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We study the Landau quantization of the electronic spectrum for graphene bilayers that are
rotationally faulted to produce periodic superlattices. Commensurate twisted bilayers exist in two
families distinguished by their sublattice exchange parity. We show that these two families exhibit
distinct Landau quantized spectra distinguished both by the interlayer coupling of their zero modes
and by an amplitude modulation of their spectra at energies above their low energy interlayer
coherence scales. These modulations can provide a powerful experimental probe of the magnitude
of a weak coherence splitting in a bilayer and its low energy mass structure.
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The massless Dirac model for the low energy electronic
physics of single layer graphene is generally preempted by
the interlayer motion of the charge carriers in few layer
graphenes (FLG’s) [1]. In Bernal (AB) stacked bilayer
graphenes the interlayer coherence scale is ∼ 0.2 eV and
the low energy electronic physics [2–5] is readily distin-
guishable from that of a single layer [6, 7]. Surprisingly,
one finds only relatively weak (if any) effects of coherent
interlayer motion in rotationally faulted (twisted) FLG’s
where the symmetry axes in neighboring layers are mis-
aligned by angles θ 6= nπ/3 [8–13]. Theory suggests that
the interlayer coupling scale is reduced in these structures
[9, 14–17] but its description poses a rich commensura-
tion problem that can depend on both the rotation angle
and the atomic registry of neighboring layers [18, 19]. It
is important to understand how this coupling manifests
itself in the electronic behavior, distinguishing twisted
FLG from both single layer and Bernal bilayer graphene.

In this Letter we show that even weak interlayer cou-
pling in these systems leaves a striking fingerprint on
their Landau level (LL) spectra. The coherence splitting
produces an interference pattern in the LL spectra ob-
servable as an amplitude modulation: the “Dirac comb.”
The modulation period can greatly exceed the underlying
(presumably small) coupling scale and its phase depends
on the low energy mass structure. Observation of these
modulations through spectroscopy or transport quanti-
fies the coherence between weakly coupled layers.

Landau quantization of a twisted bilayer is studied us-
ing a long wavelength theory that includes the effects
of lattice commensurability [18]. We study commensu-
rate rotational faults where eclipsed A-sublattice sites
are fixed at the origin of the AA stacked stucture and
one layer is rotated through angle θ to form a new peri-
odic superlattice. Commensurate rotations can be classi-
fied according to their sublattice parity: sublattice even
(SE) structures are invariant under exchange of sublat-
tice labels A and B while sublattice odd (SO) structures
break sublattice symmetry. In this notation AA stacking
(all sites in neighboring layers eclipsed) has θ = 0 (SE),

Bernal AB stacking has θ = π/3 (SO). The sublattice
parity of any commensurate rotated structure determines
the allowed momentum-conserving interlayer terms in its
low energy Hamiltonian [18]. Each layer has Dirac cones
in two valleys centered at the K and K ′ points described
by the (unrotated) long wavelength Hamiltonians [20]

HK = −i~vFσ · ∇; HK′ = σyHKσy, (1)

where the 2 × 2 σ matrices act on the sublattice (pseu-
dospin) degrees of freedom. For SE structures the in-
terlayer coupling is valley preserving, described by the
interlayer operator

HSE
int = Veiϑ exp (iϕσzτz) , (2)

with 2× 2 τ matrices that act on the valley indices. For
SO structures the coupling is both interlayer and inter-
valley and has the form

HSO
int =

V
2
eiϑ (1 + σz) τx (3)

(or its valley reversed partner σxH
SO
int σx). The coupling

strength V and phase angle ϕ are determined by the de-
tails of the microscopic Hamiltonian while the overall
phase ϑ can be removed by a U(1) gauge transforma-
tion. In Eqn. (2) ϕ is not determined geometrically but
instead results from the interference of scattering ampli-
tudes at momenta that span the momentum mismatches
between Dirac cones of the two layers [18].
The band structures for these two families are shown

in the inset of Figure 1. SO bilayers have a pair of bands
gapped by the interlayer coupling and a contact point
between two quadratically dispersing bands, analogous
to the situation for Bernal stacked bilayers except for
their θ-dependent interlayer coherence scale V which can
be significantly reduced. SE bilayers feature a pair of
Dirac nodes at q = 0 with equal weights on the two
layers offset in energy by the interlayer interaction. Note
that the SE bilayers are generically gapped (their band
extrema occur on a ring in reciprocal space) because of a
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FIG. 1: Inset: Dispersion of the coherence-split low energy
bands for commensurate twisted graphene bilayers that are
even (blue, solid) and odd (red, dashed) under sublattice ex-
change. The plot gives the dimensionless energy ε = E/V
as a function of the scaled momentum Q = ~vF q/V where V

is the interlayer coherence scale and the pseudospin rotation
parameter ϕ = π/4 for the SE structure. Main figure: Lan-
dau level spectra Eqns. (9) and (10) for twisted bilayers for
SE and SO families as a function of the field strength with
coherence scale V = 10meV. The red lines are states spanned
by the zero modes of the two layers.

low energy avoided band crossing. The size of this gap is
determined by the pseudospin rotation angle ϕ in Eqn.
(2) and vanishes for the special case of AA stacking where
ϕ = 0 by symmetry [18].

