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This paper presents the formulation and numerical implementation of a self-consistent treatment of orbital-
dependent exchange-correlation functionals within the Projector Augmented Wave (PAW) method of Blöchl
[Phys. Rev. B 50 17953 (1994)] for electronic structure calculations. The methodology is illustrated with
binding energy curves for C in the diamond structure and LiF in the rock salt structure, comparing results
from the Hartree-Fock (HF) formalism and the Optimized Effective Potential (OEP) formalism in the so-called
KLI approximation [Krieger, Li, and Iafrate, Phys. Rev. A 45, 101 (1992)] with those of the local density
approximation (LDA). While the work here uses pure Fock exchange only, the formalism can be extended to
treat orbital-dependent functionals more generally.



2

I. INTRODUCTION

In order to improve the physical representation of materials beyond that of conventional density functional theory,1,2 there
has recently been renewed interest in the use of orbital-dependent exchange-correlation functionals including the use of hy-
brid functionals3–12 and the use of a combination of exact-exchange and random-phase approximation (EXX/RPA).13–19 At
the moment, some of these treatments are treated non-self-consistently in the sense that the orbital-dependent contributions
are treated by “post-processing” wavefunctions obtained from traditional density-dependent functionals. Because the orbital-
dependent functionals are typically formulated in terms of integrals of the orbitals, the refinement of these treatments to full
self-consistency requires updating the electron orbitals by solving integral-differential equations, a process which is, in princi-
ple, outside the realm of Kohn-Sham theory.
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FIG. 1. (Color on line) Plot of total energy differences ∆E for spin unpolarized spherical atoms in their ground state configurations for Z=1
(H) through Z=36 (Kr), using the self-consistent Hartree-Fock energy as the reference. Results for ∆E obtained using self-consistent OEP or
KLI calculations are compared with results obtained using self-consistent GGA or LDA wavefunctions to “post-process” the Fock exchange
energies.
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FIG. 2. (Color on line) Plot of energy differences ∆E for spin unpolarized spherical atoms in their ground state configurations using LDA or
GGA exchange correlation functionals, each referenced to the corresponding energies obtained using the same wavefunctions to “post-process”
the Fock exchange contribution.

In order to treat orbital-dependent contributions self-consistently within Kohn-Sham theory, it is necessary to represent its
effects in terms of a local potential function known as an optimized effective potential (OEP).20–22 An interesting measure of
the numerical effects of the various approaches, can be seen from the ground state energies of spin-unpolarized spherical atoms
for the case of pure Fock exchange. Using ideas in the literature,23–28 we have modified our atomic code29 in order to construct
Figs. 1 and 2 and Table I. Figure 1 shows the results of calculating the ground state total energies of spin-unpolarized spherical
atoms using the exact OEP approach, an approximate OEP approach (“KLI” described below) and the non-self-consistent post-
prossessing result using LDA or GGA orbitals. In this figure, energy differences relative to Hartree-Fock are presented. Because
of the variational properties of the Hartree-Fock solutions, all of the energy differences are positive.26,27 The “OEP-HF” results
presented in Fig. 1 are consistent with results found earlier by Talman.27 Also shown in Fig. 1 are the corresponding results
generated by the approximation to OEP introduced by Kreiger, Li, and Iafrate (KLI).30 The corresponding “KLI-HF” energies
are slightly larger than the “OEP-HF”, differing by at most 0.1 eV for the 3d transition metals. Other approximate OEP methods
have been developed, including the localized Hartree-Fock method,31 the common energy denominator,32 and the effective local
potential33 approximations. Bulat and Levy34 have recently shown these methods to be equivalent to calculating the optimized
effective potential within the subspace of occupied orbitals (vocc(r)). We have evaluated vocc(r) for the spherical atoms in Fig.
1, finding the corresponding ground state energies to differ by at most 0.005 eV from those calculated within the KLI scheme.

By contrast to the self-consistent results, the results obtained by using wavefunctions from self-consistent GGA35 or LDA36

functionals and a post-processing evaluation of the Fock exchange, have significantly larger values of ∆E. On the one hand,
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given that the self-consistent Hartree-Fock wavefunctions28 are very similar in shape to those obtained from self-consistent LDA
or GGA calculations, the large values of post processing energy differences shown in Fig. 1 is somewhat surprising. On the other
hand, the Hartree-Fock post processing energies LDA(PP) and GGA(PP) themselves are considerably different from the self-
consistent ground state LDA and GGA atomic energies as shown in Fig. 2. Interestingly, the plot of Fig. 2 shows that the LDA
energy differences (LDA-LDA(PP)) have the opposite sign from the GGA energy differences (GGA-GGA(PP)), presumably
due to the different correlation functional forms of LDA and GGA. The results of Figs. 1 and 2 suggest that post processing
treatments may introduce unintended effects into the calculations. It is reasonable to expect that a self-consistent treatment will
produce much more reliable results, benefiting from the power of the variational principle.

In order to have a more precise measure of the energy relationships, some representative total energies (for rare-gas atoms)
are listed in Table I. Also listed in the table are literature results21,37 which are essentially identical to those generated with our
code.

TABLE I. Total energies (in Ry) for some of the atoms shown in Figs. 1 and 2, comparing the self-consistent Hartree-Fock (HF), optimized
effect potential (OEP), Kreiger-Li-Iafrate approximation (KLI), and occupied subspace (OCC) approximations with the post-processing ener-
gies calculated with local density approximation (LDA(PP)) and generalized gradient approximation (GGA(PP)) wavefunctions with the Fock
exchange expression replacing the exchange-correlation contributions. Also listed are literature values for the HF, OEP, and KLI results.

He Ne Ar Kr
HF (this work) -5.7234 -257.0942 -1053.6350 -5504.1100
HF (literature)a -5.7234 -257.0942 -1053.6350 -5504.1100
OEP (this work) -5.7234 -257.0908 -1053.6244 -5504.0859
OEP (literature)b -5.7234 -257.0908 -1053.6244 -5504.0860
KLI (this work) -5.7234 -257.0897 -1053.6210 -5504.0796
KLI (literature)b -5.7234 -257.0896 -1053.6210 -5504.0796
OCC (this work) -5.7234 -257.0896 -1053.6211 -5504.0793
LDA(PP) (this work) -5.7191 -257.0630 -1053.5940 -5504.0264
GGA(PP) (this work) -5.7191 -257.0734 -1053.6125 -5504.0587

a Ref. 37.
b Ref. 21.

These results for atoms provide a motivation for developing methods to calculate the orbital dependent terms accurately and
self-consistently in extended systems. In previous work,28 we showed how to formulate the Hartree-Fock theory within the
projector augmented wave (PAW) formalism of Blöchl.38 In this paper we extend this analysis to the OEP theory. For reasons
discussed in Sec. II C, it turns out that treating the full OEP equations within the PAW formalism is computationally demanding.
As a step close to reaching that goal, the present work focuses on the KLI approximation and its relationship with Hartree-Fock
theory. It is assumed here that the orbital dependent contribution is that of the full Fock exchange. More importantly, extension of
this approach to other orbital dependent functionals, including hybrid functionals and to random phase approximation treatments
is expected to follow similar steps.

The outline of the paper is as follows. In Sec. II, we present the KLI formalism for spherical atoms, briefly reviewing the
all-electron formulas30 and discussing the frozen-orbital approximation. In Sec. II C we present the PAW formalism for spherical
atoms and derive the relations for constructing basis and projector functions for a PAW-KLI treatment. More details of this work
are presented in the Ph. D. Thesis of Xiao Xu.39 In Sec. III we generalize the atomic formulations of both the Hartree-Fock
and KLI approaches to treat periodic solids in a plane wave representation. The methods are demonstrated in terms of binding
energy curves for diamond and for LiF in Sec. IV. Summary and conclusions are presented in Sec. V, where we also compare
the PAW-HF and PAW-KLI approaches with previous treatments of Fock exchange reported in the literature. In particular, we
note that a recent description of the GPAW code12 which implements the PAW formalism on a real-space grid includes some
PAW-HF formulations as well.

