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ent results as a consequence of SDW formation.
The calculations are made using standard linear re-

sponse theory within the Hartree-Fock variational Hamil-
tonian. From the Kubo formula, the real part of optical
conductivity σαβ(Ω,k) is related to the imaginary part
of current-current correlation Παβ(Ω,k):36

σαβ =
i

ω

∫
d3k

(2π)3
Παβ(Ω,k) +

n0e
2

m
δαβ (28)

with wave vector k, frequency Ω, average density n0 and
electron mass m. The current-current correlation func-
tion with imaginary frequency iΩl is defined as

Παβ(iΩl,k) =
2

vol

∑
abcd

jabα (k)jcdβ (k)
1

β

∑
n

Gad(iωn + iΩl,k)Gcb(iωn,k). (29)

At zero temperature, this can be calculated from the spectral representation (see Appendix.E),

Im[Παβ(Ω,k)] =
∑
mm′

φa∗m φ
b
m′φc∗m′φdm

∫
dω

π
Am(ω)Am′(ω + Ω)(nF (ω)− nF (ω + Ω)), (30)

where Am(ω) = γ/[(ω − Em + µN)2 + γ2], with γ a
small scattering rate (imaginary part of the first order
self-energy correction Im[Σ(ωn)] = −iγsgn(ωn)) added
by hand, and φam(k) is the a component of mth eigen-
state. nF (ω) = 1/(eβω + 1) is Fermi distribution.

Fig.13 shows the optical conductivity calculated in this
way for each of the different phases (taken at the spots
marked by symbols in the phase diagram in Fig.4). The
above-mentioned comparison of theory and experiment
for the paramagnetic metallic state is shown in panel
(a), taken from Ref.11. The development of SDW or-
der strongly suppresses the Drude peak, as expected,
which can already be seen in the metallic SDW state
when the density of states at the Fermi energy is still
non-zero (but small), Fig.13 (b). Interestingly, a small
peak appears instead at ω/t ∼ 0.3. This peak arises
from a transfer of spectral weight from low frequency to
above the SDW gap. Panel (c) shows σ(ω) for the B-

SDW state, which has a semi-metallic band structure.
One observes a linear increase of Re[σ(ω)] for small fre-
quency ω, which is similar to the behavior expected from
the Dirac points in graphene, and indeed arises from the
honeycomb [111] bilayer structure of the spin-polarized
regions, as discussed in Sec. III B 2. Here we have plot-
ted the powder-average conductivity, since the full ten-
sor is anisotropic as discussed above. This calculations
has neglected orthorhombicity, which would introduce a
gap at low energy and thereby interrupt at least part of
the linear region. However, a linear increase of σ(ω) at
low frequency was indeed seed in bulk experiments on
NdNiO3 below the transition temperature.37 Finally in
Fig.13(d), we plot the optical conductivity for for large
Hund’s coupling J , in the S-SDW where strong charge
order is present. A large gap opens in the spectrum,
resulting in zero Re[σ(ω)] up to ω/t ≈ 1.

D. Summary

We have presented a theoretical analysis of the metal-
insulator transition in the nickelates from a minimal two-
band model and Hartree-Fock theory, which we argued is
appropriate for the itinerant limit of weak to intermedi-
ate correlation. This picture of the metal-insulator tran-
sition can be tested in various ways, as suggested above,
and appears to us to be the most consistent one for the
materials NdNiO3 and PrNiO3, located close to the zero
temperature MIT phase boundary. For the more insu-
lating nickelates, a different type of theory is required,
involving stronger correlation and possibly an important

role for electron-lattice coupling. Both further theoretical
work in clarifying the mechanism for the MIT transition
in those materials, and experimental work which can test
the itinerant picture (such as measurement of transport
anisotropy), would be very desirable. Finally, we have
shown that quantum confinement alone cannot explain a
Mott insulating in ultrathin LaNiO3 films, and suggested
a physical mechanism by which the observed insulating
state might obtain. It will be interesting to pursue this
question further in the future.
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FIG. 13: The real part of the optical conductivity, σ(ω), for each phase (black star) in the bulk phase diagram (see Fig.4). In
(a), the paramagnetic metallic phase shows a large Drude peak and a small hump (see inset plot). The hump is related to a
region of large DOS for interband transitions (see Ref.11). In (b), the metallic SDW phase has a reduced but non-zero Drude
peak and a small second peak due to the SDW gap. Plot (c) shows the case of the semi-metallic B-SDW phase, for which a
linear increase of σ(ω) for small frequency ω is found, related to the linear dispersion near the Fermi level. It also shows strong
anisotropy between the conductivity σ[111]‖ (along the [111] direction) (solid line) and σ[111]⊥ (perpendicular to [111]) (dashed