To study this system in a perpendicular magnetic field
~B we introduce a vector potential in the symmetric
gauge ~A = ( ~B × ~r)/2. Defining z = (x + iy)/ℓB with
magnetic length ℓB =

√

~/eB and cyclotron frequency

ωc =
√
2vF /ℓB the Hamiltonian at the K point of the j-

th layer (j = 1, 2) is transformed to a Landau level (LL)
basis

hK,j = −iωc

(

0 ae−iθj

−a†eiθj 0

)

(4)

where a† = (−2∂z̄ + z/2) /
√
2 is the Landau level raising

operator and θj is the rotation angle of the j-th layer.
At the K ′ point hK′,j = σyhK,jσy . Since the interlayer
coupling matrices in Eqns. (2) and (3) are local in the
layer-projected coordinates the bilayer LL Hamiltonian
is

HSE
KK =

(

hK,1 V exp (iϕσz)
V exp (−iϕσz) hK,2

)

(5)

for SE bilayers and in the SO case

HSO
KK′ =

(

hK,1 V (1 + σz) /2
V (1 + σz) /2 hK′,2

)

. (6)

Particle-hole symmetry allows the spectrum to be studied
by squaring H, yielding for SE bilayers

(

HSE
KK

)2
=









ω2
c (a

†a+ 1) + V2 0 0 −iωcV(ae−iα1 + ae−iα2)
0 ω2

ca
†a+ V2 iωcV(a†eiα1 + a†eiα2) 0

0 −iωcV(ae−iα1 + ae−iα2) ω2
c (a

†a+ 1) + V2 0
iωcV(a†eiα1 + a†eiα2) 0 0 ω2

ca
†a+ V2









(7)

where α1 = θ1 + ϕ and α2 = θ2 − ϕ and for SO bilayers

(

HSO
KK′

)2
=









ω2
c (a

†a+ 1) + V2 0 0 −iωcVa†eiθ2
0 ω2

ca
†a iωcVa†eiθ1 0

0 −iωcVae−iθ1 ω2
ca

†a+ V2 0
iωcVae−iθ2 0 0 ω2

c (a
†a+ 1)









(8)

along with their valley reversed partners. Eqns. (7) and (8) demonstrate that for either family of structures the
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Hamiltonian is block diagonal in a particular layer- and
valley-polarized Landau level basis. For SE structures
the interlayer coupling scatters states from LLn in one
layer only into states from LL±n in the same valley of
the neighboring layer, while in the SO structure LLn in
valley K of layer 1 couple only to LL±(n−1) in valley K ′

of layer 2. Within these subspaces the Hamiltonians (7)

and (8) can be diagonalized yielding

εSEn,κ,ν = ±
√

nω2
c + V2 + κV

√

2nω2
c(1 + cosϕ) (9)

and

εSOn,κ,ν = ±

√

(2n+ 1)ω2
c + V2 + κ

√

ω4
c + 2(2n+ 1)ω2

cV2 + V4

2
, (10)

with valley (ν = ±1) and branch (κ = ±1) indices, set-
ting ~ = 1. The eigenstates of the SE structures come in
valley-degenerate pairs. SO structures have degenerate
pairs of states along with a quartet of orbital states at
ε = 0 (with indices n = 0, κ = −1, and ν = ±1).
Figure 1 shows the evolution of the LL spectra as a

function of B. For SE structures, the states disperse
∝

√
B away from two coherence-split Dirac nodes and

evolve at high field into two groups of branches that
disperse away from the charge neutrality level. For SO
structures the fermions are massive in both the low en-
ergy (around E = 0) and high energy (around E = ±V)
branches and the LL’s disperse linearly in B when ωc ≪
V crossing over to the expected the

√
B dependence in

high field. For Bernal stacking V ≫ ωc at experimentally
realizable fields and one can eliminate the high energy
bands giving an effective two band model for the “weak
field” limit of the SO spectra [2]. By contrast in twisted
SE and SO structures the coherence scale is small and all
the degrees of freedom are accessible.
A striking prediction of Eqns. (9) and (10) is that

the overlapping branches of Landau levels produce an
amplitude modulation in the density of states. When
ε ≫ V for SE structures and ε ≫ (V , ω2

c/V) for SO struc-
tures one can approximate ε ≈ ±(

√
n + κβV) where for

(SE,SO) bilayers β = (cos(ϕ/2), 1/2). The density of
states is enhanced whenever the energy of LLn in one
branch (κ = −1) overlaps the energy of LLn−m in the
other (κ = 1). This occurs for m = 4βV√n/ωc when
n ≫ m, and produces a beating pattern with period
∆E = ω2

c/4βV , most evident when ∆E ≫ ωc ≫ V .
Superposition of the spectra produces a “Dirac comb.”
Scanning tunneling spectroscopy (STS) [21] in mod-

est magnetic fields can access these quantum oscillations
in the single layer-projected density of states ρ1 and
thereby quantify the interlayer coherence. Theoretically,
ρ1 is studied conveniently by integrating out the second
layer [22] generating an effective Hamiltonian for the first

