
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Enhanced valence force field model for the lattice
properties of gallium arsenide

Sebastian Steiger, Mehdi Salmani-Jelodar, Denis Areshkin, Abhijeet Paul, Tillmann Kubis,
Michael Povolotskyi, Hong-Hyun Park, and Gerhard Klimeck

Phys. Rev. B 84, 155204 — Published 17 October 2011
DOI: 10.1103/PhysRevB.84.155204

http://dx.doi.org/10.1103/PhysRevB.84.155204


BE12055

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Enhanced valence force field model for the lattice properties of gallium arsenide

Sebastian Steiger,∗ Mehdi Salmani, Denis Areshkin, Abhijeet Paul, Tillmann

Kubis, Michael Povolotskyi, Hong-Hyun Park, and Gerhard Klimeck
Network for Computational Nanotechnology, Purdue University, West Lafayette IN 47907, USA†

(Dated: September 26, 2011)

An enhanced valence force field model for zincblende crystals is developed to provide a unified
description of the isothermal static and dynamical lattice properties of gallium arsenide. The ex-
pression for the lattice energy includes a second-nearest-neighbor coplanar interaction term, the
Coulomb interaction between partially charged ions, and anharmonicity corrections. General re-
lations are derived between the microscopic force constants and the macroscopic elastic constants
in zincblende crystals. Applying the model to gallium arsenide, parameter sets are presented that
yield quantitative agreement with experimental results for the phonon dispersion, elastic constants,
sound velocities, and Grüneisen mode parameters.
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I. INTRODUCTION

The calculation of static and dynamic properties of
crystal lattices from atomic configurations has a century-
long history.1 Interest in these quantities is currently re-
vived because of the increasing importance of thermal ef-
fects in nanodevices. CPU power consumption, combined
with increased resource scarcity, poses serious technolog-
ical challenges for which the quantitative understanding
of nano-scale lattice properties is critical.
A vast variety of models strain and phonon exist in lit-
erature, some of which agree very well with experimen-
tally reported values.2,3 The empirical valence force field
(VFF) approach4 offers an attractive alternative to more
accurate ab initio models3 due to its reduced computa-
tional cost and feasibility when it comes to the treatment
of systems where thousands, if not millions, of atoms need
to be explicitly considered. Yet, many devices are now
heavily influenced by interfaces, alloy disorder and de-
fects, such that an atomic-level understanding becomes
preferable over less computationally expensive contin-
uum models.
The simplest and most widely used flavor of the
VFF model due to Keating,5 together with anharmonic
corrections,6 has been shown to provide reasonable agree-
ment with experiment when it comes to the modeling
of electronic states in strained nanostructures.7 Yet it is
well-known that it fails to reproduce basic bulk proper-
ties of zincblende crystals. It can be easily shown that
the two parameters entering the Keating model provide
an insufficient amount of free parameters to match the
three elastic constants. Furthermore, the disregard of
the partially ionic nature of the bonds in III-V materials
leads to large discrepancies especially in dynamical prop-
erties like optical phonon modes.
Several extensions of the Keating model exist. The orig-
inal valence force field model for diamond4 was shown to
possess seven independent parameters in general, three of
which are related to interactions between second-nearest
neighbors. These results were extended to zincblende

structures by Martin8 via inclusion of the Coulomb in-
teraction between partially charged atoms within a rigid
point-ion approximation. However, the second-nearest
neighbor short-range interaction terms were neglected
in Ref. 8 as well as various other works.9–11 It was
shown earlier for diamond12 that especially the inter-
action associated with three connected coplanar bonds
plays a significant role. In Ref. 13 the experimentally ob-
served flattening of the TA mode near the zone bound-
ary was explained in terms of the coplanar interaction.
The importance of this interaction was advocated fur-
ther in Ref. 14. Zunger et al. have included the stretch-
bend interaction15,16 and, on one occasion,9 also the
cross-stretch interaction in successful descriptions of GaP
quantum dots,9 InAs quantum dots,15 InGaAs alloys16

and InAs/GaAs superlattices.16

It is known that the quasi-harmonic VFF approach fails
to provide even qualitative agreement with properties as-
sociated with volume expansion of the crystal.6,13 This
deficiency can be lifted by an inclusion of anharmonic
corrections to the force constants. The additional param-
eters enable a fitting of the Grüneisen mode parameters17

which describe the crystal behavior under hydrostatic
strain.
This work aims to unify the VFF descriptions for
zincblende crystals by including all nearest-neighbor as
well as the coplanar second-nearest neighbor interactions,
incorporating the Coulomb interaction within the rigid-
ion approximation8 and anharmonicity corrections. An
in-depth analysis of the resulting VFF model is presented
in an attempt to increase its applicability in zincblende
structures.
Two central results are derived within the scope of this
work: 1. an analytic relation between the model’s param-
eters and the second-order elastic constants, and 2. the
application of the enhanced model to GaAs. The result-
ing model will be shown to provide, for the first time,
a unified description of isothermal static and dynamic
lattice properties of a zincblende crystal using a VFF
approach. It agrees with reported experimental values to
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a satisfying degree.
After a detailed description of the model in Sec. II, an-
alytical expressions for the elastic constants and the in-
ternal strain parameter as a function of the force con-
stants are derived in Sec. III. These expressions extend
the work in Refs. 13 and 18 by including the Coulomb
interaction. In Sec. IV, parameter sets for gallium ar-
senide are presented which yield good agreement between
computed quantities and experimental measurements for
phonon spectra, elastic constants, sound velocities and
Grüneisen coefficients. A few aspects of the model are
revisited and a remark on its predictiveness is made. The
paper concludes in Sec. V.