line). In plot (d), a large gap is visible in the S-SDW phase.
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Appendix A: Dynamical Spin Susceptibility for Free
Electrons χ0(Ω, k)

In this section, we derive the dynamical spin suscep-
tibility for free electrons both for bulk and finite layers.
In general, dynamical spin susceptibility for Matsubara
frequency iΩn, and wave vector k can be represented as
following
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χ0(iΩn, k) = 〈SzkSz−k〉 (A1)

=
1

N
〈
∑
rr′

SzrS
z
r′e

ik(r−r′)〉 (A2)

=
1

N
〈
∑
rr′

∑
αβ,α′β′

1

4
c†rαcrβc

†
r′α′cr′β′σzαβσ

z
α′β′eik(r−r′)〉 (A3)

=
1

N
〈
∑
{qi}

∑
rr′

∑
αα′

1

4N2
c†q1αcq2αc

†
q3α′cq4α′(−1)α+α′

ei(q1−q2+k)rei(q3−q4−k)r′〉 (A4)

=
1

N
〈
∑
{qi}

∑
αα′

1

4N2
Nδ(q1 − q2 + k)Nδ(q3 − q4 − k)c†q1αcq2αc

†
q3α′cq4α′(−1)α+α′

〉 (A5)

=
1

4N
〈
∑
q1q3

∑
αα′

c†q1αck+q1αc
†
q3α′c−k+q3α′(−1)α+α′

〉 (A6)

=
1

2

∫
d3q

(2π)3

1

β

∑
ωn

Tr[G0(iωn, q)G0(i(ωn + Ωn), q + k)] (A7)

First of all, k(qi) is four dimensional vector which in-
cludes both Matsubara frequency iΩn(iωn) and the wave
vector k(qi) in three spatial dimension. In the same
way, r includes both imaginary time τ and spatial di-
rection r. α, β, α′ and β′ are for spin ↑, ↓ and σ repre-
sents Pauli matrix and Sr =

∑
rαβ c

†
rα

σαβ
2 crβ (with ig-

noring orbital indices for simplicity). Fourier transform
Sk = 1√

N

∑
r Sre

ik·r and c†rα = 1√
N
c†qαe

iq·r, free electron

Green’s function G0(iωn, q) = 〈c†qcq〉 = (iωn − Eq)
−1.

From the last equation of Eq. (A7), we sum all the Mat-
subara frequencies using the following trick

1

β

∑
ωn

1

iωn − x
1

i(ωn + Ωn)− x′
=

−1

iΩn + x− x′
(nF (x)− nF (x′)) (A8)

where Fermion distribution is defined as nF (x) =
1/(eβx+1). For simplicity, we represent doubly degener-
ate eg orbitals tight-binding model using Pauli matrices

σ, Htb(k) = ε0(k)1 + ε(k) · σ. Then finally analytic con-
tinuation leads

χ0(Ω, k) =
1

2

∫
d3q

(2π)3

∑
a,b∈±

−1

Ω + xa(q)− xb(k + q)
(nF (xa(q))− nF (xb(k + q)))

1

2
(1 + ab

ε(q) · ε(k + q)

|ε(q)||ε(k + q)|
) (A9)

where x±(k) = ε0(k)± |ε(k)| − µ.
For finite layers (along ẑ direction), it has discretized

kz = πlz/(Nz + 1) where lz ∈ {1, 2, 3 · · ·Nz} and Nz is
the number of layers.

c†rα =

√
2

N⊥Nz

∑
k

c†kαe
ik⊥r⊥ sin kzrz (A10)

Here, N⊥ is the number of sites on its perpendicular x−y
plane. The spin susceptibility Eq. (A1) is represented
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〈SzkSz−k〉 =
1

