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We introduce a novel extension of Density Functional Perturbation Theory (DFPT) that allows
self-consistent linear-response calculations from a DFT+U ground state. Using this scheme, the
full phonon dispersion of strongly correlated materials, whose ground state can be captured with
Hubbard-corrected functionals, can be accessed with unprecedented accuracy and numerical effi-
ciency. The new tool is applied to the study of MnO and NiO in their antiferromagnetic (AFII)
ground state. Our results confirm the highly non-cubic behavior of these systems and show a strong
interplay between features of the phonon spectrum and the occupation of specific d states, suggest-
ing the possibility to investigate the electronic structure of these materials through the analysis of
their phonon spectrum.

Late transition-metal (TM) monoxides (MnO, FeO,
CoO, NiO), the prototypes of strongly correlated sys-
tems, are well-known to be poorly described by density
functional theory (DFT) within the commonly used ap-
proximate functionals, such as LDA and GGA. Their
insulating AFII state, however, can be captured quite
accurately by the popular DFT+U1 scheme2–5, based
on a Hubbard-model additive correction to the DFT
Hamiltonian6–11. In this paper we exploit the DFT+U
improved description of the electronic ground state of
these systems to accurately compute their vibrational
properties.

In the last decades the lattice vibrations of TM monox-
ides have been investigated quite intensively with ex-
perimental techniques12–16. Calculations, however, have
been more sparse17–22 and, with the exception of Ref.18

(a Green-function-based method from a DFT+DMFT
functional), none of them was based on linear re-
sponse theory, which is computationally much more ef-
ficient than methods requiring a supercell (e.g., “frozen-
phonon”).

In this article we extend the formulation of Den-
sity Functional Perturbation Theory (DFPT)23 to the
DFT+U Hamiltonian. This allows calculations of the
entire vibrational spectrum of the DFT+U ground state
of correlated materials with unprecedented accuracy and
efficiency. Moreover, by computing the Hubbard U
through the linear-response method of Ref.24, our scheme
is completely parameter-free. “DFPT+U” numerical re-
sults will be shown for MnO and NiO in their antifer-
romagnetic (low temperature) phase. The two GGA+U
vibrational spectra will be analyzed in detail and com-
pared with GGA results and with available experimental
data.

DFPT is based on the application of first-order pertur-
bation theory to the ground state of the self-consistent

Kohn-Sham (KS) Hamiltonian (see Ref.23, Sec. II.C,
whose notation is adopted in the following). The dis-
placement of an ion L in direction α from its equilibrium
position induces a perturbation ∆λVSCF in the electronic
KS potential VSCF , leading to a variation ∆λn(r) of the
charge density (λ ≡ {Lα}). Since the Hubbard potential
VHub is a corrective addition to the KS potential, its vari-
ation ∆λVHub must be added to ∆λVSCF when solving
the DFPT equations23. The VHub expression reads5:
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Note that, in Eq. (2), the terms arising from the variation
∆λU I are assumed to be negligible. In Eq. (3), |∆λψσ

i 〉 is
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the KS state linear response to the atomic displacement,
computed solving the DFPT equations (23, Sec. II.C).
Once the density response ∆λn(r) = 2Re

∑occ

iσ
ψ∗σ

i ∆λψσ
i

is obtained, the dynamical matrix can be constructed
and the phonon frequencies and vibrational modes are
calculated. However, the Hubbard energy correction
EHub = 1

2

∑

Iσmm′ U
I(δmm′ − nIσ

mm′ )nIσ
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to the standard (LDA/GGA) dynamical matrix with the
following additional term:
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namely the total derivative of the Hubbard contribution
∂λEHub to Hellmann-Feynman forces25. In Eq. (4), ∂λ in-
dicates a bare derivative, i.e. taken at fixed orbitals ψσ

i
26.

Finally, in case of insulators and semiconductors, a “non
analytical” term Cna

Iα,Jβ must be added to the dynami-
cal matrix to account for the coupling of longitudinal vi-
brations with the macroscopic electric field generated by
ionic displacements. This term, responsible for the LO-
TO splitting at q = Γ, depends on the Born effective-
charge tensor Z∗ and the high-frequency electronic di-

electric tensor ǫ∞: Cna
Iα,Jβ = 4πe2

Ω
(q·Z∗

I )α(q·Z∗

J )β
q·←→ǫ ∞

·q
27. The

calculation of Z∗I,αβ and ǫ∞αβ is based on the response of
the electronic system to a macroscopic electric field and
requires the evaluation of the transition amplitudes be-
tween valence and conduction KS states promoted by the
commutator of the KS Hamiltonian with the position op-
erator r, 〈ψc,k| [HSCF , r] |ψv,k〉

