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Abstract

Based on a dipolar-elastic model for oxygen vacancies on rutile (110), we evaluated analytically

the overall energy of a periodic array of two vacancies and extracted the interaction parameters

from total-energy density functional theory (DFT) calculations. Our calculations show that the

dipole model holds for next-nearest neighbor vacancies and beyond. The elastic-dipolar interaction

vanishes for adjacent vacancies, but they still experience an electrostatic repulsion. The proposed

interaction model predicts a vacancy separation distribution that agrees well with that determined

in our ultra-high vacuum scanning tunneling microscopy experiments, and provides a perspective

for understanding earlier DFT reports.
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Titanium dioxide –widely used in heterogeneous catalysis [1], photocatalysis [2], solar

cells [3], or gas sensors [4], has become the prototype material for studying the reactivity

of metal oxide surfaces [5]. Defects such as oxygen vacancies are always present on rutile

surfaces [6] and, depending on their coverage and spatial distribution, can strongly influence

the reactivity of the surface [7]. The interactions between vacancies determine their spatial

distribution on the surface. Highly reactive vacancy clusters or pairs have not been expected

to form because of vacancy repulsions [8], but recent experiments [9] do show the possibility

of spontaneously formed oxygen vacancy pairs (OVPs), i.e., of two adjacent vacancies in

the same bridge-oxygen row. Regarding the stability of OVPs, early density functional

theory (DFT) calculations came to contradictory conclusions: the OVPs were reported to

have the highest [10] and the lowest [11] energy of all configurations of two vacancies per

computational cell. A newer study [8] finds virtually the same energies for the OVP and

the next-nearest neighbor (NNN) configurations, while another recent study [9] reports the

NNN structure to have a much higher energy than the OVP. To date, several issues have

prevented the complete, fundamental understanding of vacancy interactions, including their

reliable quantitative determination; the more important ones are the difficulty of decoupling

the interactions while using computational slabs of manageable size, and the sensitivity of

various structural properties to the number of layers in the supercells [11, 12].

Here we show that the interaction of same-row vacancies on rutile (110) is dipolar-elastic

in nature, with a long-range, inverse-cube dependence on their separation. This dipolar-

elastic model holds when the vacancies are not adjacent, which we have found from DFT

calculations at the level of the generalized-gradient approximation (GGA). Our approach

has two key features that allow us to reliably determine the formation energies and the in-

teraction parameters from total-energy GGA calculations: first, the interactions have been

isolated to one bridge-oxygen row by using large supercells, and second, we have developed a

closed-form expression for the overall interaction (per computational cell) associated with a

periodic array of two vacancies. When vacancies are adjacent, they still repel, but this repul-

sion is much weaker than the dipolar-elastic one at the same distance. We have determined

the distribution of vacancy separations (along bridge-oxygen rows) by scanning tunneling

microscopy (STM), and have found that this distribution agrees well with that predicted

from the calculated interactions. This validates our physical model for vacancy interactions,

which we use to analyze our DFT data as well as data from other works [8, 9, 11].
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FIG. 1. (Color online) Reduced 10 × 2 rutile surface slab used in the DFT calculations. The

interaction between the two bridge-oxygen vacancies is determined for different values of their

separation d, c ≤ d ≤ 5c.

For the DFT simulations, we constructed 10×2, 600-atom stoichiometric supercells with

dimensions Lx = 2a
√
2 and Ly = 10c (with a = 4.669 Å, c = 2.970 Å [13]), and a thickness

of five O-Ti-O trilayers. The vacancies were created by removing two same-row oxygen

atoms spaced at d (c ≤ d ≤ 5c) [Fig. 1]. The DFT relaxations were carried out in the GGA

framework using the PBE exchange-correlation functional [14], projector-augmented wave

[15] pseudopotentials [16], and an on-site Hubbard term U for the Ti 3d states [17]. Charge

neutrality (Q = 0e) was maintained for the stoichiometric slabs, but for the reduced slabs

we also considered the positively-charged case (Q = 4e, corresponding to the removal of two

O2− ions). We have not searched for the localized electron configurations that most lower

the total energy [18], but simply relaxed the structures from the bulk truncated positions

and analyzed their final electronic structures. For our non-zero Hubbard term values, we

have found that localization occurs on the same subsurface Ti atoms (in relation to the

vacancies) for all spacings d > c; this finding justifies our analysis of the total supercell

energy as a function of d, for each pair of (Q, U) values.