II. ELECTRONIC STRUCTURE OF SPHERICAL ATOMS WITHIN THE KLI APPROXIMATION

A. All-electron formalism

For simplicity, we discuss the formalism for spin-unpolarized, spherically averaged atoms and use the the same notation
as in our previous work on developing a PAW formalism for Hartree-Fock theory.28 The total electron energy takes the same
functional form as in Hartree-Fock theory, as a sum of kinetic energy (EK), nuclear energy (EN ), electron-electron or Hartree
energy (EH ), and exchange energy (Ex):

Etot = EK + EN + EH + Ex. (1)
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Here the exchange energy is written in terms of radial integrals defined by Condon and Shortley40

Ex = −
∑
pq

lp+lq∑
L=|lp−lq|

1

2
ΘL
pqR

L
pq;qp, (2)

where

RLpq;st ≡ e2
∫ ∫

dr dr′
rL<
rL+1
>

ψp(r)ψq(r)ψs(r
′)ψt(r

′). (3)

Here the Fock weight factor ΘL
pq for the moment L for the spherically averaged atom was derived by Ref. 23–25 and is given in

Eq. (14) of Ref. 28. In contrast to Hartree-Fock theory, in the OEP approach, the one-electron orbitals {ψp(r)} which appear in
the energy expression are eigenstates of an effective Hamiltonian of the form

H = K + VN (r) + VH(r) + Vx(r) with Hψp(r) = εpψp(r). (4)

Here the expressions for the nuclear and Hartree potentials are identical to those of Ref. 28. In the full OEP theory, the local
potential Vx(r) can be determined iteratively in terms of orbital shift functions41 gp(r) which are solutions to inhomogeneous
differential equations of the form:

(H− εp) gp(r) = Xp(r)− Vx(r)ψp(r)−
(
Ūx p − V̄x p

)
ψp(r), (5)

where

V̄x p ≡ 〈Ψp|Vx|Ψp〉 and Ūx p ≡ 〈Ψp|Xp〉. (6)

The exchange integral function Xp(r) is identical to that defined in Eq. (19) of Ref. 28 except that the orbitals {ψp(r)} are the
self-consistent OEP orbitals instead of the self-consistent Hartree-Fock orbitals. It takes the form

Xp(r) = −
∑
q

lp+lq∑
L=|lp−lq|

1

Np
ΘL
pq W

L
qp(r)ψq(r), (7)

where

WL
qp(r) ≡ e2

∫
dr′

rL<
rL+1
>

ψq(r
′)ψp(r

′). (8)

For the full OEP treatment, the converged local exchange potential Vx(r) is obtained when the combined shift function
vanishes:26,41–43 ∑

p

Npgp(r)ψp(r) = 0. (9)

The Krieger, Li, and Iafrate (KLI) approximation30 to the OEP is based on the reasonable assumption that the orbital shift
functions gp(r) are numerically small so that the left had side of Eq. (5) can be set to 0.44 Then a local exchange potential
function V KLI

x (r) can be found which satisfies the following KLI equation.

V KLI
x (r) n(r) =

∑
p

Npψp(r)X
KLI
p (r)

+
∑
p

Np |ψp(r)|2
(
V̄ KLI
x p − ŪKLI

x p

) (10)

The radial density function is defined

n(r) ≡
∑
p

Np |ψp(r)|2 . (11)

In order to solve Eq. (10) it is first necessary to determine the matrix elements V̄ KLI
x p . The p index references each of the

S atomic shells. The boundary conditions require that for the shell p ≡ o corresponding to the outer most orbital ψo(r), the
exchange potential matrix element must satisfy21,30

V̄ KLI
x o ≡ ŪKLI

x o . (12)
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FIG. 3. (Color on line) Comparison of OEP and KLI functions of Vx(r) for Br, Cl, and F in their ground states.

For the S − 1 shell indices p 6= o, the following linear equations must be satisfied:21,30∑
q 6=o

[δpq − ΓpqNq] ∆q = Ξp − ŪKLI
x p , (13)

where

∆q ≡ V̄ KLI
x q − ŪKLI

x q . (14)

Here

Γpq ≡
∫
dr
|ψp(r)|2 |ψq(r)|2

n(r)
, (15)

and

Ξp ≡
∫
dr
|ψp(r)|2

∑
q Nqψq(r)X

KLI
q (r)

n(r)
. (16)

Once the matrix elements V̄ KLI
x p are determined from Eqs. (12, 13, and 14), the KLI exchange potential V KLI

x (r) can be
determined from Eq. (10). Figure 3 shows 3 examples of V KLI

x (r) in comparison with corresponding local potentials calculated
using the full OEP formalism. The small differences in the potentials shown here is consistent with results on other materials
presented in the original KLI manuscript.30

B. Frozen core orbital approximation

The arguments favoring the frozencore orbital treatment over the frozencore potential treatment for the Hartree-Fock for-
malism were presented in our previous work28 and apply to the KLI formalism as well. The frozencore orbital approximation
within the KLI approach is almost a trivial extention of the all-electron treatment. The equations have the same form as given
above, with the summation over shells p including both valence states Ψv(r) which are updated and core states Ψc(r) which are
“frozen” to the reference configuration form.45 We note that in order that the KLI exchange potential (10) remain orbital inde-
pendent and especially independent of core-valence orbital labels, it is essential for both valence and (frozen) core contributions
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be included in the evaluation of Eq. (10). As we will see, this will be true in the PAW formulation as well. On the other hand,
it is often convenient to remove the constant contributions to the energy, and to define a valence electron energy from terms that
involve valence electrons alone and terms that involve interactions between core and valence electrons:

Eval = EvK + EvN + EcvH + EvvH + Ecvx + Evvx . (17)

Numerical results for the frozen core orbital approximation of KLI are comparable to those of the frozen core orbital approx-
imation of Hartree-Fock reported in our earlier work.28 For example, we considered ionization energies for spherically averaged
3d atoms. The results are shown in Fig. 4 comparing the Hartree-Fock and KLI results with those obtained using the local den-
sity approximation (LDA).36 The Hartree-Fock and KLI ionization energies are very similar throughout the 3d series, differing
from from each other by less than 0.08 eV. Not surprizingly, the LDA ionization energies differ from the HF ionization energies
by roughly 2 eV. Using the core states defined by the configuration of Ar, the errors introduced by calculating the ionization
energies within frozencore approximations are not visible on this scale. For the frozencore orbital approach within HF, KLI,
and LDA formalisms, the average error in the ionization energies is 0.002 eV, 0.002 eV, and 0.001 eV respectively. We also
calculated the ionization energies using the frozen core potential approach described in Ref.28 (labeled HFV) on the graph). In
this frozencore potential approach, the average error in calculating the ionization energies is 0.05 eV, 25 times larger than that of
the frozencore orbital approach. This motivates the adoption of a frozencore orbital treatment for our PAW formulation, which
can be accomplished in a straightforward way.
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FIG. 4. (Color on line) Plot of ionization energies for spherically averaged 3d atoms, assuming transitions 3dx 4s2 → 3dx 4s1, using the
HF, KLI, and LDA exchange approximations. The results designated as HFV were calculated using the frozencore potential approximation as
described in Ref. 28.

C. PAW formalism for a spherical atom

1. Motivation for various approximations

In addition to the approximations associated with the PAW formalism itself, the treatment presented here uses two major
approximations which need justification. We first consider the reason for using the KLI approximation rather than directly
solving the full OEP equations. The reason follows from the fact that the PAW formalism is designed to represent a valence
electron wavefunction Ψv(r) in the form

Ψv(r) =Ψ̃v(r)+∑
ai

(
Φai (r−Ra)− Φ̃ai (r−Ra)

)
〈P̃ ai |Ψ̃v〉,

(18)

where a denotes an atomic site (which is trivial for a spherical atom) and i denotes atom-centered functions which include
|Φai 〉, |Φ̃ai 〉, and |P̃ ai 〉 for the all-electron basis functions, pseudo basis functions, and projector functions respectively. Typically,
the index i represents a small number of states (one or two states per angular momentum channel) to represent the electron
wavefunction in typical environments found in solids. In order to adapt the PAW formalism to the OEP treatment, it is necessary
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to use this form to also represent the orbital shift function gv(r) defined in Eq. (5). Because of the oscillatory shape of these gv(r)
functions, it is necessary to significantly increase the number of one-center basis functions included in the general transformation
of Eq. (18). The recent paper by Bulat and Levy34 clarified this point by showing that the full optimized effective potential
function can be determined as a sum of contributions from the space of occupied orbitals to determine voccx (r) plus additional
terms generated by all unoccupied states. These additional terms require additional basis functions. While the use of additional
basis functions in the PAW expansion is in principle possible, it is computational expensive. Some details are presented in the
Appendix (A). In fact, recent work by Harl and co-workers18 describes the use of these additional basis functions for a post-
processing treatment of the random phase approximation within the PAW formalism. In this case, the additional basis functions
are physically motivated by the excited state contributions to the random phase formalism, while in the exchange-only OEP
treatment they are needed only to fulfull the numerical requirements of the equations which represent only the ground state of
the system. On the other hand, the minimal basis PAW formalism is well-suited to represent the approximate OEP equations in
the KLI approach accurately and efficiently. The PAW-KLI approach presented here can be also extended to the full occupied
space approximation voccx (r) with few changes to the formalism.