28. A finite contribution
to this quantity comes from the presence of the (non-
local) Hubbard potential:
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where ϕI
m,k are Bloch sums of atomic wavefunctions and

kα is a component of the Bloch vector k.
To summarize, the extension of DFPT to the DFT+U

functional amounts to the definition and implementation
of three contributions: i) the variation of the Hubbard
potential ∆λVHub to be added to ∆λVSCF ; ii) the sec-
ond derivative ∆µ

(

∂λEHub

)

to be added to the analytical
part of the dynamical matrix; iii) a term to the “non
analytical” dynamical matrix.
This DFPT extension was implemented in the

PHONON code of the Quantum ESPRESSO

package29. Although the formalism presented above is
valid only for norm-conserving (NC) pseudopotentials
and for insulators, our implementation has been extended
to ultrasoft (US) pseudopotentials26,30 and metallic sys-
tems. The corresponding formal extension, crucial for
efficient calculations of systems with localized electrons,
will be presented in a future publication.

We now discuss the phonon spectrum of MnO and NiO,
obtained with this novel approach31. The U I values were
determined via the linear-response approach of Ref.24,
leading to UMn = 5.25 eV and UNi = 5.77 eV.
MnO and NiO crystallize in the cubic rock-salt struc-

ture but acquire a rhombohedral symmetry due to their
antiferromagnetic order consisting of ferromagnetic (111)
planes of cations alternating with opposite magnetiza-
tion. DFT+U has been used quite successfully to char-
acterize this AFII ground state6,10.
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FIG. 1. (Color online) MnO (upper panel) and NiO (lower)
phonon dispersion, calculated in GGA (dashed lines) and
GGA+U (solid thick lines). Blue (black) arrows mark the
GGA+U (GGA) magnetic splittings and their sign (see
text). Upper panel: Filled symbols represent experimental
data12,13,15, open symbols the results of other calculations (at
zone-center)17. Lower panel: Symbols represent experimen-
tal data12,16. Note that for NiO the arrows point downwards,
to indicate the sign difference with respect to MnO. Right
panels: phonon DOS.

Fig. 1 (up) shows the MnO phonon dispersion calcu-
lated with GGA and GGA+U. The most evident effect
brought about by the Hubbard correction is a general up-
ward shift of the frequencies, making the GGA+U spec-
trum in much better agreement than GGA with avail-
able experiments12,13,15, for both acoustic and optical
branches (also confirming the accuracy of the linear-
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response calculation24 of the Hubbard parameter). Note,
in particular, the considerable improvement over GGA
in the calculation of LO and TO frequencies at q = Γ
(GGA underestimates the LO frequency by ≈ 15 meV).
The frequency shift is clearly illustrated in the phonon
DOS (Fig. 1, right panel), exhibiting also a different
weight distribution, with a more disperse structure in
the GGA+U case. A second noteworthy change consists
in the substantial reduction of the splitting between the
TO modes in the [11̄1̄] and [001] directions. Along these
directions, the discontinuous and continuous modes at
the zone center are indicated as TO1 and TO2 and cor-
respond to counter-phase vibrations of the Mn and O
sub-lattices. Both transverse optical modes along [111]
are polarized in the (111) ferromagnetic planes. Along
[11̄1̄] and [001] directions, the transverse mode TO2 also
vibrates parallel to the (111) planes and is continuous
at q = Γ. Transverse mode TO1, instead, vibrates out
of these planes for q ∈ [11̄1̄] and q ∈ [001] (along [211]
and [110], respectively) and the inequivalence between
{111} planes due to magnetism causes the TO1 to be
discontinuous and to split from TO2. A similar effect,
although less pronounced, can also be observed for LO
modes. These splittings are absent in the paramagnetic
cubic phase20. In fact, as pointed out by Massidda et
al.17, the TO splitting has a purely magnetic origin.

The splitting reduction was interpreted in Ref.17 as a
consequence of the suppression of the Mn-O hybridiza-
tion, produced by the stronger localization of d states
due to the Hubbard correction. The latter also results
in a concomitant increase of the KS electronic band-
gap. An alternative, albeit equivalent, way to understand
the magnetic splitting reduction is through the super-
exchange mechanism, expected to be responsible for the
magnetic coupling J between metal ions32–35. In fact, ac-
cording to second-order perturbation theory, J ∝ t2/∆,
where t is the hopping amplitude between d and p states
and ∆ is their energy separation. A larger U destabilizes
empty (minority spin) d states, resulting in a substantial
increase of ∆ and a reduction of J .