The difference ∆E between the total energy of the reduced slab (Er) and the energy of

the stoichiometric one of same area and thickness (Es) can be written as

∆E ≡ Er −Es = 2(f − µO) + w, (1)

where f denotes the formation energy of a single vacancy (on an otherwise perfect and wide
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FIG. 2. (Color online) (a,b) The difference between the energy of a reduced (10 × 2) slab [(a)

neutral, (b) positively charged] and that of a stoichiometric one. (c) Analytical dependence u(η)

(Eq. (5), curve) and numerical calculations of u for neutral (× symbols) and charged slabs (+

symbols).

surface), µO is the oxygen chemical potential, and w contains all interactions. Since we have

collected all interactions into a single term w, which depends on the supercell dimensions and

on the spacing between the vacancies, the formation energy f in Eq. (1) depends neither on

the vacancy spacing between vacancies nor on their coverage. The variation of ∆E with the

separation d at constant Ly (Ly = 10c) is plotted in Figs. 2(a,b) for neutral and positively

charged slabs. In order to extract interaction parameters from ∆E vs. d data, we have to

understand the overall interaction term w.

Therefore, we first focus on finding an analytic expression for w, and start by neglecting

the cross-row interactions; this is reasonable given the large supercell dimension along [110],

Lx = 2a
√
2 = 13.205Å. In this approximation, w [Eq. (1)] depends only on the vacancy

separation d and on the dimension Ly along a bridge-oxygen row. In the framework of

elasticity theory, point defects on surfaces interact as elastic multipoles whose long-range

interactions are inversely proportional to certain powers of their separation [19]. In what

follows, we describe the interaction v between two isolated vacancies by the long-range

dipolar-elastic repulsion

v(d) =







v1 if d = c

G
d3

if d = ic, i = 2, 3, 4, ...
, (2)

where d is the distance between the two vacancies on an otherwise perfect surface, G is the

strength of the dipolar repulsion, and v1 is a short-range interaction present only for adjacent

vacancies. When using periodic boundary conditions, the two vacancies are not isolated,

since they interact with their periodic images as well. Using (2) for d > c and collecting the
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contributions from all periodic images along the same row, the total interaction energy per

supercell can be written as a function of Ly and η ≡ d/Ly via

w(Ly, η) =
G

L3
y

u(η), (3)

with the function u(η) given by

u(η) =
1

η3
+

∞
∑

k=1

(

2

k3
+

1

(k + η)3
+

1

(k − η)3

)

≡ (1/η3) + 2ζ(3)− (ψ(2)(η) + ψ(2)(−η))/2 (4)

where ζ is the Riemann zeta function (ζ(3) ≃ 1.202) and ψ(2) is the polygamma function of

second order. Polygamma function identities [20] reduce Eq. (4) to

u(η) = 2ζ(3)− π3 cot (πη) csc2 (πη)− ψ(2) (η) . (5)

Eq. (5) is a general description of the interactions of two identical, elastically-repelling defects

in the same row and their periodic images along that row; as such, it does not depend on

the (common) type of the defects (e.g., both vacancies or both adatoms), on their formation

energy, or on their interaction strength.

TABLE I. Formation energies f (= f + µO), repulsion strengths G, and short-range interactions

v1 for different values of the slab charge Q and Hubbard parameter U . The standard deviations

for f and f are the same.

Q(e), U(eV) f(eV) f(eV) G(eVÅ3) v1(eV)

0, 0.0 7.170 ± 0.006 2.244 169.8 ± 4.1 0.677 ± 0.013

0, 3.0 7.611 ± 0.013 2.684 152.0 ± 10.0 0.702 ± 0.027

4, 0.0 16.966 ± 0.004 10.207 157.7 ± 3.3 0.575 ± 0.009

4, 3.0 16.964 ± 0.006 10.205 165.1 ± 4.6 0.808 ± 0.013

Using Eqs. (1), (3), and (5), we fit the data in Figs. 2 (a,b) for d ≥ c to obtain the

relative formation energies f ≡ f −µO and the interaction strengths G for different Q (slab

charge) and U (Hubbard parameter). The µO values [see Eq. (1)] that we have used were