II. MODEL

This section presents the expression for the lattice en-
ergy, which constitutes the core of the model, and out-
lines how a number of lattice properties are obtained from
it. The potential energy of the lattice is expressed in
terms of atomic locations as follows:4,13,14

U =
3

16
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[
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2
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|ri − rj |
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with

δrij ≡
(r2ij−d2ij)

dij
, (2a)

δθjik ≡ (rij ·rik−cos θ0dijdik)
√

dijdik
. (2b)

Here rij≡rj − ri is the bond vector pointing from atom
i to atom j, dij is a model parameter which in the ab-
sence of Coulomb interaction represents the equilibrium
length r0 of the bond i − j (see Subsection IIIA), θ0 is
the ideal tetrahedral bond angle, α, β, γ, δ, ν are the force
constants for bond stretching, bond bending, stretch-
bend interactions, cross-stretch interactions and coplanar
bend-bend interactions, respectively, and Zi is an effec-
tive point charge sitting at atom i. The summation of
i extends over all explicitly considered atoms (two for a
bulk primitive zincblende unit cell). NN (i) denotes all
nearest neighbors of atom i and COP(j−i−k−l) denotes
the condition that the bonds j−i, i−k and k−l need to
be coplanar.
Any background dielectric screening of the Coulomb in-
teraction is incorporated into the effective charges Zi,

which correspond to the Born transverse charge e∗T e in
Ref. 22 with ǫ∞ = 1. For bulk zincblende crystals they
can be determined from the experimental LO-TO phonon
splitting at Γ using the relationship23

Z2 = VprimMrǫ0(ω
2
LO − ω2

TO). (3)

Here Vprim = a3

4 is the volume of the primitive unit cell

and Mr ≡ MCMA

MC+MA
is the reduced cation-anion mass.

Thus there is a charge +Z sitting at cation sites and an
opposite charge −Z sitting at anion sites, as opposed to
bond-charge models2,24,25 where additional point charges
are fixed at24 or adiabatically moving around2,25 the mid-
dle of bonds. In bulk crystals the Coulomb interaction
is computed using Ewald summation26,27 (see Appendix
A).
For zincblende structures the force constants β, γ and δ
may differ depending on whether an anion (A) or a cation
(C) sits at the apex of the bond angle. However, it will
be shown that the lattice energy of bulk systems depends
only on the arithmetic average of the two values. It is
therefore convenient to define

β ≡ βACA+βCAC

2
, (4)

and similarly for γ and δ.
Comparison to other models: The present model is sim-
ilar to the one of Kane14 but includes stretch-bend and
third-order-stretching nearest-neighbor terms instead of
a second-nearest-neighbor stretch term. Also, the pa-
rameter sets in Refs. 13 and 14 were exclusively fitted
against selected phonon frequencies whereas this work
includes the elastic constants and the sound velocities
in the fitting procedure. Lastly, anharmonic parameter
corrections are introduced here to obtain agreement with
experimental Grüneisen parameters.
The Coulomb interaction is treated under the assumption
that as the ions oscillate, a constant fractional amount of
point-like charges moves along rigidly, generating merely
a monopole field.19 Kane’s model14 is more refined in
that it incorporates a multipole-expanded Coulomb inter-
action. The deformation-dipole-model (DDM) of Kunc
et al.20 allows for an additional deformation of the elec-
tronic charge with the lattice vibration and an electronic
polarizability due to microscopic fields. It was shown in
Ref. 21 that an 11-parameter rigid-ion model, which is
obtained from the 15-parameter DDM by neglecting po-
larizabilities, can match the accuracy of the DDM along
high-symmetry lines of the Brillouin zone, but the two
models differ in the phonon density of states which is a
signature of the entire phonon dispersion. This work as-
sumes the rigid-ion approximation to be sufficient, and no
attempts were made to fit the phonon density of states.
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A. Anharmonic modifications of the force constants

The force constants are assumed to have a parametric
dependence on the atomic positions:13

α = α0

(

1 +Aα∆
ij
r

)

, (5a)

β = β0

(

1 +Aβ∆
jik
r

)

, (5b)

γ = γ0
(

1 +Aγ∆
jik
r

)

, (5c)

δ = δ0
(

1 +Aδ∆
jik
r

)

, (5d)

ν = ν0

(

1 +Aν
∆jik

r +∆ikl
r

2

)

. (5e)

Here the definitions

∆ij
r ≡

r2ij − r20,ij
2r20,ij

, (6a)

∆jik
r ≡ rijrik − r0,ijr0,ik

2r0,ijr0,ik
(6b)

were made.
The dependencies in Eqn. 5 are parametric in the sense
that no spatial derivatives are taken during the compu-
tation of the dynamical matrix (see Eqn. 9). The an-
harmonic corrections thus influence the mode Grüneisen
parameters and third-order elastic constants but not the
second-order elastic constants or unstrained phonon dis-
persions, for the terms involving ∆r in Eqn. 5 vanish in
these cases.
Comparison to other models: The functional dependence
in Eqn. 5 is a simplified version of Sui et al.13 but dif-
fers from Refs. 6, 28 and also from the modified VFF
model in Ref. 29. In Refs. 6 and 13 additional anhar-
monic parameters related to bond angles are taken into
account which were derived from the shear deformation
parameter. However, the authors of Ref. 30, the orig-
inal source of this type of correction, argue that when
using a generalized model like the present one such ad-
ditional corrections are small. We also refrain from a
further proliferation of parameters by introducing atom-
type-dependent anharmonicity parameters.
Lastly it is noted that some angle dependence is indeed
included in all but the first terms of Eqn. 1, and it will be
shown that five independent parameters which are exclu-
sively related to anharmonicity provide sufficient degrees
of freedom to fit the corresponding Grüneisen parame-
ters.

B. Phonon spectra

Using the ansatz

unq(i)(t) = unq(i)e
i(q·ri−ωn(q)t) (7)

for an oscillating displacement unq(i)(t) with amplitude
unq(i) = (ux

nq,i, u
y
nq,i, u

z
nq,i)

T at an atomic site i, the

Newton equation of motion for the atoms becomes the
eigenvalue equation23

D(q)unq = ω2
n(q)unq, (8)

where ωn(q) is the phonon frequency of branch n and
wavevector q. The dynamical matrix D is related to the
second derivatives of the potential energy by9,26

Diµ,jν (q) =
1

√

MiMj

∑

l

∂2U

∂rµi ∂(r
ν
j +Rν

l )
e−iq·Rl . (9)

Here i and j denote atomic indices in the primary unit
cell, Mi and Mj are the respective masses, µ, ν∈{x, y, z}
and l runs over all lattice vectors Rl.