The second approximation in this work is made for simplicity. We have argued that the core states provide important contri-
butions to the exchange interactions and in Ref. 28 we have shown how to treat extended core states with frozencore pseudo-
wavefunctions ψ̃c(r) and their fully nodal counterparts ψc(r). While including these upper core wavefunctions in the calculation
is straightforward, in order to simplify the presentation in the present work, we make the assumption that for all core wavefunc-
tions ψ̃c(r) ≡ 0. This can be made precise for any system, by treating upper core states as valence states (with additional
computational cost), leaving the core designation to refer only to states whose orbitals are well-confined within the augmenta-
tion sphere. What this means is that the summations over all states in the pseudo-space includes only valence states. The core
states then only enter the calculations through the one-center all-electron terms. The more general case of allowing for non-zero
ψ̃c(r) for upper core wavefunctions can be derived by straightforward extension.

2. PAW-KLI formalism for atoms

The purpose of deriving the PAW-KLI equations of a spherical atom is to define the consistent basis and projector functions
which satisfy the atomic PAW-KLI equations for the reference configuration and to provide the basis for extending the formalism
to a more general system. The PAW representation of the radial electron density of a spherical atom takes the form28,38

n(r) = ñ(r) + (na(r)− ña(r)) , (19)

where ñ(r) represents the radial pseudodensity defined over all space and the terms with superscript a represent the atomic
density confined within the augmentation sphere. For materials, the single index a will be replaced by a summation of one-
center contributions over all augmentation spheres.

The PAW transformation allows us to approximate the left hand side of the of KLI equality – Eq. (10) – by the form

V KLI
x (r) n(r) =Ṽ KLI

x (r) ñ(r)+(
V aKLI
x (r) na(r)− Ṽ aKLI

x (r) ña(r)
)
.

(20)

Here Ṽ KLI
x (r) denotes the smooth pseudo exchange potential in the KLI approximation which is defined over all space while

V aKLI
x (r) and Ṽ aKLI

x (r) denote the atom-centered all-electron and pseudo exchange functions, respectively which will appear in
atom-centered matrix elements in the PAW formalism. In order to determine these three contributions to the exchange potential,
we assume that each of them satisfies Eq. (10) in their respective spacial and functional domains.

The pseudo-space contribution takes the form written

Ṽ KLI
x (r) ñ(r) =

∑
v

Nvψ̃v(r)X̃
KLI
v (r)

+
∑
v

Nv

∣∣∣ψ̃v(r)∣∣∣2 (V̄ KLI
x v − ŪKLI

x v

)
.

(21)

Within the augmentation region, the two types of one-center contributions can be written

V aKLI
x (r) na(r) =

∑
p

Npψ
a
p(r)XaKLI

p (r)

+
∑
p

Np
∣∣ψap(r)

∣∣2 (V̄ KLI
x p − ŪKLI

x p

)
,

(22)
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and

Ṽ aKLI
x (r) ña(r) =

∑
v

Nvψ̃
a
v (r)X̃aKLI

v (r)

+
∑
v

Nv

∣∣∣ψ̃av (r)
∣∣∣2 (V̄ KLI

x v − ŪKLI
x v

)
.

(23)

The V̄ KLI
x v and ŪKLI

x v matrix elements that appear in each of the three equations are determined from a sum of contributions in
the form:

V̄ KLI
x p =〈Ψ̃p|Ṽ KLI

x |Ψ̃p〉+(
〈Ψa

p|V aKLI
x |Ψa

p〉 − 〈Ψ̃a
p|Ṽ aKLI

x |Ψ̃a
p〉
)
,

(24)

and

ŪKLI
x p = 〈Ψ̃p|X̃KLI

p 〉+
(
〈Ψa

p|XaKLI
p 〉 − 〈Ψ̃a

p|X̃aKLI
p 〉

)
. (25)

In these expressions and in others in this section, the index p for core states is non-trivial only for the one-center all-electron
terms.

In order to determine the unknown coefficients V̄ KLI
x p , a set of linear equations similar to Eq. (13) must be solved. These can

be written in the form ∑
q 6=o

[
δpq − ΓPAW

pq Nq
]

∆q = ΞPAW
p − ŪKLI

x q . (26)

Once the unknown matrix elements ∆q have been determined, they can be they can be used in Eqs. (21, 22, and 23) to determine
Ṽ KLI
x (r), V aKLI

x (r), and Ṽ aKLI
x (r), respectively. In Eq. (26) the ΓPAW

pq matrix elements are given by

ΓPAW
pq =

∫ ∞
0

dr

∣∣∣ψ̃p(r)∣∣∣2 ∣∣∣ψ̃q(r)∣∣∣2
ñ(r)

+

∫ rac

0

dr

[[[∣∣ψap(r)
∣∣2 ∣∣ψaq (r)

∣∣2
na(r)

−

∣∣∣ψ̃ap(r)
∣∣∣2 ∣∣∣ψ̃aq (r)

∣∣∣2
ña(r)

]]]
.

(27)

The exchange coefficients ΞPAW
p are given by

ΞPAW
p =

∫ ∞
0

dr

∣∣∣ψ̃p(r)∣∣∣2∑q Nqψ̃q(r)X̃
KLI
q (r)

ñ(r)
+∫ rac

0

dr

[[[∣∣ψap(r)
∣∣2∑

q Nqψ
a
q (r)XaKLI

q (r)

na(r)

−

∣∣∣ψ̃ap(r)
∣∣∣2∑q Nqψ̃

a
q (r)X̃aKLI

q (r)

ña(r)

]]]
.

(28)

In Eqs. (27 and 28), the one center integrands are confined within the augmentation spheres (r ≤ rac ) and contributions for p or
q representing core states come only from the one-center all-electron terms.

In these expressions the pseudo exchange kernel is given by

X̃KLI
v (r) = −

∑
v′

lv+lv′∑
L=|lv−lv′ |

1

Nv
ΘL
vv′W̃

L
v′v(r)ψ̃v′(r), (29)

with the interaction function evaluated according to

W̃L
v′v(r) = e2

∫
dr′

rL<
rL+1
>

[
ψ̃v′(r

′)ψ̃v(r
′) + M̂L

v′v(r
′)
]
. (30)
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The summation over shells v and v′ includes contributions from valence pseudo-wavefunctions ψ̃v(r). The moment function
M̂L
v′v(r) is defined by Eq. (58) of Ref. 28.
For the one-center all-electron terms (22), the sum over p includes both valence and core contributions. The one-center

all-electron orbitals for the valence states are given by

ψav (r) =
∑
i

〈P̃ ai |Ψ̃v〉φai (r). (31)

The PAW functions are denoted by pai (r), φai (r), and φ̃ai (r) for the radial projector, all-electron basis, and pseudo basis functions,
respectively, while the capitalized forms (for example P̃ ai (r)) denote the corresponding full 3-dimensional function. For the all-
electron core contributions (p = c), the all-electron frozencore functions ψac (r) are used directly. These expressions for the
atom-centered radial wavefunctions are only valid in the augmentation region 0 ≤ r ≤ rac . Fortunately, in all the expressions
in which they are used, it is only necessary to evaluate the one-center functions in the augmentation regions. For evaluating the
one-center all-electron exchange kernel XaKLI

p (r) the following form for the interaction integrals can be used for 0 ≤ r ≤ rac