µO = −4.926 eV (half the energy of an O2 molecule) for the neutral system, and µO = −6.759

eV (the energy of an isolated O2− ion in the supercell) for Q = 4e. The calculated formation
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FIG. 3. (Color online) Displacement fields in a plane containing the vacancies separated by (a) d =

5c and (b) d = c; for clarity, only three trilayers are shown. The green arrows show schematically the

horizontal force dipoles associated with each vacancy (a), and illustrate the monopole cancelation

responsible for the vanishing elastic repulsion at d = c (b). The displacements (magnified here

10-fold for clarity) are calculated for the (Q = 0e, U=0eV) system with respect to the relaxed

stoichiometric slab. The largest displacement magnitude is 0.41 Å in (a) and 0.44Å in (b).

energies and interaction strengths are listed in Table I for neutral and charged slabs at

U = 0.0 eV and U = 3.0 eV. Using f and G values from Table I, we check our model by

numerically calculating u from Eq. (1) [i.e., u = (∆E−2f )L3
y/G for η ≥ 2c/Ly] and plotting

it along with the analytic result Eq. (5). As seen in Fig. 2(c), the agreement between the

numerical u values and the general formula Eq. (5) is very good, which validates a posteriori

our assumption that the interactions are reasonably well-confined to the bridge-oxygen row

as long as the neighboring rows are defect-free.

Although multipole interactions between atomic-level defects (most often adatoms) on

crystal surfaces have been reported [21], so far the particular dipolar-elastic model proposed

here has not been proposed for oxygen vacancies. Figure 3(a) shows the atomic displacement

fields and, schematically, the horizontal force dipoles (F+, F−) associated with each vacancy

for d = 5c. The atoms located between vacancies experience opposite pulls resulting in an

increase of energy, i.e., the elastic repulsion. When the vacancies are brought close to form

an OVP, there are no more 5-fold coordinated Ti atoms (5-f Ti) between them, which leads

to the cancelation of two force monopoles as shown in Fig. 3(b). It may be worth noting
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that monopole cancelation has also been evidenced as the origin of a short-range attraction

that leads to step bunching on certain surfaces [22]. Despite this monopole cancelation, the

interaction between vacancies at d = c is not zero but a quantity v1 [Eq. (2)] that can be

found from a straightforward modification of Eq. (3),

w(Ly, η1 ≡
c

Ly
) =

G

L3
y

u(η1)−
G

c3
+ v1. (6)

Using Eqs. (1), (6) and the f and G values already calculated, we have found that the

interaction v1 is small but positive in all cases [Table I, last column]. This short-range

repulsion is about one order of magnitude smaller than what the dipolar-elastic model would

predict for vacancies at d = c [G/c3 ≈ 6.48 eV], and is largely due to the electrostatic

interactions of the exposed 4-f Ti with the nearby 5-f Ti atoms.

The directly observable manifestation of vacancy interactions is their spatial distribution,

which we have analyzed from thermal vacancy populations. The samples were produced by

Ar+ sputtering cycles, followed by annealing the (110) rutile surface at a temperature T =

950 K, then rapidly cooling down to 77 K to freeze in the vacancy distribution. The vacancies

were imaged using an ultrahigh vacuum (UHV, pressure below 10−11 Torr) cryogenic STM,

in constant current mode with positive sample bias [23]. Vacancy separations were analyzed

from portions of bridge-oxygen rows that had a vacancy concentration of n ≈ 15%. If

there were no interactions, then a fixed vacancy coverage n would lead to an exponential

decay of the probability to find vacancy-to-vacancy (V-V) segments of length d, pnonint(d) ∝

exp (−nd/c) [24]. Our data shows that p(d) exhibits a maximum, and not the monotonic

decay corresponding to the non-interacting system [green curve in Fig. 4]; this is a direct

consequence of the repulsive interactions between vacancies.