C. Elastic constants and internal strain parameter

In the presence of homogeneous strain, the Bravais vec-
tors ai of the crystal experience a distortion

a′i = (1+ ǫ)ai, (10)

where ǫ is the (infinitesimal) strain tensor. In addition,
the two-atom zincblende primitive unit cell composed of
a cation at rC =0 and an anion at rA= a

4 (1, 1, 1) can be
distorted internally by an additional displacement of one
atom with respect to the other:13,23

r′A = (1+ ǫ)rA − ξ
a

2





ǫyz
ǫxz
ǫxy



 . (11)

Here ξ denotes Kleinman’s internal strain parameter. A
relationship between ξ and the force constants can be
found by a condition of minimal energy:13

∂U

∂ξ

∣

∣

∣

∣

ξ=ξ0

= 0. (12)

D. Sound velocities and Grüneisen mode

parameters

The sound velocities of acoustic branches

cns ≡ ∂ωn(0)

∂q
(13)

and the Grüneisen mode parameters17

γn(q) ≡
Vprim

ωn(q)

∂ωn(q)

∂Vprim
(14)

can be determined numerically from the computed
phonon spectra (see also comment in Appendix A).
The authors observed that the small-strain limit for the
Grüneisen parameters is only reached for bond length dis-
tortions below 0.01%. However, the results in Sec. IV are



4

computed using a hydrostatic strain of 0.03, correspond-
ing to a bond elongation of 1%. This yields values for the
Grüneisen coefficients which can differ by as much as 10%
from the converged small-strain values. This choice was
made in anticipation of nonvanishing strain in nanostruc-
tures. It is also noted that γLO(Γ) and γTO(Γ) have the
same value in the limit of vanishingly small strain, but
the reported experimental values (see Table II) exhibit a
split.

III. ANALYTICAL RESULTS

This section presents analytical results following from
the model in Sec. II. First, it is shown that the model
parameter d cannot simply be chosen as the equilibrium
bond length in a polar crystal if the consistency of the
model is to be preserved. Second, material properties
such as the elastic constants are expressed in terms of
the model input parameters.

A. Coulomb-induced modification of the model

parameter d

Usign Eqns. 1 to 6, the crystal energy of a bulk
zincblende primitive unit cell in equilibrium can be found
by inserting the atomic positions and exploiting period-
icity. It evaluates to

U unstrained

bulk
=

(

F +G
r20 − d2

2d2

)

(r20 − d2)2

2d2
+ αM

S

r0
, (15)

where

S ≡ Z2

4πǫ0
(16)

is the strength of the Coulomb interaction, r0 is the bond
length, and the definitions

F ≡ 3α0 + β0 − 3γ0 + 9δ0 + ν0, (17a)

G ≡ 6α0r0Aα + β0Aβ − 3γ0Aγ + 9δ0Aδ + ν0Aν(17b)

were made. αM is the Madelung constant for zincblende:

αM ≡ −1.638055053388790. (18)

The constant was computed to this accuracy by equat-
ing αM

S
r0

with the numerically evaluated Ewald sum (see

Appendix A).
As pointed out in Ref. 31, the energy of an unstrained
bulk crystal should be minimal at the experimental bond
length r0,exp in order for the model to be consistent. The

attractive Coulomb energy shifts the minimum to smaller
bond lengths and hence d must be modified to counter-
balance this effect. Applying the condition

∂U unstrained

bulk

∂r0

∣

∣

∣

∣

r0=r0,exp

= 0 (19)

to Eqn. 15 yields a relation between d and the experi-
mental bond length. In the absence of anharmonic cor-
rections the relation reads

d2 = r20,exp
1

1 + S1
, (20)

where

S1 ≡ S
αM

2Fr30,exp
. (21)

When anharmonic corrections are included the relation
becomes

d2 = r20,exp
2 + G

2F

1 + S1 +
G
2F +

√

(1 + S1)2 +
G
F S1

. (22)

The experimental bond length r0,exp will henceforth be
called r0. We find that the analytical expressions in the
following section become intractable when using Eqn. 22.
Hence Eqn. 20 is used for all subsequent results, includ-
ing the parameter fitting, causing a minor inconsistency
of the model. Using this approach, the force constants as
well as the parameter d are not influenced by the anhar-
monicity constants in an unstrained crystal. Thus the
unstrained phonon spectra remain unchanged with re-
spect to the choice of the anharmonic coefficients. The
influence of the choice of d is revisited in Subsection IVC.

B. Elastic constants, internal strain parameter and

sound velocities

Using the program Mathematica, Eqns. 10 and 11 can
be inserted into Eqn. 1 for the primitive zincblende unit
cell, using Eqn. A1 for the Coulomb term. A Taylor
expansion to second order in ǫij can then be compared
to the total energy per primitive unit cell in terms of the
elastic constants:13

U(ǫ)

Vprim
=

U(0)

Vprim
+

C11

2
(ǫ2xx + ǫ2yy + ǫ2zz)

+C12(ǫxxǫyy + ǫxxǫzz + ǫyyǫzz)

+2C44(ǫ
2
xy + ǫ2xz + ǫ2yz). (23)

The result reads
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C11 =

√
3

4r0

(

(α0 + 3β0 − γ0 + 3δ0 + 3ν0) + (5α0 + 7β0 − 5γ0 + 15δ0 + 7ν0)
S1

2

)

+ B S

r40
, (24a)

C12 =

√
3

4r0
(α0 − β0 − γ0 + 3δ0 − ν0) (1 + S1) + C S

r40
, (24b)

C44 =

√
3

4r0

[(

(1− ξ)2α0 + (1 + ξ)2β0 − (1− ξ2)γ0 − (1− ξ)2δ0 + (1 + ξ)2ν0
)

+
(

7α0 + 5β0 − 7γ0 + 5δ0 + 5ν0 + 8(−α0 + β0 + δ0 + ν0)ξ + 2(5α0 − β0 + 5γ0 + 7δ0 − ν0)ξ
2
) S1

4

]

(24c)

+(D + Eξ − 3π

64
ξ2)

S

r40
,

ξ =
(α0 − β0 − δ0 − ν0)(1 + S1)− 2ES√

3r30

(α0 + β0 + γ0 − δ0 + ν0) + (5α0 − β0 + 5γ0 + 7δ0 − ν0)
S1

2 −
√
3πS

16r30

. (24d)

Here the numerical constants B, C,D, E are

B ≡ +0.034811170691607, (25a)

C ≡ −0.194730246474826, (25b)

D ≡ −0.106067915910315, (25c)

E ≡ +0.707179791600111. (25d)