W aL
qp (r) =

∑
ij

〈Ψ̃q|P̃ ai 〉〈P aj |Ψ̃p〉waLij (r) +

(
r

rac

)L
ωaLqp , (32)

where

waLij (r) ≡ e2
∫ rac

0

dr′
rL<
rL+1
>

φai (r′)φaj (r′). (33)

This expression is correct for both shell indices q and p corresponding to valence states. If one or both of them correspond to
core states, the expressions are modified according to

〈Ψ̃a
c |P̃ ai 〉 → δci, (34)

and the replacement of φai with ψac (r).
The one-center pseudo orbitals for the valence states are given by

ψ̃av (r) =
∑
i

〈P̃ ai |Ψ̃v〉φ̃ai (r), (35)

using the same notation as above. For evaluating the one-center pseudo exchange kernel X̃aKLI
v (r), the following form for the

interaction integral can be used for 0 ≤ r ≤ rac :

W̃ aL
v′v(r) =

∑
ij

〈Ψ̃v′ |P̃ ai 〉〈P aj |Ψ̃v〉w̃aLij (r) +

(
r

rac

)L
ωaLv′v, (36)

where

w̃aLij (r) ≡ e2
∫ rac

0

dr′
rL<
rL+1
>

[
φ̃ai (r′)φ̃aj (r′) + m̂aL

ij (r′)
]
, (37)

where the augmentation moment m̂aL
ij (r) has been defined in Eq. (53) of Ref. 28. For convenience we repeat the definition here:

m̂aL
ij (r) ≡ maL

ij g
a
L(r), (38)

where the charge moment coefficient maL
ij is given in terms of the i and j basis functions

maL
ij ≡

∫ rac

0

dr rL
(
φai (r)φaj (r)− φ̃ai (r)φ̃aj (r)

)
, (39)

and the augmentation shape function gaL(r) is localized to the augmentation sphere, 0 ≤ r ≤ rac and is normalized according to∫ rac

0

dr rL gaL(r) = 1. (40)



10

In the interaction integrals for valence states in Eqs. (32 and 36) the same constants ωaLv′v appear. (The corresponding
contributions vanish for localized core states.) In atomic calculations, the constants can be evaluated from the pseudo-pair-
density outside the augmentation region:

ωaLv′v ≡ (rac )
L
∫ ∞
rac

dr′
ψ̃v′(r

′)ψ̃v(r
′)

r′L+1
. (41)

In general, it is necessary to evaluate the constants ωaLv′v within the augmentation region. This can be accomplished by matching
the boundary values of of W aL

v′v(r
a
c ) and W̃ aL

v′v(r
a
c ) to that of W̃L

v′v(r
a
c ), the full pseudo interaction integral given in Eq. (30).

In terms of the given representations of orbitals and of the interaction integrals, the one-center all-electron exchange kernel
function can be written:

XaKLI
p (r) = −

∑
q

lp+lq∑
L=|lp−lq|

1

Np
ΘL
pqW

aL
qp (r)ψaq (r), (42)

and the one-center pseudo exchange kernel function can be written:

X̃aKLI
v (r) = −

∑
v′

lv+lv′∑
L=|lv−lv′ |

1

Nv
ΘL
vv′W̃

aL
v′v(r)ψ̃

a
v′(r). (43)

The expressions for the exchange kernal functions given in Eqs. 30, 42, and 43 are consistent with the PAW exchange kernal
function given in Ref. 28 for the Hartree-Fock formalism XPAW

v (r) = X̃HF
v (r) +

∑
ai |P̃ ai 〉XaHF

iv , with the correspondance

X̃HF
v (r)→ X̃KLI

v (r) (44)

and the approximate relation

XaHF
iv ≈ 〈Φai |XaKLI

v 〉 − 〈Φ̃ai |X̃aKLI
v 〉. (45)

These approximate relationships rely on the fact that within the augmentation spheres, ψv(r) ≈ ψav (r), based on the PAW
expansion given in Eq. (35) and approximate completeness relations38 for 0 ≤ r ≤ rac such as:∑

i

|P̃ ai 〉〈Φ̃ai | ≈ δ(r− r′) (46)

for the the pseudospace functions.
The equations given above can be used to self-consistently solve the Kohn-Sham equations within the PAW-KLI approxi-

mation, given a PAW dataset of basis, projector, and pseudopotential functions. For the construction of a PAW dataset in the
PAW-KLI approximation, it is necessary to evaluate these expressions for the reference configuration used to generate the basis
and projector functions. In this case, Eqs. (21) and (23) are identical to each other, and Eq. (22) is identical to the all-electron
result Eq. (10). By evaluating Eq. (21) or (23) to determine the pseudo exchange potential Ṽ ax (r), for the given choice of
basis and projector functions, it is possible to determine the unscreened local pseudopotential Ṽ aloc(r) from the chosen screened
pseudopotential V aPS(r) according to

Ṽ aloc(r) = V aPS(r)− Zav̂a0 (r)− Ṽ aH(r)
⌋
ref
− Ṽ ax (r)

⌋
ref
. (47)

Here v̂a0 (r) is defined as the Coulomb potential associated with the L = 0 augmentation shape function gaL(r). The Hartree
contribution can be evaluated as a sum of core and valence contributions in the form

Ṽ a cH (r) ≡ Qacorev̂a0 (r) and Ṽ a vH (r)
⌋
ref
≡
∑
v

Nv W̃
0
vv(r)

⌋
ref
. (48)

(The expression for Ṽ a cH (r) differs from that of Ref. 28 because here we assume ñacore(r) ≡ 0.) For evaluating both the reference
Hartree potential and reference pseudoexchange kernel function

X̃v(r)
⌋
ref

= −
∑
v′

lv+lv′∑
L=|lv−lv′ |

1

Nv
ΘL
vv′ W̃

L
v′v(r)

⌋
ref
ψ̃v′(r), (49)
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FIG. 5. (Color on line) Comparison of KLI all-electron (Vx(r)) and pseudo (Ṽx(r)) local exchange potentials for Br, Cl, and F in their ground
states.

the interaction function can be evaluated from

W̃L
v′v(r)

⌋
ref

= e2
∫ ∞
0

dr′
rL<
rL+1
>

[
ψ̃v′(r

′)ψ̃v(r
′) + M̂L

v′v(r
′)
]
, (50)

For the reference configuration, the shell labels v′ and v correspond to valence basis functions so that the moment functions have
the simplified form

M̂L
v′v(r)

⌋
ref

=

gL(r)

∫ rac

0

dr′ r′L
[
ψv′(r

′)ψv(r
′)− ψ̃v′(r′)ψ̃v(r′)

]
.

(51)

Figure 5 shows the pseudo versions of the KLI local exchange potentials given in Fig. 3. Figure 6 shows some examples of
the unscreened local pseudopotential, Ṽ aloc(r), showing that for the same choices of construction parameters the shapes are quite
similar to those of LDA. These results for F,46 Cl,47 and Br.48 were generated using a variation of the atompaw code29, using the
Vanderbilt49 scheme for generating the pseudo basis and projector functions.

III. PLANE WAVE REPRESENTATIONS OF PAW-HF AND PAW-KLI EQUATIONS

In order to develop the projector augmented wave approach for Hartree-Fock and KLI formalisms to treat periodic systems,
it is necessary to extend the equations presented in Ref. 28 and in Sec. II C to consider multiple atomic sites a and additional
angular dependence. A pseudo wavefunction for Bloch state of band n and wavevector k, can be represented in a plane wave
expansion of the form

Ψ̃nk(r) =

√
1

V
∑
G

Ank(G)ei(k+G)·r, (52)

where V denotes the unit cell volume, Ank(G) is an expansion coefficient, and the summation over reciprocal lattice vectors
G includes all terms for which |k + G|2 ≤ Ecut, for an appropriate cutoff parameter Ecut. For simplicity, we assume a spin
unpolarized system with band weight and occupancy factors fnk.
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A. Total energy expressions

The formulas for the total valence energy are the same in both the Hartree-Fock and KLI treatments. The energy differences
are only due to differences in the wavefunctions used to evaluate the energies. Here we focus on the the Fock exchange term
only, since the other contributions are identical to those found earlier papers.38,50–52 The total valence exchange energy is a sum
of smooth and one-center contributions of the form

Excval = Ẽvvx +
∑
a

(
Eavvx + Eavcx − Ẽavvx

)
. (53)

The fact that the core-valence interactions enter only in the one-center all-electron term is a consequence of our assumption that
upper core states are treated as valence electrons so that only core states localized within the augmentation sphere are treated as
frozen core states.

