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Motivated by the recent observation of antiferromagneticalations in the paramagnetic phase of iron pnic-
tides, we study the finite temperature spin dynamics of a iwedsional/; — J» antiferromagnet. We consider
the paramagnetic phase in the regime ¢fra0) collinear ground state, using the modified spin wave theory.
Below the mean field Ising transition temperature, we idgstiort-range anisotropic antiferromagnetic corre-
lations. We show that the dynamical structure faci¢g, w) contains elliptic features in the momentum space,
and determine its variation with temperature and energpglitations for the spin-dynamical experiments in the
iron pnictides are discussed.

I. INTRODUCTION the spin dynamics in the paramagnetic phase of the model
in the (7, 0) collinear regime has not yet been systematically

studied. We carry out the calculations using a modified spin

High temperature superconductivity in the iron pnictidfes g .
arises by doping antiferromagnetic parent Compoandsyvavetheoriio, whichincorporates the/.S corrections that are

important for capturing the order-from-disorder phenooren
: 6f?md the associated dynamical properties. We discuss the im-

tions and the superconductivity are important issues for unpllcatloln_s of our resulis for the iron pnictides, includitig:
gle of itinerant electrons.

derstanding the emergence of high temperature supercondJ . ) .

tivity in these materials. In the parent iron pnictides, Nl Our paper is organized as follows. In Sec. |l we introduce

transition into a(r, 0) antiferromagnet is either preceded by the relevant/; — J _model and describe the mod|f|e_d_sp|n
wave theory calculations. In Sec. Il we analyze the exicitat

or concomitant with a tetragonal-to-orthorhombic struatu . >~ X
transition. The(r, 0) magnetic order by itself can be under- SPECtrum obtained from modified spin wave theory, and asso-
ciated behavior of the spin-spin correlation length. In.3¥c

stood either by invoking a local momerit — .J, modef~1 _ .
or an itinerant model with nearly nested electron and hold/€ analyze the dynamic structure factor calculated by using

pocketd>14 the modified spin wave theory results. In Sec. V we con-

The experimentally observed “bad metal” behavior, theS|der the fluctuation effects due to itinerant electrondhinit

Drude-weiaht suppressibhié and the temperature-induced & Ginzburg-Landau framework. In Sec. VI we describe the
spectral ngght trpallonsfé‘i*ls place these mgterials ear 1o a relation between our theoretical results and the expetiahen

o ; data obtained in the paramagnetic phase of iron pnictides. W
Mott transitiorf>1%20 a Mott insulator can emerge when P g P P

the iron square lattice either exoaRHsr contains ordered provide a summary of our work in Sec. VII. The technical
ron squ : \ Xp : . details of fitting the experimental data and consideratibn o
vacancie®. In a metallic system close to a Mott transi-

tion, quasi-local moments are expected to arise; this piCi_nter-planar exchange coupling using modified spin wave the
ture is further supported by the experimental observation oOry are respectively relegated to Appendix A and Appendix

zone boundary spin wave excitations in the magnetically or-"
dered state at low temperatufésThe inelastic neutron scat-
tering experiments demonstrated the need for an anisctropi
Ji — Jo model with .J;, # Ji,, which may reflect an or-
bital ordering*-?®while pointing to the relevance of magnetic

Il. MODEL AND MODIFIED SPIN WAVE THEORY

frustration from the extracted ratie/i, + J1)/2J2 ~ 123, The model is defined by the Hamiltonian