The constants β0, γ0 and δ0 in Eqns. (24a-d) represent
the averages between anion and cation values, as defined
in Eqn. 4. This averaging is not an approximation but
an outcome of the calculation that is related to the sym-
metry properties of the crystal.
From Eqn. 15 and Eqns. (24a-d) it can be seen that a) the
contributions of the harmonic parameters to the crystal
energy have the same order of magnitude and b) there
is an intricate interplay between the parameters when
it comes to crystal distortions. It is therefore nontrivial
to make any judgment on the signs that the parameters
should have. Indeed, any combination of positive and
negative parameters will increase the crystal energy in
the presence of distortions as long as the resulting elastic
constants are positive. This situation is further compli-
cated by the fact that the elastic constants are invariant
with respect to sign inversion of the cation and anion val-
ues of β, γ and δ.
Comparison to other models and validation: It is impor-
tant to put Eqns. (24a-d) in context with earlier work.
The equations are consistent with Ref. 13 in the limit of
nonionic crystals, apart from the prefactor in front of δ0
in the expression for C44. The numerical constant B is
very close to equivalent expressions found in Refs. 1 and
32, the results of which are used in other work related
to the Coulomb interaction in zincblende crystals.33,34

However, the cited calculations assume two-body cen-

tral forces for the repulsive interaction while Eqn. 1 vi-
olates this assumption. Although the purely Coulombic
terms are not influenced by this disparity, a deviation
from the total expressions for the elastic constants ob-
tained in Refs. 1 and 32 can be expected. Furthermore,
a comparison of the Coulomb energies for an unstrained
crystal and a crystal with small hydrostatic strain yields
the relation

C =
3
√
3αM

16
− B

2
, (26)

which is fulfilled by the values in Eqns. 25a and 25b.
Another validation of Eqns. (24a-d) is given by compar-
ison to sound velocities evaluated from Eqn. 13. The
following relations hold for cubic crystals:23

cTA
s [100] =

√

C44/ρ, (27a)

cLA
s [100] =

√

C11/ρ, (27b)

cTA1
s [110] =

√

(C11 − C12)/(2ρ), (27c)

cTA2
s [110] =

√

C44/ρ = cTA
s [100], (27d)

cLA
s [110] =

√

(C11 + 2C12 + 4C44)/(2ρ), (27e)

cTA
s [111] =

√

(C11 − C12 + C44)/(3ρ), (27f)

cLA
s [111] =

√

(C11 + 2C12 + 4C44)/(3ρ), (27g)

where ρ = 4(MC +MA)/a
3 is the mass density. These

simple relations are indeed satisfied by the results in Sec-
tion IV. Using Eqns. 24 and 27, the elastic constants and
sound velocities can be predicted analytically from the
VFF parameters without the need for numerical phonon
energy computations.
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Constant P8 P5 P8/C P5/C P8/el P5/el

α0 [N/m] 38.8356 39.3883 45.0000 38.9425 43.2347 43.8470
β0,ACA [N/m] 1.9074 2.8660 13.0980 4.0663 -2.6178 3.1854
β0,CAC [N/m] 12.8298 2.8660 -5.1908 4.0663 11.3187 3.1854
γ0,ACA [N/m] 81.6749 0.0 19.2399 0.0 48.0814 0.0
γ0,CAC [N/m] -88.4692 0.0 -22.4448 0.0 -54.3912 0.0
δ0,ACA [N/m] 45.6625 1.7962 5.1675 0.0 22.0988 4.5357
δ0,CAC [N/m] -43.7240 1.7962 -10.0261 0.0 -16.4250 4.5357

ν0 [N/m] 1.9238 6.5832 5.6298 5.8559 3.3087 3.9710
Z [e] 0.658741 0.658741 0.0 0.0 0.658741 0.658741

Aα [nm−1] -13.1091 -12.1307 -11.5785 -12.9325 -13.0084 -12.1712
Aβ -2.7353 -11.3577 -4.8975 -3.5689 -10.3376 -15.0271
Aγ -3.2391 — -15.4117 — -11.3817 —
Aδ -10.0070 1.1664 -11.0843 — -7.2233 -3.0958
Aν -23.1807 -5.8621 -5.4246 -3.7367 6.6924 -4.6313

TABLE I: Force constants (see Eqn. 1) and anharmonicity correction parameters (see Eqn. 5) for gallium arsenide. The
columns correspond to the full model (P8), 5-parameter model (P5), 8-parameter model excluding Coulomb interaction (P8/C),
5-parameter model excluding Coulomb interaction (P5/C), 8-parameter model disregarding the elastic constants (P8/el) and
5-parameter model disregarding the elastic constants (P5/el).

IV. RESULTS FOR GALLIUM ARSENIDE

This section presents and discusses sets of force con-
stants obtained by numerically fitting the model out-
comes against experimental targets. It is anticipated that
the importance of the different lattice properties varies
with the application of the model, and that parameters
can be specialized to model certain problems particu-
larly well. For example, in thermal transport problems
the elastic constants may be disregarded for the bene-
fit of having a better fitted phonon dispersion. On the
other hand, the influence of optical modes is expected
to be negligible in lattice relaxation problems or low-
gradient phonon transport. Neglecting the Coulomb in-
teraction, which poses tremendous computational chal-
lenges in large systems, is thus desirable for such prob-
lems. Six different parameter sets are therefore presented
in this work:

1. The full-fledged model presented in the preced-
ing sections, termed P8, consists of 8 parameters
for unstrained zincblende materials and an addi-
tional 5 parameters related to anharmonicity cor-
rections. The parameters were fitted against tar-
gets for the phonon dispersion along three symme-
try lines, sound velocities, elastic constants and (for
the anharmonicity corrections) Grüneisen parame-
ters.

2. A simpler fit termed P5 assumes the parameters
β, γ and δ to be the same for anions and cations,
resulting in 5 free parameters for the unstrained
case.

3. 4. Two fits against the acoustic phonon branches and
elastic constants were performed under exclusion of
the Coulomb interaction (P8/C, P5/C).

5. 6. Fits were performed against all phonon branches,
disregarding the elastic constants (P8/el, P5/el).