1. Smooth contributions to the Fock energy

For the purposes of evaluating the Fock energy and interaction terms, the smooth pair density function for band indices nk
and n′k′ can be written

ρ̃nk,n′k′(r) ≡ Ψ̃nk(r)Ψ̃∗n′k′(r) + ρ̂nk,n′k′(r), (54)

where the second terms is the compensation pair charge.4,28 For a non-spherical system, the forms of these moments must be
generalized from those presented in Eq. (58) of Ref. 28, in the form:53

ρ̂nk,n′k′(r) =
∑
aij

〈P ai |Ψ̃nk〉〈Ψ̃n′k′ |P aj 〉µ̂aij(r−Ra), (55)

where the generalized moments are given by

µ̂aij(r) ≡
∑
LM

GLMljmj limi√
4π

m̂aL
ji (r)

r2
YLM (r̂). (56)

Here all of the terms are the same as defined in Ref. 28 except for the Gaunt coefficient54 which we take to be55

GLMljmj limi
≡
√

4π

∫
dΩ Y ∗ljmj

(r̂)Y ∗LM (r̂)Ylimi
(r̂). (57)
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By design, this pair density function has the property

lim
N→∞

1

N

∫
NV

d3r ρ̃nk,n′k′(r) = δnn′ (2π)3δ(k− k′). (58)

The Fourier transform of the smooth pair density function, is defined to be

ρ̃nk,n′k′(G) ≡
∫
V
d3r

(
ρ̃nk,n′k′(r)e−i(k−k

′)·r
)

e−iG·r. (59)

The compensation pair charge contribution can be evaluated according to

ρ̂nk,n′k′(G) =
∑
aij

〈P ai |Ψ̃nk〉〈Ψ̃n′k′ |P aj 〉µ̂
a

ij(k− k′ + G), (60)

where

µ̂
a

ij(q) ≡ e−iq·R
a ∑
LM

GLMljmj limi

√
4π(−i)LYLM (q̂)

×
∫ rac

0

drjL(qr)m̂aL
ji (r),

(61)

with jL(x) denoting a spherical Bessel function.
In terms of smooth pair densities, the corresponding Fock energy can be written in the form

Ẽvvx =− e2

4

∑
nkn′k′

fnkfn′k′

×
∫
d3r d3r′

ρ̃nk,n′k′(r)ρ̃∗nk,n′k′(r′)

|r− r′|

= −e
2π

V
∑
nkn′k′

fnkfn′k′

∑
G

|ρ̃nk,n′k′(G)|2

|k− k′ + G|2
.

(62)

The evaluation of this singular integral has been the subject of several investigations.56–60 In this work, we evaluated both the
methods of Spencer and Alavi57 and of Duchemin and Gygi56 as described in more detail in a brief report.61 Results given in
Sec. IV were obtained using the method of Spencer and Alavi.57

2. One-center contributions to the Fock energy

The combinations of angular contributions that appear in the one-center Coulombic contributions, can be expressed in terms
of the 4-index matrix elements

Vaij;kl ≡
∑
LM

GLMlimiljmj
(−1)MGL−Mlkmkllml

(
RaLij;kl − R̃aLij;kl

2L+ 1

)
, (63)

where the generalized Condon-Shortley radial interaction integrals RaLij;kl and R̃aLij;kl have been defined in Eqs. (63 and 64) of
Ref. 28.

It is also convenient to define a weighted projector product

Wa
ij ≡

∑
nk

fnk〈Ψ̃nk|P ai 〉〈P aj |Ψ̃nk〉. (64)

In evaluating both Vaij;kl and Wa
ij , each basis index i, j, k, l stands for both the radial and angular quantum numbers (nilimi,

etc.).
The one-center valence-valence contribution to the Fock energy can then be written as

Eavvx − Ẽavvx = −1

4

∑
ijkl

Wa
ilW

a
kjVaij;kl. (65)
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We note that in this formulation which follows Ref. 28 and is slightly different from that of our earlier work (Eqs. A26 and A31
of Ref. 50), the corresponding one-center Hartree energy contributions take the form

EavvH − ẼavvH =
1

2

∑
ijkl

Wa
ijW

a
klVaij;kl. (66)

The one-center valence-core contribution to the Fock energy depends only on the Condon-Shortley interaction integrals be-
tween valence all-electron basis functions and frozencore orbitals and takes the form

Eavcx = −
∑
ij

Wa
ij δliljδmimj

Caij , (67)

where

Caij =
∑
c L

Nc
2

(
lc L li
0 0 0

)2

RaLic;cj . (68)

Here the sum over c is a sum over core shells with occupancies Nc = 2(2lc + 1) for each atom a.

B. Fock exchange kernel for Hartree-Fock formalism

The generalization of Eqs. (70-74) of Ref. 28 for a Bloch state nk can be written

XPAW
nk (r) = X̃HF

nk (r) +
∑
ai

|P̃ ai 〉Xa
i,nk. (69)

The pseudo-exchange kernel takes the form

X̃HF
nk (r) = −1

2

∑
n′k′

fn′k′W̃nk,n′k′(r)Ψ̃n′k′(r), (70)

where the interaction function is defined by

W̃nk,n′k′(r) ≡ e2
∫
d3r′

ρ̃nk,n′k′(r′)

|r− r′|

= ei(k−k
′)·r
∑
G

W̃nk,n′k′(G)eiG·r.
(71)

The Fourier transform of the interaction kernel is given by

W̃nk,n′k′(G) =
4πe2

V
ρ̃nk,n′k′(G)

|k− k′ + G|2
. (72)

In order to treat its singular behavior in evaluating the pseudo-exchange kernel and related quantities, we used the method of
Spencer and Alavi57 which was mentioned previously in the context of evaluating the smooth contributions to the exchange
energy (Eq. (62)).

The one-center matrix elements for the Hartree-Fock pseudoexchange kernel function analogous to Eq. (73) in Ref. 28 (but
simplified for treating only localized core orbitals) take the form

Xa
i,nk =− 1

2

∑
jkl

〈P̃ al |Ψ̃nk〉Wa
kjVaij;kl

− 1

2

∑
n′k′

fn′k′

∑
j

〈P̃ aj |Ψ̃n′k′〉Zank,n′k′;ij

−
∑
j

〈P̃ aj |Ψ̃nk〉δliljδmimj
Caij ,

(73)

where

Zank,n′k′;ij ≡
∫
d3r µ̂aij(r)W̃nk,n′k′(r)

=
∑
G

µ̂
a∗
ij (k− k′ + G)W̃nk,n′k′(G).

(74)
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C. Fock exchange potential for KLI formalism

The smooth pseudoexchange kernel X̃KLI
nk (r) in the KLI approximation analogous to Eq. (30) takes the same form as the

Hartree-Fock expression given in Eq. (70), evaluated using the appropriate KLI pseudo wavefunctions Ψ̃nk(r). The correspond-
ing pseudo-space potential function Ṽ KLI

x (r) can be determined from an expression analogous to Eq. (21) in Sec. II C 2:

Ṽ KLI
x (r) =

1

ρ̃(r)

(((∑
nk

fnkΨ̃∗nk(r)X̃KLI
nk (r)

+
∑
nk

fnk|Ψ̃nk(r)|2
(
V̄ KLI
x nk − ŪKLI

x nk

))))
.

(75)

In this expression, the valence pseudo-density is given by

ρ̃(r) ≡
∑
nk

fnk|Ψ̃nk(r)|2. (76)

Once the constant matrix elements V̄ KLI
x nk and ŪKLI

x nk are known, this expression can be evaluated most conveniently using fast
fourier transform (FFT) methods.

