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The pseudogap state of high temperature superconductors isa profound mystery. It has tantalizing evidence
of a number of broken symmetry states, not necessarily conventional charge and spin density waves. Here we
explore a class of more exotic density wave states characterized by topological properties observed in recently
discovered topological insulators. We suggest that these rich topological density wave states deserve closer
attention in not only high temperature superconductors butin other correlated electron states.

I. INTRODUCTION

In a paper in 2000 Nayak1 provided an elegant classifica-
tion of density wave states of non-zero angular momentum.
The surprise is that given the roster of multitude of such states,
so few are experimentally observed. Of these, the angular mo-
mentumℓ = 2, spin-singlet has taken on a special significance
in the context of pseudogaps in cuprate high temperature su-
perconductors,2 It breaks translational symmetry, giving rise
to a momentum dependentdx2−y2 (DDW) gap, without mod-
ulating charge or spin, but alternating circulating chargecur-
rents from a plaquette to plaquette much like an antiferromag-
net. In its pristine form, in the half filled limit, that is, for
one electron per site, the Fermi surface of DDW consists of
four Dirac points and is therefore a semimetal. This broken
symmetry state has inspired much effort in characterizing the
pseudogap as a phase with an order parameter distinct from
fluctuating superconducting order parameter.

Presently, it appears from many experiments that the pseu-
dogap may be susceptible to a host of possible competing or-
ders. Thus it is important and interesting to explore an order
parameter closely related to the singlet DDW, which retains
many of its primary signatures such as the broken translational
symmetry or a particle-hole condensate of higher angular mo-
mentum. In particular we consider a density wave of non-
zero angular momentum of mixed singlet and triplet variety
such that in the half-filled limit, it is a gapped insulator. Un-
like the semimetallic DDW, it has a non-vanishing quantized
spin Hall effect for a range of values of the chemical poten-
tial. This is in fact a topological Mott insulator3 because it
is the electron-electron interaction that is necessary forit to
be realized. Further addition of charge carriers, doping, leads
to Lifshitz transitions destroying the quantization but not the
very existence of the spin Hall effect.

It is remarkable that such an unconventional broken sym-
metry, possibly relevant to high temperature superconductors,
belongs to the same class of currently discussed novel state
of matter known as topological insulators; in fact, our workis
to some extent motivated by these recent developments.4 We
wish to emphasize that the undoped parent compounds of high
temperature superconductors are proven to be antiferromag-
nets with sizeable moments and the spin density wave trans-
forms according toℓ = 0.5 The proposed topological density
wave should therefore be relevant at larger doping that per-

haps originates from a nearby insulating state. In no way is
this different from the original suggestion of DDW.

It has been known that tripletiσdx2−y2 order parameter
corresponds to staggered circulating spin currents arounda
square plaquette.6 wherein the oppositely aligned spins circu-
late in opposite directions, as shown in Fig. 1. This reminds
us of topological band insulators where oppositely aligned
edge-spins travel in opposite directions. However, there is no
topological protection because the bulk is not gapped, but is
a semimetal instead. A more interesting case is the order pa-
rameter(iσdx2−y2 + dxy), whereσ = ±1 for up and down
spins, with the quantization axis alonĝz. Such a state not
only satisfies time reversal invariance but is also fully gapped,
analogous to time reversal invariant band insulators discov-
ered recently. Singlet chiral(idx2−y2+dxy) density wave that
breaks macroscopic time reversal symmetry was employed to
deduce possible polar Kerr effect and anomalous Nernst ef-
fect7 in the pseudogap phase of the cuprates. Another topo-
logical state with a different symmetry of the order parameter
was discussed in Ref. 8

As to topological properties of superfluids, we refer the
reader to the book by Volovik.9 Superconductors are particle-
particle condensates, and, as such, the orbital wave function
constrains the spin wave function because of the exchange
symmetry. What we are discussing here are particle-hole con-
densates, and there is no exchange requirement between a par-
ticle and a hole. Thus, orbital wave functioncannot constrain
the spin wave function. Thus an orbital singlet can come in
both spin singlet and triplet varieties.