Therefore, results in the tetragonal, paramagnetic phiabe o

parent compounds are of great importance for understanding H=J Z Si-S;+Js Z S-S, (1)
the relevance of an isotropi¢, — J> model as well as the o s '

strength of the underlying magnetic frustration. Recealds-
tic neutron scattering measurements of Dial@l.>’ on the  \where, and.J, respectively denote the antiferromagnetic ex-
tetragonal, paramagnetic phaseCaile; As, represent a first  change couplings between spins located in the neafigs) (
step in this direction. Even above the concomitant first ordeand next-nearest neighbof({j))) sites on a square lattice.
structural and Néel transition temperature, they have sl Classically, for.J,/.J; > a. = 0.5, the lattice decouples into
anisotropic spin dynamics around the 0) wave vector, and  two independently Néel ordered, interpenetrating lagtj@nd
the inferred ratioJ; /Jo ~ 0.55 is similar to that of the or-  the angle between the staggered magnetizations of these two
dered phase. sublattices, as illustrated in Fig. 1 inset is arbitrary. gxder-
Motivated by these experimental results we study the spifrom-disorder transition at temperatufg breaks the fourfold
dynamics of a two dimensional; — J> antiferromagnet. rotational symmetry of the square lattice down to a twofold
While theoretical studies exist on the order-from-disorde rotational symmetry of the rectangular lattice, afnd= 0, 7
phenomenon and phase diagram of the— J, modef®2°,  emerge as degenerate ground statég at 028, Since quan-



tum fluctuations make.. > 0.5, for definiteness we will focus  values like(a/a;). Therefore, we define ferromagnetic and

onJy/Jy > 1. antiferromagnetic bond correlatioﬁ% (ala;) = (alaj)

andg;; = (a;a;) = (a al > The explicit expressions for the
We define a local spin quantization axis along the classicapond correlations are glven by

ordering direction at each sitél(l), as illustrated in an inset 1 1
to Fig. 1. We then introduce the corresponding Dyson-Maleev fij = Z cosh 20y (nk + ) exp(—ik -ri;)  (2)

X - . N 2
(DM) boson representation for the spin operators at eaeh sit k
S, - Qd S — aTaZ, as well asS] = v25(1 — a| aZ/QS a;
andS; = v/25a!. The modified spin wave thecft‘i/treats
the self-energy of thei-bosons as a static quantity, which _ _
renormalizes their dispersion; in this respect, it is simtb ~ Whereni = [exp(ex/T') — 1]~ is the Bose occupation factor.
the largeN Schwinger boson mean field thedtyFollowing In terms of f;; andg;; the equal time spin correlatds; -
Takahash32 we express the Hamiltonian, Eq. (1), in terms S;) can be expressed as
of the DM bosons in momentum space. The procedure is to

1 . 1 .
9ii = 5 E sinh 260y (ny + 5) exp(—ik - ri;),  (3)
k

minimize the free energ¥ = (H) — T'S under the constraint (S; - S;) = cos® @ {S N 1 £0) + fij]z
of zero magnetization,S — azai> = 0, with respect to varia- 2

tional parameters which enté&f. These are the boson disper- 5 Bij 1 2
sioney, the anglep and the Bogoliubov angléy.. The latter —sin® 2~ [S +5 - fO)+ gij} (4)

enters in a Bogoliubov transformation that mixes the opesat
of the two interpenetrating Néel sublattices and rendees t whereg;; = ¢, m— ¢, =, for horizontal, vertical and diagonal
non-zero temperature density matrix diagéhalThe equal bonds respectively (see Fig. 1). Using the expressiofSor
time correlatorgS; -S;) can be written in terms of expectation S;) for different bonds, the total energy can be written as

_ N (gL L a2 2 AN ¢
E_T(s;j[C082§<S+§_f(0)+fw) —51112—( +2 f(O)-I—gm) }+Térzj[g[51n2§x
L ’ 6 (. 1 2 LN 1 2
(S+§_f(0)+fy) _C052§<5+5—f(0)+9y)}—TJSEM(S"‘E—JC(OH-%W) (5)

Notice that the expression for total energy only contaires th self-consistent equations
nearest and next nearest neighbor bond correlation parame-

ters fz, fy. 9=, gy andg,4,. The constraint of zero mag- fo = — Z B (nk + l) Cox, @ =1,y (8)
netization, appropriate fof’ > Ty (for the two dimen- N o €k 2 ' '

sional problenml’y = 0), is enforced by the Lagrange mul- 1 A 1

tiplier x. Minimizing £ — TS — uf(0) with respect to 9o =7 Z (nk+ 2) Cox, a=z,y,x+y (9)
ek, ¢, Bk, we obtaintanh 26, = Ak/Bk, Ek = v/ BIQ( — Ai k

andsin¢ (f7 + g2 — f2 — g2) = 0, where 1 1 Bk 1
s+2_f(o)_NZk:€k it 5 (10)
PR 2 @ We identify two important temperature scalBsandT,
A = 2J; (sin? £g,C, ~g,C Y poriant temp . o0
k ! (Sm g Jutuk +cos 9 Jytuk such thatly > T, by solving the self-consistent equations.