The one-center contributions to the exchange kernel can also be derived by extension of the atomic formalism. The one-center
all-electron full density for atom a can be written in the form

ρa(r) =
∑
ij

Wa
ijΦ

a∗
i (r)Φaj (r) +

∑
c

Nc
|ψac (r)|2

4πr2
, (77)

were the first term represents the valence states spanned by PAW basis functions indices i and j, and the second term represents
the localized core states with index c representing the core shells (with occupancy Nc = 2(2lc + 1) ) for that atom. In order to
evaluate the summations involving the all-electron exchange kernel, it is convenient to define the following functions. Analogous
to the first term on the right hand side of Eq. (22) we define∑

p

Npψ
a
p(r)XaKLI

p (r)→ Υa cc(r) + Υa cv(r) + Υa vv(r). (78)

Representing pure core contributions, we define

Υa cc(r) ≡ −
∑
cc′

∑
L

ΘL
cc′W

aL
cc′ (r)

ψac (r)ψac′(r)

4πr2
, (79)

using the all-electron notation introduced in Sec. II A. Representing mixed core-valence contributions, we define

Υa cv(r) ≡−
∑
ijc

NcW
a
ijY
∗
limi

(r̂)Yljmj (r̂)
φai (r)ψac (r)

r2

×
∑
L

(
lj L lc
0 0 0

)2

W aL
jc (r).

(80)

In order to represent the pure valence contributions it is convenient to define the following one-center functions for the all-
electron states:

Ψa
nk(r) ≡

∑
i

〈P̃ ai |Ψ̃nk〉Φai (r). (81)

and the pseudo states:

Ψ̃a
nk(r) ≡

∑
i

〈P̃ ai |Ψ̃nk〉Φ̃ai (r). (82)

The one-center all-electron pure valence contributions can be written in the form

Υa vv(r) ≡ −1

2

∑
ij;LM

Φa∗i (r)Φaj (r)Y ∗LM (r̂)

×

(((
Wa ij
LM (r) +

((( r
rac

)))L
Ba ijLM

)))
.

(83)
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The first term of this expression can be evaluate in terms of the interaction potentials (Eq. (33)) evaluated within the augmentation
sphere

∆waLkl (r) ≡ waLkl (r)−
(
r

rac

)L
waLkl (rac ) (84)

with the expression

Wa ij
LM (r) ≡

∑
kl

Wa
ilW

a
kj

√
4π(−1)M

2L+ 1
GL−Mlkmkllml

∆waLkl (r). (85)

The second term of Eq. (83) is related to the boundary value constant ωLv′v defined in Sec. II C 2 and can be expressed in the
form

Ba ijLM ≡
∑
nk

fnkBa ijLM nk

≡
∑
nk

fnk
∑
n′k′

fn′k′〈Ψ̃nk|P̃ ai 〉〈P̃ aj |Ψ̃n′k′〉Ja LMnk,n′k′ .
(86)

Here the Ja LMnk,n′k′ is the angular component of the pseudo interaction integral defined Eq. (71) expanded about the atomic site a
and evaluated at the augmentation radius rac :

Ja LMnk,n′k′ =

4πiL
∑
G

W̃nk,n′k′(G)eiqG·Ra

YLM (q̂G)jL(|qG|rac ).
(87)

In this expression, qG ≡ k− k′ + G, Ra denotes the atomic position, and jL(x) denotes the spherical Bessel function.
In terms of these functions, the one-center all-electron exchange potential function can be evaluated with the relation

V aKLI
x (r) =

1

ρa(r)

(((
Υa cc(r) + Υa cv(r) + Υa vv(r)

+
∑
nk

fnk |Ψa
nk(r)|2

(
V̄ KLI
x nk − ŪKLI

x nk

)
+
∑
c

Nc
|ψac (r)|2

4πr2
(
V̄ KLI
x c − ŪKLI

x c

))))
.

(88)

The one-center pseudo density, by assumption includes only valence contributions and can be written in the form

ρ̃a(r) =
∑
ij

Wa
ijΦ̃

a∗
i (r)Φ̃aj (r). (89)

The one-center pseudo exchange function can be evaluated with an expression similar to that of Eq. (88):

Ṽ aKLI
x (r) =

1

ρ̃a(r)

(((
Υ̃a vv(r)

+
∑
nk

fnk

∣∣∣Ψ̃a
nk(r)

∣∣∣2 (V̄ KLI
x nk − ŪKLI

x nk

))))
.

(90)

The function Υ̃a vv(r) is evaluated using an expression similar to Eq. (83), replacing the all-electron basis functions Φai (r)

with pseudo basis functions Φ̃ai (r) and the all-electron basis function kernel waLkl (r) defined by Eq. (33) with the pseudo basis
function kernel w̃aLkl (r) defined by Eq. (37). By construction, the basis function kernels are equal at the augmentation radii rac ;
waLkl (rac ) = w̃aLkl (rac ), ensuring consistency of the equations.

In order to evaluate this expressions we need to determine the exchange integral matrix elements. Matrix elements corre-
sponding to core shells, come only from the one-center terms:

ŪKLI
x c =−

∑
c′;L

1

Nc
ΘL
cc′R

aL
cc′;c′c

− 1

2

∑
ij;L

Wa
ij δliljδmimj

(
lc L li
0 0 0

)2

RaLic;cj .

(91)
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In practice, each distinct core shell implies a particular site label a and core-core contributions (c and c′) are restricted to the
same site. Matrix elements corresponding to the valence bands can be evaluated using the expression

ŪKLI
x nk =

∫
d3r Ψ̃∗nk(r)X̃KLI

nk (r)

− 1

2

∑
a;ijkl

〈Ψ̃nk|P̃ ai 〉〈P̃ al |Ψ̃nk〉Wa
kjUaij;kl

− 1

2

∑
a;ij;LM

GLMlimiljmj√
4π

maL
ij

(rac )
L
Ba ijLM nk

−
∑
a;ij

〈Ψ̃nk|P̃ ai 〉〈P̃ aj |Ψ̃nk〉δliljδmimj
Caij .

(92)

In this expression, the coefficient Uaij;kl is similar to the one-center Coulomb coefficient Vaij;kl defined in Eq. (63) and is given
by

Uaij;kl ≡
∑
LM

GLMlimiljmj
(−1)MGL−Mlkmkllml

uaLij;kl
2L+ 1

, (93)

where the radial Coulomb terms are defined according to

uaLij;kl ≡
∫ rac

0

dr
(
φai (r)φaj (r)waLkl (r)− φ̃ai (r)φ̃aj (r)w̃aLkl (r)

)
−

maL
ij

(rac )
L
waLkl (rac ).

(94)

As in the atomic formulation, in order to evaluate the three contributions to the exchange potential in Eqs. (75), (88), and (90),
the potential matrix elements V̄ KLI

x nk and V̄ KLI
x c must first be determined by solving a set of linear equations. For this purpose, we

define

ΞPAW
nk ≡ Ξ̃nk +

∑
a

(
Ξank − Ξ̃ank

)
, (95)

where

Ξ̃nk ≡
∫
d3r

∣∣∣Ψ̃nk(r)
∣∣∣2 ∑n′k′ fn′k′Ψ̃∗n′k′(r)X̃KLI

n′k′(r)

ρ̃(r)
, (96)

and the one-center contributions can be written

Ξank − Ξ̃ank ≡
∑
ij

〈Ψ̃nk|P̃ ai 〉〈P̃ aj |Ψ̃nk〉

×

(((∫
r≤rac

d3r Φa∗i (r)Φaj (r)
Υa cc(r) + Υa cv(r) + Υa vv(r)

ρa(r)

−
∫
r≤rac

d3r Φ̃a∗i (r)Φ̃aj (r)
Υ̃a vv(r)

ρ̃a(r)

)))
.