The results of several other fits are not reported in
detail here. It was empirically found that fits of the
acoustic branches alone do not yield any significant im-
provement over the P8/C and P5/C fits. Fits of the
acoustic branches and elastic constants which include the
Coulomb interactions also do not improve the P8/C and
P5/C fits, as can be expected. The authors also tried
a six-parameter model where the stretch-bend interac-
tion was neglected. This model yielded no significant
improvement over the 5-parameter model.
As already mentioned in Section III B, an a priori de-
termination of the correct signs of the model parameters
β, γ and δ is not straightforward. The authors’ experi-
ence is that fits of similar quality can be achieved with
combinations of different, sometimes opposite, signs, thus
suggesting ambiguities in the model parameters. For the
lack of better knowledge, the convention is made that the
cation values of γ and ν be positive and the anion values
be negative in the P8/el and P8/C fits. Furthermore, all
parameters are chosen to be nonnegative in the P5 fits.
The numerical computation of all quantities was per-
formed using NEMO5, a nanoelectronics modeling tool
developed by the authors to obtain a diverse range of
nanostructure characteristics. The details of NEMO5 are
presented elsewhere.35 The implementation was validated
against literature results.6,11,13,18,36
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|Quantity [unit] Exp. P8 dev. P5 dev. P8/C dev. P5/C dev. P8/el dev. P5/el dev.
|C11 [GPa] 119.0 120.20 1% 120.35 1% 120.83 2% 121.54 2% 129.32 9% 131.29 10%
C12 53.4 55.53 4% 54.63 2% 51.33 -4% 51.33 -4% 75.43 41% 80.77 51%
C44 59.6 58.26 -2% 54.57 -8% 58.86 -1% 55.95 -6% 51.42 -14% 45.52 -24%
|cTA
s [100] [km/s] 3.34 3.31 -1% 3.20 -4% 3.32 -1% 3.24 -3% 3.11 -7% 2.93 -12%

cLA
s [100] 4.73 4.75 0% 4.76 1% 4.76 1% 4.78 1% 4.93 4% 4.97 5%

cTA1

s [110] 2.47 2.47 0% 2.49 1% 2.55 3% 2.57 4% 2.25 -9% 2.18 -12%

cTA2

s [110] 3.34 3.31 -1% 3.20 -4% 3.33 0% 3.24 -3% 3.11 -7% 2.93 -12%

cLA
s [110] 5.24 5.24 0% 5.17 -1% 5.22 0% 5.17 -1% 5.38 3% 5.34 2%

cTA
s [111] 2.78 2.78 0% 2.75 -1% 2.83 2% 2.81 1% 2.57 -8% 2.45 -12%

cLA
s [111] 5.39 5.40 0% 5.30 -2% 5.36 -1% 5.30 -2% 5.52 2% 5.46 1%
|ξ ca. 0.55 0.575 5% 0.526 -4% 0.67 22% 0.59 7% 0.67 22% 0.634 15%
|̄hωLO(Γ) [meV] 36.35 36.07 -1% 37.16 2% 40.23 11% 37.58 3% 36.50 0% 36.98 2%
h̄ωTO(Γ) 33.62 33.17 -1% 34.35 2% 40.23 20% 37.58 12% 33.63 0% 34.15 2%
h̄ωLO(X) 29.78 28.90 -3% 27.73 -7% 29.27 -2% 28.15 -5% 29.30 -2% 29.14 -2%
h̄ωTO(X) 31.80 32.42 2% 30.11 -5% 37.09 17% 33.55 6% 32.12 1% 31.00 -3%
h̄ωLA(X) 27.91 27.20 -3% 26.76 -4% 27.76 -1% 27.15 -3% 27.57 -1% 28.11 1%
h̄ωTA(X) 10.13 8.93 -12% 10.58 4% 10.06 -1% 10.83 7% 10.00 -1% 10.93 8%
h̄ωLO(L) 29.98 30.45 2% 27.61 -8% 31.67 6% 29.34 -2% 30.97 3% 29.37 -2%
h̄ωTO(L) 32.67 32.04 -2% 32.28 -1% 38.64 18% 35.62 9% 32.62 0% 32.60 0%
h̄ωLA(L) 25.64 24.81 -3% 25.21 -2% 23.47 -8% 23.56 -8% 24.64 -4% 26.14 2%
h̄ωTA(L) 7.86 8.83 12% 6.92 -12% 7.35 -6% 7.66 -3% 7.59 -3% 7.22 -8%
|γLO(Γ) 1.23 1.34 9% 1.23 0% 1.23 0% 1.31 7% 1.16 -6% 1.23 0%
γTO(Γ) 1.39 1.50 8% 1.36 -2% 1.23 -12% 1.31 -6% 1.28 -8% 1.36 -2%
γLO(X) 1.01 0.79 -22% 1.11 10% 1.21 20% 1.16 15% 1.19 18% 1.12 11%
γTO(X) 1.73 1.51 -13% 1.73 0% 1.49 -14% 1.69 -2% 1.73 0% 1.74 1%
γLA(X) 1.22 1.44 18% 1.11 -9% 1.01 -17% 1.16 -5% 1.08 11% 1.12 -8%
γTA(X) -1.62 -1.86 15% -1.39 -14% -1.75 8% -1.57 -3% -1.62 0% -1.44 -11%
γLO(L) 1.62 1.38 -15% 1.59 -2% 1.52 -6% 1.71 6% 1.53 -6% 1.60 -1%
γTO(L) 1.5 1.59 6% 1.51 1% 1.34 -11% 1.47 -2% 1.51 1% 1.52 1%
γLA(L) 0.56 0.68 21% 0.64 14% 0.57 2% 0.55 -2% 0.74 32% 0.60 7%
γTA(L) -1.7 -1.45 -15% -1.92 13% -1.75 3% -1.76 4% -1.70 0% -1.87 10%

TABLE II: Comparison of literature values versus model results for the lattice properties of GaAs. The different models P8,
P5, P8/C, P5/C, P8/el and P5/el are discussed in the text. The column to the right of P8 displays the deviation between
calculated and experimental values.

A. Model parameter sets and comparison to

experimental values

The fitted parameter sets are displayed in Table I.
The procedure for obtaining these sets via genetic al-
gorithms is outlined in Appendix B and, to a more de-
tailed extent, in Ref. 37. Table II compares the model
outcomes and experimental targets. Experimental val-
ues for the targets are taken from Ref. 38 for the room
temperature elastic constants Cij and sound velocities
cs. The value of the internal strain parameter ξ has
a large uncertainty39 but seems to be roughly 0.55.40

Data from Ref. 41 is used for the phonon spectra and
frequencies at high-symmetry points. It is noted that
even though the measurements in Ref. 41 were taken
at T = 12K, the temperature dependence is expected
to be relatively small42 and the authors were unable
to find comparable room-temperature data. Targets
for the Grüneisen parameters are taken from experi-

mental data43 for γLO,TO(Γ), γTO,TA(X) and γTO,TA(L)
and from ab initio calculations44 for γLO,LA(X) and
γTO,TA(L). The calculations use a lattice constant of
a = 0.565324nm and atomic masses MGa = 69.723amu
and MAs = 74.92160amu.