N⊥Nz
〈
∑
{q⊥i }

∑
{qzi }

∑
αα′

22

(N⊥Nz)2

(−1)α+α′

4
c†q1αcq2αc

†
q3α′cq4α′ei(q

⊥
1 −q

⊥
2 +k⊥)r⊥ei(q

⊥
3 −q

⊥
4 +k⊥)r′⊥

sin qz1rz sin qz2rz sin qz3r
′
z sin qz4r

′
ze
ikz(rz−r′z)〉 (A11)

=
1

N⊥Nz
〈
∑
{q⊥i }

∑
{qzi }

∑
αα′

22

(N⊥Nz)2

(−1)α+α′

4
c†q1αcq2αc

†
q3α′cq4α′N⊥δ(q

⊥
1 − q⊥2 + k⊥)N⊥δ(q

⊥
3 − q⊥4 − k⊥)

1

24
Nz(

∑
ab∈±

δ(aqz1 + bqz2 + kz))Nz(
∑
ab∈±

δ(aqz3 + bqz4 − kz))〉 (A12)

=
1

N⊥Nz
〈
∑
q⊥1 q

⊥
3

∑
{qzi }

∑
αα′

(−1)αα
′

24
c†
q⊥1 q

z
1α
ck⊥+q⊥1 q

z
2α
c†
q⊥3 q

z
3α

′c−k⊥+q⊥3 q
z
4α

′

(
∑
ab∈±

δ(aqz1 + bqz2 + kz))(
∑
ab∈±

δ(aqz3 + bqz4 − kz))〉 (A13)

=
1

23Nz

∑
qz1q

z
2

∫
d2q⊥
(2π)2

1

β

∑
ωn

Tr[G0(iωn, q⊥, q
z
1)G0(i(ωn + Ωn), (q⊥ + k⊥), qz2)

(δ(qz1 + qz2 + kz) + δ(qz1 + qz2 − kz)− δ(qz1 − qz2 + kz)− δ(qz1 − qz2 − kz))2] (A14)

From Eq. (A11) to A13, we abbreviate Matsubara fre-
quency indices for simple representation. δ functions in
Eq. (A14) can be rewritten δ(qz1 + qz2 + kz) = δ(l1 +
l2 + lz)(mod(2(Nz + 1))) where qzi = πli/(2Nz + 1) and
kz = πlz/(2Nz + 1).

Appendix B: Detailed Hartree-Fock Calculation

Our variational Hamiltonian Eq. (14) can be diagonal-
ized by writing

cnaα(k) =
∑
A

φAαna (k)cAα(k), (B1)

with A = 1 . . . 8 indexes the eigenstates for each k. With
appropriate choice of φ the diagonalized Hamiltonian be-

comes

Hvar =

′∑
k

∑
Aα

εA(k)c†Aα(k)cAα(k). (B2)

Here we have used that εA(k) are independent of α.
This can be seen since the transformation cnaα(k) →
(−1)ncnaα(k) maps α→ −α. Hence

φA−na (k) = (−1)nφA+
na (k), (B3)

and the energies are independent of α. Now we take the
expectation values of each term. Ground state |Ψ0〉 is
nothing but occupying all the quasiparticles states be-
low the Fermi energy. First, we consider the expectation
value of Htb.

〈Htb〉 =

′∑
k

∑
n

∑
ab

∑
A

Hab(k + nQ)
(
φAαna (k)

)∗
φAαnb (k)nF (εA(k)). (B4)
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where nF (ε) is the Fermi function. Next, consider the expectation value of on-site Coulomb interaction HU = U
∑
i n

2
i .

∑
i

n2
i =

∑
i

c†iaαciaαc
†
ibβcibβ

=
1

N

∑
k1k2k3k4

c†aα(k1)caα(k2)c†bβ(k3)cbβ(k4)δk1+k3,k2+k4

=
1

N

′∑
{ki}

∑
{ni}

c†n1aα(k1)cn2aα(k2)c†n3bβ
(k3)cn4bβ

(k4)δk1+k3,k2+k4δn1+n3,n2+n4(mod 4)

=
1

N

′∑
{ki}

∑
{ni}

∑
ABCD

(
φAαn1a(k1)

)∗
φBαn2a(k2)

(
φCβn3b

(k3)
)∗
φDβn4b

(k4)

×c†Aα(k1)cBα(k2)c†Cβ(k3)cDβ(k4)δk1+k3,k2+k4δn1+n3,n2+n4
(mod 4). (B5)

Now we take the expectation value. There are both
Hartree and Fock terms.