The plan of the paper is as follows: Section II is divided
into three parts. Part A discusses the topological aspects in
the absence of magnetic field, while Part B contains results
for a perpendicular magnetic field. The Part C consists of a
thorough discussion of the bulk-edge correspondence that fol-
lows from topological considerations. In section III we dis-
cuss Fermi surface reconstruction via a Lifshitz transition as
the system is doped. In section IV possible experimental de-
tection schemes are suggested. The symmetry of the order
parameter that we have introduced is such that the necessary
experimental techniques are more subtle than the detectionof
more common broken symmetries, such as spin or charge den-
sity waves.
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FIG. 1. (Color online) Tripletiσdx2−y2 density wave in the absence
of an external magnetic field. The current pattern of each spin species
on an elementary plaquette is shown. The state is a semimetal. On
the other handiσdx2−y2 + dxy can be fully gapped for a range of
chemical potential. An example is shown in Fig. 2.

II. ORDER PARAMETER TOPOLOGY

A. Zero external magnetic field

The order parameter that we consider is

〈c†k+Q,σck,σ′ 〉 = (Φµ(k)τµ)σσ′ , (1)

wherec†k,σ(ck,σ) is the Fermion creation(annihilation) opera-
tor with momentumk and spin componentσ; µ = 0, · · · 3, τ1,
τ2, andτ3 are the standard Pauli matrices andτ0 = 1. The
nesting vector~Q = (π/a, π/a). We choose the components
of the order parameter to be

Φ3(k) ∝ i
W0

2
(cos kx − cos ky) ≡ iWk (2)

Φ0(k) ∝ ∆0 sin kx sin ky ≡ ∆k. (3)

and the remaining components are set to zero. The right hand
side is written in terms of the gap parameters and the con-
version involves suitable coupling constants, which we do not
need to specify in a non-selfconsistent Hartree-Fock theory.
The lattice spacinga is set to unity.

In the absence of an external magnetic field, the tripletd±id
Hamiltonian is

Hd±id − µN =
∑

k

Ψ†
kAkΨk, (4)

where the summation is over the reduced Brilloin Zone (RBZ)
bounded byky ± kx = ±π, and the spinor,Ψ†

k, is defined
as(c†k,↑, c

†
k+Q,↑, c

†
k,↓, c

†
k+Q,↓). The chemical potential is sub-

tracted for convenience,N being the number of particles.The
matrixAk is

Ak =







ǫk − µ ∆k + iWk 0 0
∆k − iWk ǫk+Q − µ 0 0

0 0 ǫk − µ ∆k − iWk

0 0 ∆k + iWk ǫk+Q − µ






,

(5)

with a generic set of band parameters,

ǫk = ǫ1k + ǫ2k (6)

ǫ1k = −2t(coskx + cos ky), ǫ2k = 4t′ cos kx cos ky. (7)

We may chooset = 0.15 eV , renormalized by about a fac-
tor of 2 from band calculations andt′ = 0.3t, andW0 ∼
−∆0 ∼ t ∼ J , whereJ is the antiferromagnetic exchange
constant in high temperature superconductors, for the purpose
of illustration. Each of the two2 × 2 blocks can be written
in terms of two component spinors,ψk,σ = (ck,σ , ck+Q,σ)

T ,
σ = ±1 ≡ (↑, ↓); for example, for the up spin block we have

H↑ =
∑

k

ψ†
k,↑

[

1(ǫ2k − µ) + ǫ1kτ
3 +∆kτ

1 −Wkτ
2
]

ψk,↑

(8)
The eigenvalues (± refers to the upper and the lower bands
respectively)

λk,± = ǫ2k − µ± Ek, Ek =
√

ǫ2
1k +W 2

k +∆2
k. (9)

are plotted in Fig. 2. Since up and down spin components
are decoupled, the Chern number for each component can be
computed separately. After diagonalizing the Hamiltonian,
we can obtain the eigenvectors

Φσ,±(k) = (u±e
iσθk/2, v±e

−iσθk/2)T , (10)

where

u2± =
1

2
(1±

ǫ1k
Ek

), (11)

v2± =
1

2
(1∓

ǫ1k
Ek

), (12)

θk = arctan(
Wk

∆k
) + πΘ(−∆k). (13)

To compute the Berry phase of the eigenstates, we define
the Berry curvature,~Ωσ,± as