B. Discussion of the fits

1. Best overall fit

Phonon spectra: Figure 1 shows the result obtained by
fitting the 8-parameter model against the sound veloci-
ties, the elastic constants, and the entire phonon disper-
sion (P8 parameter set). Also plotted for comparison is
the Keating model with Martin’s parameters8 that were
optimized for the elastic constants. The P8 fit slightly
overestimates the coplanar interaction, as can be seen by
the negative slope of the TA branch around X , and has
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FIG. 1: Phonon dispersion of gallium arsenide. Solid line: P8
set of parameters (see Table I) fitted against the dispersion,
the sound velocities and the elastic constants. Dashed line
Keating model with α = 41.19N

m
, β = 8.94N

m
8. Crosses:

Experimental data.41

a large imbalance between anion and cation parameters.
Also, the main quantitative deviations to experimental
data occur at the zone boundary betweenX andK where
the rigid ion model is most likely to break down.21

Grüneisen parameters: As mentioned in Subsec. II A,
the Grüneisen parameter fits in Table II were obtained
by comparing the phonon frequencies for a hydrostatic
strain of 0.03 with the unstrained phonon frequencies.
This may yield results which differ from the small-strain
limit by as much as 10%. An accurate modeling of
Grüneisen parameters has been problematic in the past.
Ab initio calculations exhibit deviations from experiment
of up to a factor of 2.3,45 Ref. 17 used a rigid ion model
to obtain results within 20% of experiment. In Ref. 46
a bond charge model calculation yielded agreement on
the order of 10% or better when employing a finite hy-
drostatic strain of 0.01 for the finite-difference extrac-
tion. In Ref. 6 a different type of anharmonic correction
was used to obtain the correct signs of all but one of the
Grüneisen parameters within a Keating VFF description,
however differences to experimental values of up to 90%
remained. With these prior efforts in mind, and given
some uncertainty about experimental methods, the max-
imum discrepancy of 22% in the fits of the Grüneisen
parameters of the P8 model can be termed sufficiently
accurate.
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FIG. 2: Phonon dispersion of gallium arsenide obtained with
the 5-parameter model (see Table I). Solid line: P5 parameter
set. Crosses: Experimental data.41

2. 5-parameter fit

The 5-parameter fit is in qualitative disagreement with
experiment for the optical branches along the Σ-line
and overestimates the maximum of the upper TA mode
around K. An accurate model for these parts of the
phonon dispersion should employ 8 parameters. How-
ever, the 5-parameter model offers a good description of
the low-frequency acoustic branches as well as the elastic
constants. The maximum deviation from experiment for
the lower TA mode occurs at L (12%). The Grüneisen
parameters are fit better than for the P8 set, with a max-
imum discrepancy of 14%.
From Table I it is observed that the best 5-parameter
fits employ no stretch-bend and only a small, if any,
cross-stretch interaction. This stands in contrast to the
coplanar interaction, which is essential in order to obtain
flattened TA branches around X and L. Neglecting the
coplanar interaction term results in either an overestima-
tion of the zone-boundary phonon frequencies8 or an un-
derestimation of the frequencies around the zone-center
and the speed of sound (such as with the n=1 parame-
ters in Ref. 14). In Ref. 14 the cross-stretch interaction
was termed the least important out of all considered ones
(the stretch-bend term was not included), which is con-
sistent with the present findings. It was found in the
scope of the present work, however, that a 6-parameter
model which takes into account the different atom types
but neglects the stretch-bend term, does not yield fits of
the same quality as the 8-parameter model.
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FIG. 3: Comparisons of results obtained using models fitted
exclusively against the dispersion relation (see Table I). Solid
line: P8/el parameter set. Dashed line: P5/el parameter set.
Crosses: Experimental data.41

3. Fits neglecting the elastic constants

The requirement of matching the elastic constants is
relaxed in the fits displayed in Fig. 3. The fitting process
still incorporates the sound velocities to a small extent in
order to retain physically meaningful values. The P8/el
fit of the phonon dispersion seems less forced than the P8
fit and has parameters of smaller magnitude, but it al-
lows for discrepancies versus experimental values of up to
40% in the elastic constants (see Table II). The discrep-
ancy of the upper TA mode around K is larger than in
the P8 set, suggesting that atom-type-dependent param-
eters which are large and of roughly opposite magnitude
are required to fit it. The P5/el set models most of the
phonon dispersion to a satisfactory degree but has both
qualitative and quantitative deficiencies along the Σ-line
near the zone boundary. The Grüneisen parameters are
generally modeled well, with the exception of γLA(L) in
the P8/el set. As with the P8 and P5 fits, the P5/el fit of
the Grüneisen parameters has less deviations (max. 11%)
than the P8/el fit (max. 32%).

4. Fits neglecting Coulomb interaction

For the modeling of large nanostructures consisting of
thousands or millions of atoms, the long-range Coulomb
interaction poses a serious challenge as it destroys the
sparsity of the involved matrices. The P8/C and P5/C
parameter sets were obtained by fitting the acoustic
phonon branches as well as the elastic constants with-
out Coulomb interaction. The obtained fits (Fig. 4)
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FIG. 4: Comparisons of results obtained using models with-
out Coulomb interaction (see Table I). The parameter sets
were obtained by fitting the acoustic branches and sound ve-
locities, as well as the elastic constants. Solid line: P8/C
parameter set. Dashed line: P5/C parameter set. Crosses:
Experimental data.41

are sufficiently good as long as the optical modes are
not of critical interest. The dispersion curves are lack-
ing any LO-TO splitting and overestimate the optical
phonon energies in general. Main deviations in the acous-
tic branches occur for the upper TA branch near K and
the LA branch near L. The Grüneisen parameters for
the acoustic modes are generally modeled well.