+4J3 gusyCatyk (6) Thetemperaturg, = J5(S+1/2)[log(1/S+1)]~" marks the

é L0 onset of the largest bond correlatign,.,,, while T,y marks

By =2J; (sm 5( — f,) + cos? —(gy fw)) the onset of nearest neighbor bond correlations.7For T,

i’ i’ all the bond correlations vanish and we have decoupled lo-
9 9 cal moment behavior. The first order transition from the cor-
2 <COb §f””cm’k e §fycy’k) A2 goy =it related to decoupled moment state7gtis an artifact of the
(7) mean-field theordf. In the temperature range,, < T < Ty,

the sublattice anglé remains arbitrary, and the system has

Cj, rotational symmetry. Fof' < T, there are two degener-
and we have introduced the form fact@lsy = cosk,a, ate solutiong) = 7, with g, = f» = 0,9, # 0, fy # 0,92 #
Cyx = coskya, andCy4y k = coskzacoskya. Now using  f,, and¢ = 0, with x < y switching. An Ising order pa-
tanh 20, = Ay /By in Eq. 3, we obtain the following set of rameter, which is defined classicallyas= Q; - Q5 = cos ¢,



MF parameters

FIG. 1. (Color online) The temperature dependence of thenrfielal
parameters, fo6 = 1 andJ;/J: = 0.8. The decoupled Néel sub-
lattices are illustrated in the upper right corner, whicboaflefines
the anglep.
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FIG. 2. (Color online)The dispersian along high symmetry direc-
tions in the paramagnetic Brillouin zone for different tesmgitures
andS =1, J1/J> = 0.8. The curves from top to bottom viewed at
the left end are fof’/J> = 0.5, 1.0, 2.0, 2.1, 2.2. The plotted direc-
tions in the Brillouin zone are displayed in the upper rightner

is modified tos oc 2 (cos? § (/2 + g2) — sin® (2 + ¢2) ),
and becomes nonzero beld¥,. We identify this tempera-
ture as the mean field “Ising transition” temperature; flaetu
tions will reduce the actual transition Q. < 7,,. In the fol-
lowing, we will focus on the state withh = 7. The spectrum

Ill.  LOW ENERGY SPECTRUM AND CORRELATION

LENGTH

The boson dispersia is shown in Fig. 2. Fop = 7, and
T <« Ty, the low energy physics is governed by the excita-
tions in the vicinity of the ordering vectdtr, 0), where the
absolute minimum of the dispersion is located. Nean),
the dispersion can be approximated by

= [v2.( 2 402 k2 4 A2)? (11)
1
= [ (8J2gm+y + 4-Jlgm )] 2 (12)
Uiy = a(4J29e+y + 2J102) (13)
viy = a|(4J29z+y + 2J192) (4J2gu 1y — 2J11y)
%
+2J1 fyp (14)

Similarly in the vicinity of (0, ), the excitation can be ap-
proximated as

[’021 + v2y 9)2 + A%} ? (15)
Ag = [(8)2gaty — 4J1fy — p)(4J19e — 4y — p)]* (16)
Vo = a(4J2gz 1y — 2J19x) (17)

U2y = @ 4J291+y(4z]291+y — 2J1,gz) + 2J1fy(4!]2.gz+y

1
2

+2Jlgm - 4J1fy - ,Uf)

(18)

At low temperature§” <« 7,0, the Lagrange multiplier is
exponentially small, and\; < A,. Therefore the spin-spin
correlation length at low temperatures will be dominated by
the smallest gapg\; = T exp[—A;/T], whereA; = 27mp

is the Josephson energy, wjth= mgvy, being the stiffness
andm, the staggered magnetizationZat= 0. The velocity
anisotropy yields two correlation lengths, = v1,/A; and

&y = v1y/A1.