In a canonical ensemble system of V-V segments, the interactions between the ends of

segments give the single-particle energy levels v(d) (d = c, 2c, 3c, ...) and thus a canonical

distribution p(d) = (1/Z) exp (−nd/c) exp (−v(d)/kBT ), in which Z is a normalization factor

and kB is Boltzmann’s constant. The canonical distribution based on the interaction model

Eq. (2) with the parameters in Table I is consistent with the experimental data [refer to

Fig. 4], and is virtually the same for all (Q, U) pairs used in this study. The competition

between the fixed coverage constraint and the rapidly-decreasing dipolar repulsion (G/d3)

gives rise to a most-probable vacancy spacing d∗ which can be readily derived from the

canonical distribution, d∗ = (3Gc/nkBT )
1/4. The G values (Table I) give d∗ between 6.1c
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FIG. 4. (Color online) Distribution of vacancy spacings for n = 15% vacancy coverage at 950 K:

STM experiments (dots with error bars) compared with the non-interacting system (exponential

decay, green curve) and with the canonical distribution (four nearly overlapping curves). Note that

the canonical distributions for different Q and U values are not fits to the experimental data, but

are based on the interaction model Eq. (2) with the GGA values for G and v1 listed Table I.

and 6.3c, consistent with the experimental peak of 6c. The agreement between the vacancy

separation statistics determined in STM and the canonical distribution with GGA-calculated

parameters validates our interaction model Eq. (2).

In the previous systematic attempts to compute the vacancy interactions on TiO2(110)

[10, 11], the total energy was expressed as pairwise interactions from each vacancy to the

next one along the row and also included cross-row couplings. Both reports [10, 11] acknowl-

edged unresolved shortcomings of the pairwise model, which had manifested in significant

differences of the total energies predicted by the model (with respect to those obtained di-

rectly from DFT calculations) once the model was applied to supercells other than those

used to determine the pairwise interaction parameters. Departing from these pairwise mod-

els of Refs. [10, 11], we have proposed herein that the same-row vacancy interactions are

dipolar, thus long-ranged. As we will show below, our model Eq. (3)–(6) holds very well

when applied to different supercells (than those in Fig. 1), different numbers of vacancies

(one or two) per cell, and different exchange-correlation functionals. For example, we have

used Eqs. (3)–(6) and the (Q = 0, U = 0) case data in Table I to compute the total energy

difference between 5× 3 supercells with two vacancies in the NNN and OVP configurations.

We have obtained 0.264 eV, in excellent agreement with our GGA simulations performed
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for 5 × 3 slabs, which place the NNN supercell energy at 0.249 eV above that of the OVP

supercell; for the other three cases in Table I, the model [Eqs. (3)–(6)] yields total energy

differences that are within 0.05 eV or less from the GGA results. Our results for 5×3 super-

cells are in disagreement (quantitatively) with the recently reported total energy difference

of 0.8 eV [9], but based on our calculations and on the STM experiments that show similarly

small occurrence probability for OVPs and NNNs (Fig. 4), we believe the 0.8 eV value to

be in error.

Interestingly, data from other reports of DFT simulations [8, 11] can be readily understood

using our model. The two-vacancy results in Ref. [8] (c < d < 5c) can be fitted well to our

Eqs. (3), (5), yielding a strength G = 244.9 ± 7.9 eVÅ3 (not enough data is provided to

determine f or f). For one vacancy per supercell, the quantity denoted as VFE in [11] is

defined as our ∆E ≡ Er − Es up to an additive µO. We find that the data for p(m × 1)

cells (m = 2, 3, 4, 6) in table 2 of Ref. [11] fits closely our dipolar-elastic model, which for

single-vacancy supercells takes the simple form ∆E + µO = f +Gζ(3)/L3
y. This data yields

f = 3.134 ± 0.012 eV and G = 198.98 ± 4.06 eVÅ3; these values are consistent with those

in the first line of our Table I, but differ from them likely because of the thin slabs (and

possibly other computational parameters) used in [11]. While we have devised our physical

model for interactions confined to the same row, the structures in Refs. [8, 11] do not have

any intact oxygen row and thus allow for cross-row coupling. Even so, the p(m × 1) data

fits our elastic model very well, as judged by the small standard deviations obtained for f

and G; in the case of Ref. [11] (p(m × 1) cells in table 2, m ≥ 2), this is because at one

vacancy per supercell, the cross-row interactions occur mostly perpendicular to the oxygen

rows and thus amount to a constant independent of m (the cell dimension along the row).

For the two-vacancy results in Ref. [8], the agreement with our model likely occurs because

the diagonal cross-row interactions do not vary significantly as a function of d when d > c.

In conclusion, we have shown that the dipolar-elastic model describes well the long-range

repulsion of same-row vacancies for all separations except d = c, where a much smaller short-

range interaction is present. The model fits not only our DFT data, but explains several

other results from the literature and gives an equilibrium vacancy separation distribution

that agrees well with that determined in our STM experiments.
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