〈∑
i

n2
i

〉
=

1

N

′∑
k1,k3

∑
{ni}

∑
A,C

∑
ab

∑
αβ

[ (
φAαn1a(k1)

)∗
φAαn2a(k1)

(
φCβn3b

(k3)
)∗
φCβn4b

(k3)

−
(
φAαn1a(k1)

)∗
φCαn2a(k3)

(
φCαn3b(k3)

)∗
φAαn4b(k1)δαβ

]
nF (εA(k1))nF (εC(k3))δn1+n3,n2+n4(mod 4) (B6)

Using Eq. (B3), Eq. (B6) can be simplified after summing
the spin indices α, β

〈∑
i

n2
i

〉
=

1

N

∑
k1k3

∑
{ni}

∑
AC

∑
ab

[2(1 + (−1)n1+n2)(φA+
n1a(k1))∗φA+

n2a(k1)(φC+
n3b

(k3))∗φC+
n4b

(k3)

−2
(
φA+
n1a(k1)

)∗
φC+
n2a(k3)

(
φC+
n3b

(k3)
)∗
φA+
n4b

(k1)]nF (εA(k1))nF (εC(k3))δn1+n3,n2+n4
(mod 4) (B7)

In the same way, the expectation value of Hund’s cou-
pling is represented by
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〈∑
i

S2
i

〉
=

1

4N

′∑
ki

∑
{ni}

∑
ABCD

[(φAαn1a(k1))∗σαβφ
Bβ
n2a(k2)] · [(φCα

′

n3b (k3))∗σα′β′φDβ
′

n4b
(k4)]nF (εA(k1))nF (εC(k3))

[δABδCDδk1k2δk3k4δαβδα′β′ − δADδBCδk1k4δk2k3δαβ′δβα′ ]δn1+n3,n2+n4
(mod 4)

=
1

4N

′∑
k1k3

∑
{ni}

∑
AC

∑
αβα′β′

[(φAαn1a(k1))∗φAβn2a(k1)(φCα
′

n3b (k3))∗φCβ
′

n4b
(k3)(2δαβα′β′ − δαβδα′β′)

−(φAαn1a(k1))∗φCβn2a(k3)(φCα
′

n3b (k3))∗φAβ
′

n4b
(k1)(2δαβ′δβα′ − δαβα′β′)]

nF (εA(k1))nF (εC(k3))δn1+n3,n2+n4(mod 4)

=
1

4N

′∑
k1k3

∑
{ni}

∑
AC

∑
ab

[2(1− (−1)n1+n2)(φA+
n1a(k1))∗φA+

n2a(k1)(φC+
n3b

(k3))∗φC+
n4b

(k3)

−(2 + 4(−1)n1+n4)(φA+
n1a(k1))∗φC+

n2a(k3)(φC+
n3b

(k3))∗φA+
n4b

(k1)]

nF (εA(k1))nF (εC(k3))δn1+n3,n2+n4
(mod 4) (B8)

Finite layers Nz along ẑ direction lead the discretized
kz = πlz/(L+ 1) where l = 1, 2, 3 · · ·Nz

ciaα =

√
2

N

′∑
k⊥kz

∑
n

cnaα(k⊥kz)e
ik⊥ri⊥ sin kzrz (B9)

Now, the interaction term Eq. (B6) has modified func-
tion of δk1+k3,k2+k4 For both Eq. (B6) and Eq (B8)
need 1/4δk1⊥+k3⊥,k

2
⊥+k4⊥

(4 + 2δ2(k1z+k3z)(mod(2π)) +

2δ2(k1z−k3z)(mod(2π)) The last two δ functions corre-
spond to δ(l1+l3),L+1 and δl1,l3 .