C. Discussion of some model aspects

1. Influence of the correction of d

In Subsection III A it was argued that the model pa-
rameter d must deviate from the experimental bond
length r0 in the presence of Coulomb interaction. Figure
5 displays the phonon dispersion obtained with the P8
parameter set for three different choices of d: d accord-
ing to Eqn. 20 (same as Fig. 1), d= r0, and d according
to Eqn. 22. It is apparent that the choice of d has a large
influence on the obtained results, and the parameter sets
need to be consistent with this choice. d typically dif-
fers from r0 by 1.5-2%, but the simplification of using
Eqn. 20 instead of Eqn. 22 only imposes minor changes
on the order of 10−4r0 on the bond length and 0.1meV
(<1%) on the dispersion. This provides an a posteriori

justification of the simplification of using Eqn. 20 instead
of Eqn. 22. The three cases reduce to one in the absence
of Coulomb interaction.



10

0

5

10

15

20

25

30

35

40

Γ X K Γ L
∆ Σ Λ

ph
on

on
 e

ne
rg

y 
[m

eV
]

Γ X K Γ L
∆ Σ Λ

Γ X K Γ L
∆ Σ Λ

FIG. 5: Phonon dispersion of GaAs using the P8 parameter
set in Table I and different choices of d. Solid line: d according
to Eqn. 20. This was the choice for the fit. Dashed line:
d = r0. Dash-dotted line: (almost overlapping with the solid
curve) Eqn. 22. Crosses: Experimental data.41

2. Anharmonicity and the elastic constants

Eqns. 24 for the second-order elastic constants are ex-
act as long as the functional dependence of the VFF pa-
rameters on the bond lengths, given in Eqns. 5, is taken
to be parametric, i.e. no spatial derivatives of the force
constants are taken for the energy gradient and the dy-
namical matrix. Table III illustrates the difference to
the case when the derivatives are included. A difference
of up to 28% is observed when including Coulomb in-
teractions, compared to less than 3% difference without
it. The Coulomb interaction introduces a monotonically
decaying long-range potential which is counterbalanced
with the short-range VFF potential such that an ener-
getic minimum energy at the equilibrium bond length is
achieved. However, the short-range potential taken by

itself has a non-vanishing first derivative
∂δrij
∂ǫ at this po-

sition, and anharmonicity thus yields contributions of the

form ∂α
∂ǫ

∂δrij
∂ǫ . The parametric dependence assumption

therefore has a strong influence on the second-order elas-
tic constants in systems with Coulomb interaction.
The authors have also derived equations for the six

independent third-order elastic constants47,48 under the
assumption of a full (not parametric) anharmonic depen-
dence of the VFF parameters. This can be achieved by
expanding Eqns. 1 and 5 up to third order in the in-
finitesimal strain ǫij and transforming the results to the
expansion in terms of the Lagrangian strain.47,48 The
third-order expansion of the energy depends heavily on
the parametric dependence assumption. Alternatively,
third-order constants can be extracted numerically from

Parameter set P8 P5 P8/C P5/C

C11 (param.) [GPa] 120.2 120.4 120.8 121.5
C11 (full) [GPa] 140.5 137.0 120.4 121.5

C12 (param.) [GPa] 55.53 54.63 51.33 51.33
C12 (full) [GPa] 75.70 71.20 52.59 51.33

C44 (param.) [GPa] 58.26 54.57 58.86 55.95
C44 (full) [GPa] 61.73 58.43 57.95 55.95

TABLE III: Influence of the anharmonicity model on the
second-order elastic constants. param. denotes the values for
a model where the dependence of the VFF parameters on the
bond stretching (Eqns. 5) is taken to be parametric, i.e. no
spatial derivatives are included in the dynamical matrix. The
second-order elastic constants are then independent of the
anharmonicity parameters (Eqns. 24). full denotes the values
for a model where such derivatives are included.

0

5

10

15

20

25

30

35

40

L X W L
Z Q

p
h

o
n

o
n

 e
n

e
rg

y
 [

m
e

V
]

FIG. 6: Phonon dispersion of GaAs along the path L−X −
W−L. Solid line: P8/el parameter set (see Table I). Crosses:
Experimental data.41

the dependence of the sound velocities on hydrostatic and
uniaxial pressure.49 Incorporation of the third-order con-
stants into the fitting process and understanding the rela-
tionship between third-order constants and anharmonic
VFF parameters is the scope of future work.

3. Predictiveness of the model

The strength of any model is given by its ability to
predict experimental data not included in the fitting pro-
cess. While applications to nanostructures lie outside the
scope of this work, a first indication of the model’s predic-
tive abilities is given by phonon frequencies which were
not included in the fitting process. Fig. 6 compares the
model versus experiment for the phonon dispersion path
L−X−W −L. Good agreement is observed, suggesting
a solid physical foundation of the chosen approach.



11

V. CONCLUSION

This paper presents an extended valence force field
model for the static and dynamic lattice properties of
zincblende crystals, and applies it to gallium arsenide.
The goal of the model is to provide a unified VFF descrip-
tion of isothermal elastic properties as well as phonon
modes which agrees with experiment. Computational
methods, in particular the software Mathematica for an-
alytical transformations and NEMO5 35 for numerical
phonon dispersion calculations, enable the following two
main results: Eqn. 24, an expression for the elastic con-
stants in zincblende materials as a function of the force
constants and the fractional ionic charges, and Table I,
parameter sets for gallium arsenide that are found by fit-
ting against published experimental values. Good agree-
ment between model and experiment was achieved for
all considered quantities, surpassing prior VFF-based ef-
forts.
The P8 parameter set represents the most consistent fit,
but it is shown that for practical purposes good results
can also be achieved using less parameters. The P5/C
set, which excludes Coulomb interaction, may be em-
ployed for the static strain relaxation in nanostructures.
The P5/el and P8/el models may be useful in the model-
ing of thermal transport or electron-phonon interactions.
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Appendix A: Ewald sum

An accurate computation of the long-range Coulomb
interaction energy in a bulk crystal with point charges
Zi is achieved by adding and subtracting a charge dis-
tribution −ZiGσ(r) around every position ri, where Gσ

is a normalized Gaussian distribution with standard de-
viation σ. The interaction then splits into a short-range
part, which can be computed in real space by a finite
sum over a few unit cells, and a long-range term that
has a fast-decaying analytical expression in reciprocal
space. The standard deviation σ of the Gaussian is a
tunable parameter that allows for balancing short- and
long-range contributions and reasonably small cut-offs in

both spaces. The Coulomb energy becomes26,27

Ucoul = US + UL − Uself

=
1

4πǫ0

1

2

N
∑

i=1

∑

n

N
∑

j=1

’
ZiZj

|ri−rj+Rn|
erfc

( |ri−rj+Rn|√
2σ

)