~Ωσ,± ≡ i~▽k × 〈Φ†
σ,±(k)|

~▽k|Φσ,±(k)〉 (14)

Substituting the eigenstates into the above equation, the
Berry curvature can be written as

~Ωσ,± = i~▽k × [(u2± − v2±)
~▽k(iσ

θk
2
)]. (15)

Sinceu±, v±, andθk only depend onkx andky, only the z
component,Ωσ,±, is non-zero, which is given by

Ωσ,± = ∓
σ

2
[
∂

∂kx
(
ǫ1k
Ek

)
∂θk
∂ky

−
∂

∂ky
(
ǫ1k
Ek

)
∂θk
∂kx

]

= ±σ
1

2E3
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆k Wk ǫ1k

∂∆k

∂kx

∂Wk

∂kx

∂ǫ1k
∂kx

∂∆k

∂ky

∂Wk

∂ky

∂ǫ1k
∂ky

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (16)

From the above determinant, we can see that the Berry cur-
vature will be zero if one of∆k andWk is zero, so we need
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a mixing ofdx2−y2 anddxy to have a non-trivial topological
invariant.

If we define the unit vector̂nσ ≡ ~hσ/|~hσ|, where~hσ =
(∆k,−σWk, ǫ1), the Berry curvature can be written as

Ωσ,± = ∓
1

2
n̂σ · (

∂n̂σ

∂kx
×
∂n̂σ

∂ky
). (17)

More explicitly, the Chern numbers are

Nσ,± =

∫

RBZ

d2k

2π
Ωσ,±

= ±σ

∫

RBZ

d2k

2π

tW0∆0

E3
k

(sin2 ky + sin2 kx cos
2 ky)

= ±σ.
(18)

We can focus on the lower band as long as there is a gap be-
tween the upper and the lower bands. Then,

N = N↑,− +N↓,− = 0 (19)

Nspin = N↑,− −N↓,− = (−1)− 1 = −2 (20)

irrespective of the dimensionful parameters. Note, however,
that the Chern numbers vanish unless both∆0 andW0 are
non-vanishing. The quantization holds for a range of chemical
potentialµ, as can be seen from Fig 2.

FIG. 2. (Color online) Energy spectra,λk,± + µ, corresponding to
(iσdx2−y2 + dxy) density wave. Here, for illustration, we have cho-
senW0 = t and∆0 = −t and the band parameters, as described
in the text. The chemical potential,µ, anywhere within the spectral
gap, the lower band is exactly a half-filled and the system is aMott
insulator, unlike the semimetallic DDW at half-filling.

For the fully gapped case, there will be a quantized spin
Hall conductance associated with the eigenstates. The ratio of
the dimensions of the quantized spin Hall conductance to the
quantized Hall conductance should be the same as the ratio of
the spin to the charge carried by a particle, since in two dimen-
sions for both quantities the scale dependenceLd−2 cancels,
that is,

[σspin
xy ]

[σxy]
=

~

2

e
. (21)

So, the quantized spin Hall conductance will be

σspin
xy = −

e2

h

~

2e
Nspin =

e

2π
(22)

The eigenstates,|Ψσ,±(k)〉, are also the eigenstates ofS
2 and

Sz with eigenvaluesS2 = 3

4
andSz = −σ

2
. Since the spin

SU(2) is broken by the triplet DDW, one might wonder if
the Goldstone modes not contained in the Hartree-Fock pic-
ture may not ruin the quantization. IfSU(2) is broken down
to U(1), then there is still a quantum number corresponding
to, saySz, which is transported by the edge currents in the
system. More succinctly, as long as time-reversal symme-
try is preserved, we will still have Kramers degeneracy in our
Hartree-Fock state, and therefore the edge modes will remain
protected.