(97)

The corresponding core shell contribution can be written

ΞPAW
c = Ξac , (98)

where the notation implies that the core shell c corresponds to the particular atomic site a. The term may be evaluated with the
expression

Ξac ≡
∫
d3r
|ψac (r)|2

4πr2
Υa cc(r) + Υa cv(r) + Υa vv(r)

ρa(r)
. (99)
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The coupling matrix elements between valence states can be written in the form

ΓPAW
nk,n′k′ = Γ̃nk,n′k′ +

∑
a

(
Γank,n′k′ − Γ̃ank,n′k′

)
. (100)

Here, the pseudo space contribution is given by

Γ̃nk,n′k′ ≡
∫
d3r

∣∣∣Ψ̃nk(r)
∣∣∣2 ∣∣∣Ψ̃n′k′(r)

∣∣∣2
ρ̃(r)

, (101)

which can be evaluated using FFT techniques. The one-center contributions can be evaluated from the expressions

Γank,n′k′−Γ̃ank,n′k′ =∑
ijkl

〈Ψ̃nk|P̃ ai 〉〈P̃ aj |Ψ̃nk〉〈Ψ̃n′k′ |P̃ ak 〉〈P̃ al |Ψ̃n′k′〉

×

(((∫
r≤rac

d3r
Φa∗i (r)Φaj (r)Φa∗k (r)Φal (r)

ρa(r)

−
∫
r≤rac

d3r
Φ̃a∗i (r)Φ̃aj (r)Φ̃a∗k (r)Φ̃al (r)

ρ̃a(r)

)))
.

(102)

The coupling matrix elements between valence and core shells and between core shells have only one-center contributions and
depend only on the particular atomic site a associated with that core shell.

ΓPAW
nk,c = Γank,c and ΓPAW

c,c′ = Γac,c′ . (103)

The one-center matrix elements are both Hermitian and can be evaluated from the expressions

Γank,c =
∑
ij

〈Ψ̃nk|P̃ ai 〉〈P̃ aj |Ψ̃nk〉
∫
d3r

Φa∗i (r)Φaj (r)

ρa(r)

|ψac (r)|2

4πr2
, (104)

and

Γac,c′ =

∫
d3r
|ψac (r)|2

4πr2
|ψac′(r)|

2

4πr2
1

ρa(r)
. (105)

For evaluating the one-center integrals, it is most convenient to use a procedure found efficient in previous work.50 We use a
generalized Gaussian quadrature method to sample the angular directions r̂α with weight factors wα with

∑
α wα = 4π. For

each direction, r̂α, (usually 144 points are sufficient) the radial integrals 0 ≤ r ≤ rac are evaluated usual finite-difference-based
algorithms. For example ∫

d3r
Φa∗i (r)Φaj (r)

ρa(r)

|ψac (r)|2

4πr2

≈
∑
α

wαY
∗
limi

(r̂α)Yljmj (r̂α)

∫ rac

0

dr
φai (r)φaj (r) |ψac (r)|2

4πr2ρa(rr̂α)
.

(106)

The linear equations that must be solved can then be put in the form∑
n′k′

(
δnk,n′k′ − ΓPAW

nk,n′k′fn′k′
)

∆n′k′

−
∑
c

ΓPAW
nk,c Nc∆c = ΞPAW

nk − ŪKLI
x nk,

(107)

and ∑
c′

(
δc,c′ − ΓPAW

c,c′ Nc′
)

∆c′

−
∑
n′k′

ΓPAW
c,n′k′fn′k′∆n′k′ = ΞPAW

c − ŪKLI
x c .

(108)
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TABLE II. PAW parameters used in calculations: the pseudopotential radius rac (in bohr), list of shell designations n1l1(rm1)n2l2(rm2) . . .
of basis and projector functions used in the calculation and corresponding radii rmi (in bohr) used to match the all-electron and pseudo radial
wavefunctions. The symbol ε indicates the use of unbound basis functions with energies (in Ry units) ε = (16.0, 10.0) and ( 2.0, 2.0) for C and
F respectively. In each case, the local potential was constructed using the Troullier-Martins scheme62 for a continuum wavefunction of energy
ε = 0 and l = 2.

Atom rac {nili(rmi)}
Li 1.6 1s(1.4) 2s(1.6) 2p(1.6)
C 1.3 2s(1.3) εs(1.3) 2p(1.3) εp(1.3)
F 1.5 2s(1.5) εs(1.5) 2p(1.5) εp(1.5)

In these expressions,

∆nk ≡ V̄ KLI
x nk − ŪKLI

x nk and ∆c ≡ V̄ KLI
x c − ŪKLI

x c . (109)

The dimension of the the coupling matrix ΓPAW is equal to the number of occupied bands nk within the k-point sampling grid
and the number of core shells c for all of the atoms of the unit cell. As in the atomic case, the coupling matrix is rank deficient,
but the linear Eqs. (107) and (108) can be solved up to an arbitrary constant potential shift. We chose to fix the potential constant
by setting ∆n0k0

= ΞPAW
n0k0

− ŪKLI
x n0k0

, where the index n0k0 corresponds to the highest Kohn-Sham eigenvalue associated with
an occupied state.

Once the potential matrix elements V̄ KLI
x nk and V̄ KLI

x c are determined, the corresponding exchange potentials can be calculated.
While Ṽ KLI

x (r) (Eq. (75)) contributes to the Kohn-Sham pseudopotential evaluated over all space, the one center contributions
given in Eqs. (88) and (90) contribute to the one-center matrix elements of the Hamiltonian Da

ij in the form

[V ax ]ij ≡ 〈Φai |V aKLI
x |Φaj 〉 − 〈Φ̃ai |Ṽ aKLI

x |Φ̃aj 〉. (110)

With the determination of these exchange potentials, the calculations proceed in the same way as other Kohn-Sham PAW algo-
rithms.

IV. RESULTS FOR DIAMOND AND LIF

In order to test the formalism, we have calculated the self-consistent electronic structure of diamond and LiF. The PAW basis
and projector functions were calculated using a modified version of the atompaw code29 using the parameters listed in Table
II. The same parameters were used to contruct the Hartree-Fock, KLI, and LDA36 datasets. While the results are not very
sensitive to the details of the PAW parameters, past experience has shown that the choice of parameters given in Table II and
a wavefunction plane-wave expansion cut-off of |k + G|2 ≤ 64 Ry are more than adequate to converge the calculations to
benchmark values. Details of the Hartree-Fock dataset construction follow Ref. 28 and extensions described in Appendix B.

The solid calculations for the Hartree-Fock and KLI calculations were performed using a modified version of the pwpaw
code.63 The LDA results were obtained using the abinit64 and quantum-espresso65 codes as well. The Brillouin zone sampling
was performed using a uniform 2 × 2 × 2 grid. This sampling was found to be adequate for the LDA calculations; additional
code development will be needed to substantially increase the Brillouin zone sampling for the Hartree-Fock and KLI portions of
the code. The binding energy curves shown in Figs. 7 and 8 were fit to the Murnaghan equation of state66 in order to extract the
equilibrium lattice constant a and bulk modulus B which are reported in Table III. There are many results of these quantities in
the literature; a few of these are listed for comparison in Table III, showing general consistency with the present results.

To the best of our knowledge, our PAW-HF formulation is similar if not identical to that of Paier and co-workers4 as im-
plemented in the VASP code67 and to that of the GPAW code12 (apart from the replacement of the planewave expansion with a
real space grid representation). In order to benefit from cancellation of systematic errors, we have been careful to use atomic
PAW datasets (Table II) constructed with the same exchange-correlation or pure exchange formulation as used in the solid cal-
culations. There is some discussion in the literature68 that it is sometimes possible to use fixed atomic PAW datasets with the
help of valence-core corrections to perform calculations with different exchange-correlation formulations. It is our experience
that the choice of appropriate basis function sets and augmentation radii such as listed in Table II are rather insensitive to the
exchange-correlation formulation. However, the basis and projector functions themselves as well as the local potential Ṽ aloc(r)
are more sensitive; these can easily be generated by using the atompaw code.29
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FIG. 7. (Color on line) Binding energy curve for C in the diamond structure.
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FIG. 8. (Color on line) Binding energy curve for LiF in the rock salt structure.