The phonon dispersion of NiO is presented in Fig. 1
(lower panel). Overall, NiO shows the same trends ob-
served in MnO: The Hubbard correction shifts the fre-
quencies upward (in a less pronounced way than in MnO)
improving the agreement with experiments12,36. Also for
NiO the magnetic splitting ∆TO significantly contracts
in comparison to GGA. At variance with MnO, however,
TO1 splits downward along the [001] and the [11̄1̄] direc-
tions, appearing softer than TO2. In Ref.19 the splitting
∆TO (and, in particular, its sign) has been related to the
magnetic coupling between metal ions according to the

formula ∆TO = d2J1

dQxdQy
, where Qx and Qy are atomic

displacements along two directions parallel to the side of
the cubic cell. Thus, a change in the sign of the nearest-
neighbor magnetic coupling J1, as found in Ref.19, could
be responsible for the inverted order of TO1 and TO2.
While this is consistent with the experimental results
from Ref.36, it seems in contrast with the ones of Chung

et al.12 (believed to be “more controversial”19) who do
not observe a sign change in the splittings of NiO and
MnO. Our results confirm those of Ref.19. We notice,
moreover, that the sign of ∆TO correlates with the occu-
pation of specific subsets of orbitals, namely the minor-
ity spin eg states. At ambient pressure, the metal ions
of all late TM monoxides have maximum magnetization,
with five electrons in the majority spin d orbitals and
the rest in the minority spin counterparts. From MnO
to NiO the number of minority spin d electrons varies
from 0 to 3 (FeO has 1, CoO has 2). The d states of TM
ions in octahedral coordination with O, as in these com-
pounds, are subjected to a crystal field that splits them
into a doublet (eg) and a triplet (t2g), with the latter
at lower energy. eg states point along the TM-O direc-
tions, while the t2g are directed towards the mid point
of the sides of the oxygen octahedra. The AFII-induced
rhombohedral symmetry further splits the t2g triplet in
a second doublet (e′g) with eg symmetry and a lone state

a1g that corresponds to a z2 state along the [111] cubic
diagonal. In MnO the minority spin states, nominally
empty, show a residual occupation (due to the incom-
plete transfer of electrons from the Mn to the O) that
mostly concentrates on the eg states. NiO, instead, has
nominally 3 minority-spin electrons mostly concentrated
on t2g (e

′

g and a1g) states, with higher-energy eg states al-
most empty. Going from MnO to NiO, as the occupation
of the minority-spin states increases, t2g orbitals become
more and more stable and their occupation eventually
becomes larger than that of eg states. We argue that the
∆TO change of sign is related to this cross-over. In fact,
when minority-spin eg states are more occupied, more
electronic charge is concentrated in the TM-O “bonds”,
making them stronger and increasing the frequency of
the TO1 mode. When t2g states are occupied, instead,
the electronic charge points towards interstitial spaces
and the energy required by the TO1 vibration of the two
sublattices against each other along directions oblique to
the (111) planes is lower than that of vibrations parallel
to these planes (TO2) that bring t2g states to partially
overlap with oxygen p orbitals. While not strictly quan-
titative, this scenario seems consistent with what was
observed in some Fe compounds under pressure, where
the transition from a high-spin state to a low-spin one
(with the conversion of the majority eg electrons into
minority t2g manifold) is accompanied by a significant
softening of the bulk modulus37. Further calculations
(not presented here) on CoO (2 minority-spin electrons)
and CoO+ (1 minority-spin electron) confirm this inter-
pretation: while CoO (with low-lying occupied e′g, and

essentially unoccupied eg) behaves like NiO, CoO+ (with
a1g occupied and eg partially occupied) has a splitting of
the same sign as MnO. The occupation of the minority eg
states can also be related to the change in the sign of J1
through super-exchange theory32–35: lower occupations
of these orbitals increase the weight of virtual transitions
to them and make the interactions more strongly nega-
tive (ferromagnetic). In this view, the change of sign of
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J1 and of the magnetic splitting can be regarded as con-
sequences of the redistribution of electrons on the TM d
states. A detailed study of the vibrational properties of
strongly correlated materials can therefore shed light on
their electronic structure and magnetic interactions.
To summarize: In this work we have introduced an

extension of DFPT allowing linear response calculations
from a DFT+U ground state. The scheme represents a
highly efficient method to calculate the entire vibrational
spectrum of systems with strong electronic correlation.
The approach exploits two computational advantages of
DFPT and DFT+U: i) the possibility to avoid supercell
calculations and ii) the affordable cost of the Hubbard
correction in the calculations of the total energy and its
derivatives. The excellent agreement with experimen-
tal measurements obtained for MnO and NiO demon-

strates the accuracy of the new computational tool. In
addition, the results suggest the possibility to investigate
fine details of the electronic structure of these materials
through their signature on the vibrational spectrum. The
methodological extension introduced in this work will be
crucial to study the behavior of TM compounds at finite
temperature and in studies requiring a highly accurate
vibrational spectrum, e. g. calculations of the electron-
phonon coupling in high-Tc superconductors.
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