B. Non-zero magnetic field

In an infinitesimal external magnetic field,~H , there will
be a spin flop transition in the absence of explicit spin-orbit
coupling, as shown in Fig. 3. We can assume~H = Hẑ and
the spins quantized along thêx direction without any loss of
generality. Then the Hamiltonian now becomes

Hd±id =
∑

k

Ψ†
kAkΨk (23)

As before, the summation is over the RBZ, and the spinor is
the same. The matrixAk is now

Ak =







ǫk,↑ 0 0 ∆k + iWk

0 ǫk+Q,↑ −∆k − iWk 0
0 −∆k + iWk ǫk,↓ 0

∆k − iWk 0 0 ǫk+Q,↓






,

whereǫk,σ = ǫk + σ gµBH
2

= ǫk + σγ. Although the spin up
and down components are coupled, particles with momentum
k and spin up only couple to holes with momentumk + Q
and spin down, and vice versa. Therefore, by redefining the
spinor,Ψ

′†
k ≡ (c†k,↑, c

†
k+Q,↓, c

†
k,↓, c

†
k+Q,↑), the Hamiltonian

can still be expressed as a block diagonal matrix:Hd±id =
∑

k Ψ
′†
k A

′

kΨ
′

k. The Chern numbers for each subblocks,i =
1, 2, can be calculated as before. Therefore, definingηi = + 1
or -1 for i = 1 or 2, we obtainEk,i = [(ǫ1 + ηiγ)

2 +W 2
k +

∆2
k]

1/2, and the Berry curvature

Ωi,± = ∓
1

2E3
k,i

~hi · (
∂~hi
∂kx

×
∂~hi
∂ky

), (24)
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FIG. 3. (Color online) Spins are flopped perpendicular to theapplied
magnetic field H. Contrast with Fig. 1.

where~hi = (ηi∆k,−Wk, ǫ1 + ηiγ). Performing a surface
integration of the Berry curvature we get

Ni,± =

∫

RBZ

d2k

2π
Ωi,±

= ±ηitW0∆0

∫

RBZ

d2k

2πE3
k,i

[

sin2 ky + sin2 kx cos
2 ky

−
ηiγ

4t
(cos kx sin

2 ky + sin2 kx cos ky)
]

(25)

The± refers to the upper and the lower band respectively. The
integral does not depend on the external field, nor on magni-
tude of the parameterst, W0, and∆0. The Chern numbers
are

Ni,± = ±ηi, Ntotal = N1,− +N2,− = 0,

Nspin = N1,− −N2,− = −2,
(26)

Once again the spin Hall conductance is quantized, but the
charge quantum Hall effect vanishes. The flopped spins carry
the same current as before. The corresponding spin Hall con-
ductance, as long as the gap survives, is

σspin
xy =

e

2π
. (27)

The eigenstates,|Φi,±(k)〉, are the eigenstates ofS2 with
eigenvaluesS2 = 3

4
, but not eigenstates ofSz because of the

mixing of up and down spins.

C. Bulk-edge correspondence

For the(iσdx2−y2 + dxy) order the bulk-edge correspon-
dence can be studied by open boundary condition in thex-
direction but periodic boundary condition in they-direction,
that is, by cutting open the torus. The edge modes if they exist
will reside on the ends of the cylinders. The cut then leads to
a Hamiltonian

H =
∑

ky,i,j

Ψ†
i,ky

Aij(ky)Ψj,ky
, (28)

where the spinor isΨi,ky
= (ci,ky↑ci,ky+π↑, ci,ky↓ci,ky+π↓)

T ,
andAij(ky) is a4N × 4N matrix parametrized by the wave
vectorky, which is given by

Aij(ky) =









Tij(ky) Sij,↑(ky) 0 0

S†
ij,↑(ky) Tij(ky + π) 0 0

0 0 Tij(ky) Sij,↓(ky)

0 0 S†
ij,↓(ky) Tij(ky + π)









,

whereTij(ky) andSij,σ(ky) areN ×N matrices:

Tij(ky) =













−µ− 2t cosky −t+ 2t′ cos ky 0 · · · · · ·
−t+ 2t′ cos ky −µ− 2t cos ky −t+ 2t′ cos ky · · · · · ·

0 −t+ 2t′ cos ky −µ− 2t cosky −t+ 2t′ cos ky · · ·
...

...
...

. . . −t+ 2t′ cos ky
−t+ 2t′ cos ky −µ− 2t cosky













,

Sij,σ(ky) = iσ
W0

4













−2 cosky −1 0 · · ·
1 2 cos ky 1 · · ·
0 −1 −2 cosky −1 · · ·
...

...
...

. . . (−1)N−1

(−1)N (−1)N2 cosky













+ i
∆0

2
sin ky













0 1 0 · · ·
1 0 −1 · · ·
0 −1 0 1 · · ·
...