(exposed) layer Heff
1 (E) = H1 + Hint (E −H2)

−1 H†
int

with an energy-dependent self energy that is evaluated

in each invariant subspace of Eqns. (5) and (6). The
density of states is then obtained by a trace over the
sublattice degrees of freedom and invariant subspaces:

ρ1(E) =
∑

n,ν Im tr
[

E − iγ −Heff
1,n,ν(E − iγ)

]−1
with

level broadening γ. Importantly, in both SE and SO
structures the zero mode of the surface-projected prob-
lem occupies a special one dimensional subspace with

Heff,SE
1,n=0= |V|2/E; Heff,SO

1,n=0,ν= δν,−1E|V|2/(E2−ω2
c).(11)

Eqn. (11) demonstrates that the zero modes of each layer
are always coherence-split by 2V in SE bilayers but re-
main exactly decoupled for all SO bilayers.

These features can be seen clearly in the densities of
states in Figures (2) and (3). The coherence splitting of
the zero modes for SE bilayers and their degeneracy for
SO is a fundamental signature of their different sublat-
tice symmetries. At higher energy (Fig. (3)) quantum
oscillations are clearly seen for both families. Although
the B = 0 dispersions are nearly the same for these two
structures at energies E ≫ V (Fig. 1) the amplitude
modulations near E ≃ ω2

c/βV are phase shifted, also re-
flecting their distinct low energy mass structure.

The modulations reflect the atomic registry in the bi-
layer and are most pronounced for short period super-
lattices. They are observable for B > V2/2e~v2F , which
requires a field scale of only 0.1T for V ∼ 10meV. For
small fault angles the coherence scale V collapses, the
magnetic field scale is correspondingly reduced and mea-
surements will ultimately be limited by the finite quasi-
particle lifetime. Interestingly, the modulation period
∆E = ~

2ω2
c/4βV = ~eB/M∗ describes the cyclotron fre-

quency of a massive particle with M∗ ∼ 3.5 × 10−3me

when V = 10meV. This can be understood from the
semiclassical quantization of phase space orbits within
the annulus bounded by the two coherence-split bands.

Remarkably, these oscillations should be most eas-
ily seen in the weak field regime when the layers are
weakly coupled. For V < 0.5meV as suggested by mi-
croscopic calculations [16], the modulation period ∆E ∼
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FIG. 2: Layer projected density of states for SE (blue) and
SO(dashed red) twisted bilayers as a function of E/ωc (~ = 1).
Data are plotted for V/ωc = 0.1, γ = .03 × ωc and ϕ = π/4.
The low field states of the SO bilayer are weakly coherence
split for the SE bilayer.
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FIG. 3: Layer projected density of states as a function of E/ωc

over a wide energy range showing the amplitude modulation
in the Dirac comb. Data are plotted for V/ωc = 0.3 and
ϕ = 2π/3. Top panel(blue, vertically offset) is for an SE
bilayer and the lower panel (red) is for an SO bilayer.

~v2FB/V > 0.1 eV for B = 0.1T. This is much larger
than the Landau level spacing so the interference gen-
erates a smooth amplitude modulation extending over
many quantized levels as shown in Fig. 3. The depen-
dence of V on the rotation angle is unknown, but obser-
vation of these quantum oscillations can experimentally
quantify this coherence scale.
These low field quantum oscillations are physically

distinct from the Landau level structure studied for
twisted graphene bilayers in high fields [23, 24]. Low
angle faults offset the Dirac nodes at the zone corners
K in neighboring layers introducing an energy scale
∆E = ~vFK sin(θ/2) at which layer-decoupled Dirac

cones intersect. Interlayer mixing of these states cre-
ates a saddle point singularity where the topology of
the bands changes; in a magnetic field this is identified
by an onset of enhanced coherence-splittings of nearly
layer-degenerate LL states. For a rotation angle ∼ 1◦,
∆E ∼ 100meV so for the n-th Landau level this occurs
for nB ∼ 10T. Likewise the physics of the Dirac comb
is distinct from the Hofstadter physics that arises when
the magnetic length becomes commensurate with a su-
perlattice translation, requiring B ∼ 4T for θ ∼ 1◦ [25].

In summary we have studied the Dirac comb in the
weak field Landau quantized spectra for twisted graphene
bilayers: an interference phenomenon yielding an ampli-
tude modulation of the LL spectra. This is important
for low energy magnetotransport and provides an experi-
mental probe of the interlayer coherence scale and its low
energy mass structure.
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