Appendix C: Orthorhombic GdFeO3 distortion

In this section, we discuss the point symmetries of
the orthorhombic lattice (GdFeO3 type perovskite) and
study how this symmetry operators constraint on-site
splitting vectors Di defined in Eq. (17). We first the de-
fine four basis sites of the orthorhombic lattice (in cubic
coordinates):

r1 = (0, 0, 0), (C1)

r2 = (1, 0, 0), (C2)

r3 = (0, 0, 1), (C3)

r4 = (1, 0, 1). (C4)

The orthorhombic space group has three point group op-
erations (in cubic coordinates) :

P1 : (x, y, z) −→ (1− y,−x,−z), (C5)

P2 : (x, y, z) −→ (−1− x, 1− y, 1 + z), (C6)

P3 : (x, y, z) −→ (−1− x, 1− y,−z). (C7)

One finds that P1 interchanges sites r1 ↔ r2, and r3 ↔
r4, while P2 interchanges sites r1 ↔ r3, and r2 ↔ r4.
The inversion P3 leaves the basis unpermuted. Taking

the usual cubic basis of dx2−y2 and dz2 orbitals, one then
readily finds the transformations of creation/annihilation
operators:

P1 :


c1 → −τzc2
c2 → −τzc1
c3 → −τzc4
c4 → −τzc3

P2 :


c1 → c3
c2 → c4
c3 → c1
c4 → c2

P3 : I,

(C8)
where the last equation indicates that P3 acts as the iden-
tity in both the orbital and sublattice space. From this
we see that P3 places no constraints whatsoever on the
orbital fields. Invariance under the first and second trans-
formations then allows all four orbital fields to be deter-
mined from one. One finds:

D1 = (Dx, Dy, Dz), (C9)

D2 = (−Dx,−Dy, Dz), (C10)

D3 = (Dx, Dy, Dz), (C11)

D4 = (−Dx,−Dy, Dz). (C12)

Thus there are two and not four different orbital fields
appearing. Taking into account the coordinates of these
basis sites, we can finally write a simple form which is
basis independent:

Di =
(
(−1)xi+yiDx, (−1)xi+yiDy, Dz

)
. (C13)

Appendix D: Degenerate perturbation theory
calculation in the strong coupling limit

1. O(t2/JH): charge ordering

There are three possible types of hops at second order:

1. An electron hops from a double occupied site to an
empty site, and then back. This lowers the energy
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when occupied sites are adjacent to empty sites,
and so results in an effective repulsion between bo-
son pairs.

2. Both electrons from a doubly occupied site hop
onto the same, previously empty, site. This results
in an effective hopping of the bosons.

3. In the case where neighboring sites are occupied
with bosons, there can be exchange if the spins of
both bosons are not parallel.

The terms in the effective Hamiltonian corresponding to
the above three procedures can be written as

H(1)
eff = −Ptabij c

†
iaαcjbαRQt

ba
ji c
†
jbαciaαP, (D1)

H(2)
eff = −Ptabij c

†
iaαcjbαRQt

cd
ij c
†
icβcjdβP, (D2)

H(3)
eff = −2Ptabij c

†
iaαcjbαRQt

ba
ji c
†
jbβciaβP. (D3)

All three terms include implied sums over nearest-
neighbor sites i and j. Here we have neglected O(t′2)
contributions which are parametrically small in the limit
considered. The factor 2 in Eq.(23) arises from the fact
that electrons can hop first from site i to j or vice-versa.

Using the exact form of the hopping matrix in Eq. (1),
one finds that the second effective Hamiltonian vanishes,

H(2)
eff = 0. This can also be understood from simple or-

bital considerations: only one of the two orbitals over-
laps along any of the principle directions. Since both
electrons must be transferred for the pair to transfer, the
boson hopping vanishes. Due to the absence of the pair
hopping, the effective Hamiltonian commutes with Ni.

2. Magnetic interactions

Consider a plaquette on the original cubic lattice, we
name the occupied sites i and j and empty sites k and j,
such that i and j are next nearest-neighbor on the square
plaquette. We calculate terms for nearest neighbor spin
exchange at different orders one by one as follows.