...
...

. . . (−1)N

(−1)N 0













.

The corresponding one dimensional system withN sites de-
pends on the band structure and the order parameters defined
above.

The eigenvalue spectra are shown in Fig 4. The spectra,
degenerate for up and down spins, are plotted in the range
0 ≤ ky ≤ π (ky < 0 can be obtained by reflection). To find
the edge states we choose the chemical potential in the gap.
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In Fig. 4, we putµ = −0.075eV for the purpose of illustra-
tion. There are two edge states with positive group velocity,
one with up spin and the other with down spin. Let them be
ψ>,↑ andψ>,↓, respectively. There are also two edge modes
with negative group velocity denoted asψ<,↑ andψ<,↓ for up
spin and down spin, respectively. By explicitly computing the
support of each of these wave functions, we have verified that
electrons in statesψ>,↓ andψ<,↑ are localized near the left
edge of the system whereas those in statesψ<,↓ andψ>,↑ are
localized near the right edge. The localization length of these
states is essentially a lattice spacing; an example is shownin
Fig 4.

(a)

(b)
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FIG. 4. (a) Spectrum of the triplet (d±id)-density wave on a cylinder.
Parameters aret = 0.15eV, t′ = 0.3t, µ = −0.075eV,W0 = t, and
∆0 = −t. The subscriptsL andR to the spins correspond to left and
right modes. (b) The probability density for positive groupvelocity
for L andR spins for a lattice ofN = 100 sites.

It is interesting to see how this spectra compare with the one
where periodic boundary conditions are applied in bothx and
y directions. After diagonalizing the Hamiltonian, we plot the
spectra for a fixed value ofky for all values of the energies.
The results are shown in Fig. 5, which are essentially identical
to Fig. 4, except that the edge states are missing.

0.2 0.4 0.6 0.8 1.0
ky�Π

-0.4
-0.2

0.0
0.2
0.4
0.6
0.8
Eky
HeVL

FIG. 5. The bulk spectra for fixed values ofky with the same param-
eters, as in Fig. 4.

III. FERMI POCKETS AND LIFSHITZ TRANSITION

It is interesting to track the evolution of successive Lifshitz
transitions as we change the parameters. At first, when we
lower the chemical potential, four hole pockets will open up
in the full Brillouin zone, as shown in Fig. 6 and the corre-
sponding spin Hall effect will lose its quantization but notthe
effect itself. But in mean field theory this cannot continue
indefinitely with the nodal or the antinodal gaps fixed. So
the parametersW0 and∆0 will also decrease and will lead
to a further opening of two electron pockets in the full Bril-
louin zone, as shown in Fig. 6. Ultimately, when the doping
is increased further, the large Fermi surface will emerge asa
further Lifshitz transition. There is good evidence that such
Lifshitz transitions indeed occur in high temperature super-
conductors.

�3 �2 �1 0 1 2 3

�3
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�1

0

1

2

3

a kx

a ky

�3 �2 �1 0 1 2 3

�3
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�1
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1

2

3

a kx
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FIG. 6. (Color online) (Left) Region plot,µ = −0.16 eV . Here for
illustration, we have chosenW0 = t and∆0 = −t as before. The
hole pockets open up. (Right)W0 = 0.05t and∆0 = −0.5t illus-
trating the opening of the electron pockets at(π, 0) and symmetry
related points with enlarged hole pockets.
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IV. EXPERIMENTAL DETECTION

While there are many speculations about the nature of the
pseudogap, they largely fall into two categories: 1) it is a
crossover between a Mott insulator and a Fermi liquid, with-
out any sharp, coherent excitations, and 2) it reflects a broken
symmetry, with quasiparticles due to reconstructed Fermi sur-
face that, despite strong correlations in the system, can behave
in many ways as weakly interacting particles. The resolution
of this dichotomy will ultimately be settled by experiments,
which, to date, have shown some support for both. In the ab-
sence of a definitive evidence one way or the other, we have
adopted the second perspective (to some extent motivated by
recent quantum oscillation experiments) to see what conse-
quences there may be of having a broken symmetry phase
with sufficiently hidden order, in particular one that has strik-
ing similarities to topological insulators.