V. SUMMARY AND CONCLUSIONS

Using Fock exchange as an example of an orbital dependent functional, we have presented detailed equations needed to carry
out self-consistent electronic structure calculations within the approximate optimized effective potential formalism developed by
Krieger, Li, and Iafrate (KLI)30 using the projector augmented wave method (PAW) of Blöchl.38 This formalism together with
the analogous development for the self-consistent Hartree-Fock formalism presented in earlier work28 have been implemented
and tested on the study of the ground state properties of two well-known crystalline materials – diamond and LiF. The fact that

TABLE III. Comparison of lattice parameters. Lattice constants a are given in Å and bulk moduli B are given in GPa.

Diamond LiF
a B a B

LDA (this work) 3.53 490 3.91 85
LDA (literature) 3.54,a 3.55b 452b 3.92,a 3.96b 83b

HF (this work) 3.56 490 3.97 79
HF (literature) 3.58b 480b 4.02,b 4.01c 76,b 79c

KLI (this work) 3.55 460 4.01 76
Experiment 3.57d 443d 4.03d 67d

a Ref. 69.
b Ref. 70.
c Ref. 71.
d Ref. 72.
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the present results are in general agreement with results reported in the literature using other computational methods, provides
some measure of validation of our formalism. It is interesting and not unexpected that the Hartree-Fock and KLI results for the
equilibrium lattice constants are increased relative to the LDA values and are closer to the experimental values.

Both Hartree-Fock and KLI methods have been previously implemented in all-electron and in norm-conserving pseudopo-
tential codes by many authors, some of which we list here.59,60,73–78 However, the present work, as well as several other recent
studies56,79–82 show that there continue to be non-trivial numerical challenges in the careful evaluation of the Fock exchange
interaction. For the PAW method, the evaluation relies on the use of compensation pair charges (Eq. (55)) to ensure that all of
the moments of charge are correctly represented in the exchange interations terms. This extension of ideas presented in the orig-
inal PAW formalism38 was first introduced by Paier and co-workers.4 In principle, the correct treatment of the charge moments
in PAW approach should have accuracy advantages over norm-conserving pseudoptential methods73,74,76,78,83,84 which explicitly
control only the diagonal L = 0 pair charges. We also show that the treatment of core effects in the Fock exchange are best
implemented in terms of frozencore orbitals which can be accomplished with high accuracy within the PAW method. Whether
this analysis of the numerical advantages of PAW over other pseudo-potential methods in the treatment of the Fock exchange
interaction turn out to be numerically significant and/or computational efficient, needs still to be quantified. Encouraging results
have recently been reported by the GPAW developers12 who evaluate the Fock exchange using the PAW method on a real-space
grid.

Having introduced the detailed equations needed both for the Hartree-Fock and for the KLI implementations, we can begin
to compare the numerical and physical approximations involved with both of them. While the complication of the equations
presented in Sec. III C does appear to be daunting, we have demonstrated it to be manageable. In fact, the added complication of
the KLI approach results in the determination of the local exchange potential V KLI

x (r) for use in Kohn-Sham equations. While
much of interest in the “exact exchange” comes from improvements in the band gap energies,77,85 the few results presented in
Sec. IV indicate that there are non-trivial effects on the structural properties as well. We expect to continue to compare the
methods in future work.

There are several ways in which the present work can be extended. The equations here have assumed that the core states are
localized within the augmentation spheres of each atom. This condition can be relaxed by introducing core pseudo-wavefunctions
ψ̃ac (r) as discussed in Ref. 28 and introducing corresponding modifications to the PAW-KLI equations. Another extension
involves improving the KLI approximation by calculating the optimized effective potential within the subspace of occupied
orbitals (vocc(r)) as described by Bulat and Levy.34 Operationally, this involves including some additional non-diagonal matrix
elements of the local exchange potential and the exchange integral function in Eq. (10). In addition, we have discussed the
possibility of extending the PAW methodogy to treat the full OEP equations and have argued (see also Appendix A) that would
require a significant increase in the number of PAW one-center basis functions. A similar experience was recently reported by
Betzinger and co-workers79 in the context of an accurate implementation of local exact exchange potentials with the full-potential
linearized augmented-plane-wave method.

The scope of the present work goes beyond the accurate treatment of the Fock exchange interaction. By extension, the same
techniques can be used to treat other orbital-dependent exchange-correlation functionals as they are being developed.

Appendix A: An example of orbital shift functions

Figure 9 shows an an example of the shell contributions to the combined shift function (Eq. (9)) for atomic C in the spherically
averaged 1s22s22p2 configuration. While each curve represents a complicated function, the sum of the curves is zero at all radii
as required at convergence by Eq. (9).

Figure 10 shows the shape of the individual orbital shift functions gp(r) for atomic C which were determined from Eq.
(5). While their magnitudes are small, their shapes are very complicated. From the forms of these functions it is evident that
their accurate representation as a sum of atomic basis functions would require the use of a large number of basis functions.
In particular, the PAW transformation Eq. (18) would require that in the augmentation region, both the all-electron valence
orbital function ψv(r) and the corresponding all-electron valence orbital shift function gv(r) be well representated by a sum of
all-electron basis functions {φi(r)} for r ≤ rac :

ψv(r) ≈
∑
i

φi(r)〈P̃ ai |Ψ̃v〉 and gv(r) ≈
∑
i

φi(r)〈P̃ ai |G̃v〉. (A1)

While the expansion of ψv(r) is well-controlled, the expansion of gv(r) is computationally much more demanding. Without
knowing the values of the expansion coefficients 〈P̃ ai |G̃v〉, the shape of the curves in Fig. 10 suggest that accurate representation
of gv(r) requires many more terms than does accurate representation of ψv(r). Our numerical tests39 are consistent with this
analysis. This would make a full PAW-OEP treatment much more computational demanding than PAW-KLI.
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FIG. 9. (Color on line) Shell contributions to the combined shift function for C atom.
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FIG. 10. (Color on line) Orbital shift functions gp(r) for C atom.

Appendix B: Some details of Hartree-Fock formalism

In principle, the Hartree-Fock equations are not defined for unoccupied states. However, in order to generate a more complete
basis set for the PAW formalism and to generate Ṽ aloc(r), it is convenient to use continuum states. For this purpose, we simplified
a more rigorous treatment86 and define a continuum state at a given energy εp > 0 to satisfy the integral differential equation
(similar to Eq. (17) of Ref. 28)

(K + VN (r) + VH(r)− εp)ψp(r) +Xp(r) = 0. (B1)

Here Xp(r) is defined by Eq. (7) with the sum over q including only occupied states, and where no explicit orthonormalization
constraints are imposed. In our previous work we noted that results can be sensitive not only to the basis functions, but also to the
magnitude of the localized pseudopotential Ṽ aloc(r). By using Eq. (B1) and a method similar to that described by Al-Saidi and
co-workers83 to generate a norm-conserving screened pseudopotential V aPS(r), we can then use a similar unscreening process
described by Eq. (47) to determine a suitable Ṽ aloc(r) for each atom.

In order to simplify the formulation of the Hartree-Fock PAW equations, we relaxed the orthogonality constraints of the
valence wavefunctions with respect to the core orbitals. We also assumed the core states to be confined within the augmentation
region using the expressions given in Sec. III A 1, III A 2, and III B.

Matrix elements of the Hartree-Fock equations in the Bloch basis are diagonal in wavevector k and Hermitian with respect to
band indices. In order to use the same diagonalization procedures that are used for the Kohn-Sham formulations, it is convenient
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to regroup terms in the evaluation of matrix elements of the exchange interaction defined in Sec. III B:

〈Ψ̃n′′k|XPAW
nk 〉 = 〈Ψ̃nk|XPAW

n′′k 〉∗

≡ X 1 k
n′′n +

∑
ail

〈Ψ̃n′′k|P̃ ai 〉X 2
il〈P̃ al |Ψ̃nk〉. (B2)

Here

X 1 k
n′′n ≡ −

2πe2

V
∑
n′k′

fn′k′
ρ̃
∗
n′′k,n′k′(G)ρ̃nk,n′k′(G)

|k− k′ + G|2
, (B3)

and

X 2
il ≡ −

1

2

∑
jk

Wa
kjVaij;kl − δlillδmiml

Cail. (B4)

The current version of the code was written with these equations. Further analysis will be needed to improve the efficiency of
the calculations.
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