+
1

2Vprimǫ0

∑

G 6=0

exp
(

−σ2G2/2
)

G2
|S(G)|2

− 1

4πǫ0

1√
2πσ

N
∑

i=1

Z2
i . (A1)

Here Rn = n1a1 + n2a2 + n3a3 is a real-space lattice
vector, G = nk1b1+nk2b2+nk3b3 is a reciprocal lattice
vector, S(G) ≡ ∑

i

Zie
iGri is called structure factor and

erfc(x) ≡ 1− erf(x) is the complementary error function.
We compute the sums using σ = 0.05 nm ∼ r0

5 , with
a cutoff in reciprocal space of −5 ≤ nki ≤ 5 and
short-range interactions up to the second-nearest neigh-
bor (cutoff range ~0.3 nm).
The computation of contributions to the dynamical ma-
trix arising from Eqn. A1 is nontrivial due to non-
analytical behavior at q=0.3,26 The results obtained in
Ref. 26 are replicated here for completeness. The contri-
bution to the dynamical matrix elementDiµ,jν(q) (where
i, j are atom indices and µ, ν ∈ {x, y, z}, see Eqn. 9) aris-
ing from such Coulomb forces is

DC
iµ,jν (q) = − ZiZj

4πǫ0
√

MiMj

Qµν(i, j|q) (A2)

+δij
∑

j′

ZiZj′

4πǫ0Mi
Qµν(i, j

′|0).

Here δij is the Kronecker symbol, V is the volume of
the cell and the index j′ runs over all the atoms of the
considered cell. Qµν(i, j|q) is defined as follows:

Qµν(i, j|q) ≡ −δq 6=0
4π

V

qµqν
q2

e−σ2q2/2eiq·(ri−rj) (A3)

−4π

V

∑

G 6=0

|G+q|µ|G+q|ν
|G+q|2 e−

√
2/4σ|G+q|2ei(G+q)·(ri−rj)

+
1

(
√
2σ)3

∑

n

Hµν

(

ri−rj+Rn√
2σ

)

e−iq·(ri−rj+Rn).

The index n includes the primary cell itself. The function
H is defined as:

Hµν(x) ≡ xµxν

x2

(

3

x3
erfc(x) +

2√
π

(

3

x2
+ 2

)

e−x2

)

−δµν

(

1

x3
erfc(x) +

2√
π

1

x2
e−x2

)

. (A4)

The sound velocities in Table II were computed from fi-
nite differences in absence of the nonanalytic term on the
first line of Eqn. A3. Inclusion of this term even for small
q results in erroneous values in particular for cTA2

s [110]
and cLA

s [111].
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Appendix B: Parameter fitting procedure

The parameter sets of Table I were found using a par-
allel genetic algorithm50 (PGA) fitting method. This
method is inspired and steered by biological processes.
The fitting process starts with an initial population of
random force constants which are coded as chromosomes.
By applying selection, crossover and mutation processes
to chromosomes, a better population is searched for. The
measure of fitness is provided by a cost function which is
taken as the sum of the weighted least-square residuals
between the target values and model outputs. The GA
process tries to minimize this cost function. The algo-
rithm is stopped after a fixed number of iterations.
The fitting was divided into two phases: In a first
phase, the 8 or 5 harmonic force constants α0, β0, γ0, δ0
and ν0 were fitted against some or all branches of
the dispersion relation, the sound velocities, and pos-
sibly the elastic constants. Then, for fixed harmonic
force constants, the anharmonic correction parameters
Aα, Aβ , Aγ , Aδ, Aν were fitted to the Grüneisen parame-
ters.
Three issues needed to be considered in the process:

• A multi-objective cost function was used in order
to obtain a variety of physical characteristics of the
material. The process of assigning weights to the
various targets is intricate and requires manual ad-
justment. Thus any fit reflects decisions on the
relative importance of the targets which can be ad-
justed at will.

• Model inputs need to be constrained in order to
retain their physical meaningfulness. This was
achieved by adding a large penalty to the cost value
when a parameter lies outside a certain range. The
range consists of a maximum (soft-wall) boundary
of 45 N/m for α without which the GA for the
acoustic mode fits would have pushed up the opti-
cal branches to unphysically high values. For the
P8/el and P8/C sets the coefficients β, γ and δ were
restricted to have positive values for the cation and
negative values for the anion, as ambiguities in the
signs may exist in the model. The 5-parameter co-
efficients were restricted to be nonnegative.

• Errors in reported experimental values were ini-
tially accounted for by modifying the cost function
to vanish within a certain range, typically 1%, of
the target rather than just the target itself. How-
ever, this adjustment did not improve the fitting
process, and the reported parameter sets do not
include this feature.

An evolutionary algorithm was employed due to the com-
plexity of the cost function and multi-objective nature of
the problem. To speed up the solution process, the PGA
was run on 8 cores simultaneously. Due to the random-
ness of the method, every optimization was performed 10

times and the best solution reported. More details about
the process are given in Ref. 37.



13

∗ Electronic address: sebi.steiger@gmail.com
† URL: https://engineering.purdue.edu/gekcogrp/
1 M. Born and E. Bormann, Annalen der Physik 367, 218
(1920), ISSN 1521-3889.

2 K. Rustagi and W. Weber, Solid State Communications
18, 673 (1976), ISSN 0038-1098.

3 P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni,
Phys. Rev. B 43, 7231 (1991).

4 M. Musgrave and J. Pople, Proceedings of the Royal So-
ciety of London. Series A, Mathematical and Physical Sci-
ences 268, 474 (1962), ISSN 0080-4630.

5 P. Keating, Physical Review 145, 637 (1966), ISSN 0031-
899X.

6 O. Lazarenkova, P. Von Allmen, F. Oyafuso, S. Lee, and
G. Klimeck, Superlattices and Microstructures 34, 553
(2003), ISSN 0749-6036.

7 S. Lee, O. Lazarenkova, P. Von Allmen, F. Oyafuso, and
G. Klimeck, Physical Review B 70, 125307 (2004), ISSN
1550-235X.

8 R. Martin, Physical Review B 1, 4005 (1970), ISSN 1550-
235X.
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