A prime characteristic of a broken symmetry is that deep
in the broken symmetry phase, an effective mean-field, or a
Hartree-Fock Hamiltonian, suffices in discussing the proper-
ties of matter, and the symmetries alone determine the ex-
citation spectra and the collective modes. It is only in the
proximity of quantum critical points that such a description
breaks down but that is not the subject of discussion here.
Moreover, those properties that are determined by symmetries
alone should be robust and can be understood in the weak cou-
pling limit, simplifying our task of exploring correlated elec-
tron system.

The mixed triplet-singlet order parameters considered here
is even more hidden than the corresponding singlet DDW. Not
only do they not modulate charge or spin, but so long as spin-
orbit coupling is absent, they are alsoinvisible to elastic neu-
tron scattering because there is no associated staggered mag-
netic field, as in a singlet DDW.

Inelastic neutron scattering can detect its signature in terms
of a spin gap at low energies in the longitudinal susceptibil-
ity and signatures in the transverse susceptibility of quasi-
Goldstone modes, and even onset of a finite frequency res-
onance mode. Recall that at any finite temperaturesSU(2)
symmetry cannot be spontaneously broken in two dimen-
sions; interlayer coupling is necessary to stabilize it. Thus
the scale of symmetry breaking must be considerably smaller
thant ∼ J , and the signature must be sought at higher ener-
gies. It could be a challenge to disentangle the signal from
inelastic spin density wave excitations. On the other hand
since the quasiparticle excitations are essentially identical to
the singlet DDW, the quantum oscillation properties will be
similar,10 except perhaps those in a tilted field,11 which is cur-
rently being explored. The essence of this order parametersis
modulation of spin current and kinetic energy. So, it will re-
quire probes that can detect higher order correlation functions,
such as the two-magnon Raman scattering. In the presence of
modest spin-orbit coupling, it may be possible to find small
shifts of nuclear quadrupolar frequency (NQR). The modula-
tion of the kinetic energy arising from thedxy component, in
particular staggered modulation oft′, may lead to anomalies
in the propagation of ultrasound12 at a temperature where such
an order is formed, presumably at the pseudogap temperature

T ∗. The detection of the unique features of the proposed or-
der parameter, the spin Hall effect and edge currents would be
even more challenging.

The effects of non-magnetic impurities on the mixed triplet-
singlet phase studied here are rather subtle. We expect such
disorder to couple only weakly to spin currents. Generically,
disorder will couple differently to theiσdx2−y2 anddxy com-
ponents since each breaks a different symmetry. However, by
breaking both the point group and lattice translation symme-
tries, disorder can enable mixing with (generally incommen-
surate) density wave states in other angular momentum chan-
nels. For example, at the level of Landau theory, we expect
terms in the free energy proportional to product of quadratic
powers of the component order parameters, which would be
proportional to the impurity concentration, thus inducingspin
or charge density waves. So long as spin rotational symmetry
is preserved in the normal state, the phase transition into the
iσdx2−y2 state can remain sharp.

From the standpoint of topological order at zero tempera-
ture, the effects of weak disorder are somewhat simpler. Since
the density wave phase considered here is a gapped phase with
topological order that is protected by time-reversal symmetry,
it remains robust against weak non-magnetic disorder. Thus,
the phase can still be described in terms of its topology at zero
temperature, a feature which it shares with topological band
insulators.

Lastly, we remark that in the presence of magnetic impu-
rities, the phase is not sharply defined - either as a broken
symmetry or in terms of it’s underlying topology.

In terms of microscopic models beyond the phenemenol-
ogy discussed here, it is almost certain that correlated hopping
processes will play a key role,13 Finally, sincedx2−y2 anddxy
are two distinct irreducible representations on a square lattice,
generically they will each have their own transition tempera-
tures, as dictated by Landau theory. The development of the
dxy order parameter would be at a higher temperature com-
pared to the triplet component which breaksSU(2) and there-
fore requires interlayer coupling. Thus it follows that when
applied to cuprates there must be two transitions in the pseu-
dogap regime. Since the topological phase studied here arises
from spontaneous symmetry breaking, it can support charged
skyrmion textures in analogy with.14 The properties of such
textures and their transport signatures shall be the topic of a
forthcoming publication.
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