1. O(t4/J3
H):

(a) One electron from each of sites i and j hops
to site k, and then the two electrons at site
k return to i and j. There are four distinct
time orders in which this process can occur
and they contribute equally. The same proce-
dure can also happen to sites i, j and l. This
give the coefficient 8 in front the Hamiltonian
below

H(4)
eff = −8Ptcfjkc

†
jcγckfγRQtaeik c

†
iaλckeλ

RQtdckjc
†
kdαcjcαRQtbakic

†
kbβciaβP. (D4)

(b) One electron at site i hops to site k and then to
j, it forms a singlet state with another electron

at site j, and then one of two electrons forming
a singlet hops back to site k and then to i (For
brevity, we will not write down the effective
Hamiltonian of the other hopping procedure
from now on)

(c) One electron from site i(j) hops to site k(l),
so now four corners of the plaquette are all oc-
cupied with single electrons, then the electron
at site k(l) hops back to j(i)

(d) One electron at site i hops to site k and then to
j, it forms a singlet state with another electron
at site j, and then one of two electrons forming
a singlet hops to site l and then to i.

Combining the four terms, we have

J
(1)
1 ≡ J

(1)
i,i±µ̂±ν̂

= − t4

J3
H

1

(1− 4α)2

[ 8(5 + 4α)

(1− 4α)(5− 4α)

− 5

5 + 4α
− 1

1− 4α

]
. (D5)

2. O(t2t′/J2
H):

(a) One electron at site i hops to j via next
nearest-neighboring hopping, it forms a sin-
glet state with another electron at site j, then
one of two electrons forming a singlet hops
back to site k and then to i

(b) One electron at site i hops to k, another elec-
tron at site j hops to site i via next nearest-
neighbor hopping, then the electron at site k
hops to j.

Together these two terms give

J
(2)
1 =

t2t′

J2
H

1

1− 4α

[
10

5 + 4α
+

5

1− 4α

]
. (D6)

3. O(t′2/JH):

One electron at site i hops to an fcc nearest-
neighbor j, forming a singlet state with another
electron at site j, then one of the two electrons
forming the singlet hops back to site i. We obtain

J
(3)
1 =

t′2

JH

5

5 + 4α
. (D7)

The spin exchange coupling between nearest neighbor

is then J1 = J
(1)
1 + J

(2)
1 + J

(3)
1 .

For second nearest-neighbor spin exchange, consider
three sites i,k and j along the same cubic axis, where
i(j) and k are nearest neighbors of the original cubic lat-
tice. Sites i and j then correspond to the second nearest-
neighbor sites. Then there are two possible ways of the
hopping procedure, which is of identical hopping order
to the first two cases of O(t4/J3

H) terms.
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Appendix E: Optical conductivity

The current-current correlation function with imagi-
nary time is defined as

Παβ(τ,k) = − 1

vol
〈Tτ−τ ′j†α(τ,k)jβ(τ ′,k)〉 =

2

vol

∑
abcd

jabα (k)jcdβ (k)Gad(τ
′ − τ,k)Gcb(τ − τ ′,k)

where jabα = ∂Hab/∂kα, Gad(τ
′ − τ,k) is a retarded

Green’s function with imaginary time τ ′ − τ and wave
vector k and a prefactor 2 for spin sums. Fourier trans-
form with Matsubara frequency iωn leads

Παβ(iΩl,k) =
2

vol

∑
abcd

jabα (k)jcdβ (k)
1

β

∑
n

Gad(iωn + iΩl,k)Gcb(iωn,k) (E1)

Green’s function Gad(iωn,k),

Gad(iωn,k) =

∫
dτΘ(τ)Gad(τ,k)eiωnτ

=
∑
mm′

e−βεm + e−βεn

iωn + ε′m − εm
〈m′|cd|m〉〈m|c†a|m′〉

=
∑
m

φa∗m (k)φdm(k)

iωn + iγsgn(ωn)− (Em − µN)
(E2)

The last term in Eq. (E2) is for zero temperature with
the imaginary part of the first order self-energy correc-
tion Im[Σ(ωn)] = −iγsgn(ωn), the a component of m
eigenstate φam(k). By substituting Eq (E2) to Eq. (E1)
and using analytic continuation iΩl → Ω + iη, the imag-
inary part of the current-current correlation function is
represented as

Im[Παβ(Ω,k)] =
∑
mm′

φa∗m φ
b
m′φc∗m′φdm

∫
dω

π
Am(ω)Am′(ω + Ω)(nF (ω)− nF (ω + Ω)) (E3)

where Am(ω) = γ/[(ω − Em + µN)2 + γ2] and Fermi
distribution nF (ω) = 1/(eβω + 1).
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