The low energy excitations arour{et, 0) can also be de-
scribed in terms of an anisotropi©(3) nonlinear sigma
model. Ignoring thel/S corrections and weak tempera-
ture dependence of the bond parameters, we cangake

v = Ya+y = S, and obtain bare parameters of the sigma
modely [ § = 4(2J2 + J1)a?, pyo = (2J2 + J1)S?, and
pyo = (2Jo — J1)S?. The spatial anisotropy is captured
by two direction dependent spin stiffness constantsand
pyo, @andx 1o is the bare uniform transverse susceptibility.
The spin wave velocities befoilg’ S corrections are given by

= \/Pzo/X 10, @andviy = +/pyo/Xx10- The temperature

dependence of the gap is determined by the bare Josephson

energy scale

2
- L

2
Ajg =2mwpg = 4w e S 1z

(19)

is gapped at any nonzero temperature, but becomes gapless at

T = 0 giving rise to(,
condensation.

0) antiferromagnetic order via a Bose wherepy = /pz0py0 IS the bare, geometric mean stiffness

constant. For parameter valugs= 1, and.J; /J> = 0.8, we
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: : : : : andg, < A\, ! = T'/v,, we can analyticalf*333*calculate

TH,=05 — S(q,w), which satisfies a dynamic scaling relation
_ T/I,=1.0 —
W3,=0.3 (VIR J— S(T = Gz, @y, w) = 780(T — o, 4y) 2 (2,w7),  (22)
T/1,=2.0 -------
_100} . § whereSy (7 — ¢z, qy) is the equal time structure factor, and
§- 7 = A7 is the scaling timeS, also satisfies a scaling form
A So(m = Gz, @y) = &a&y/(ATAT)A(2), wherez = [(&3(m —
o 2)* + &2¢2]'/? /2. The scaling functions are given by
L 4 1 2
10 O(a.y) = (0612
2M(2)lyl\/2? + (22 — y?)? m
05 05 0% T i0s 11 i1s x arctan [| | &] Lot - o _1))
. . . qX/T[ . . . Y I2+(I2 _y2)2 Y .
Als) — log[z + V1 + 22] (23)
FIG. 3. (Color online) The sharpening of the dynamic streefactor (2) = V1 + 22

around(, 0) with decreasing temperature for= 0.3J2, S = 1,
andJi/J> = 0.8. Whenz — 0, A(z) — 1, and forz > 1, A(z) — log(z)/22.
The second limit corresponds to momentum scales between
inverse correlation length and inverse thermal length,rethe
find Ajo = 11.5.J5. After solving the mean field equations, the system appears to have long range order (Goldstone mode

we obtain the Josephson energy scale behavior). The results fa$, are in agreement with one loop
scaling results of a quantum nonlinear sigma m&fél
_ Tty A number of features follow from Egs. (22,23). As a func-
Ay=—="==mm|(4J2gzry + 2J19:)(4J2G. ) ! C q :
J ’ (4J295+y 192)(4290-+y tion of energy for a fixedy with z > 1, S(q,w) has a broad
1 peak aroundv ~ z/7. As a function ofq for a fixed w,
—2J1fy) + 21 fyn| (20)  S(q,w) sharpens as temperature is reduced reflecting the in-

crease of correlation length; this is also seen from theltieesu

where m is the staggered magnetization at zero tempera®f direct numerical calculations (Fig. 3). In the numericaik

ture and captures the/S corrections toA ;. For S = 1, culations ofS(q, w) in Eg. (21), a Lorentzian broadening of
Ji/J> = 0.8, we have found the zero temperature paramethe delta functions has been employed, and consequently the
tersm = 0.83, g» = 0.96, f, = 0.91, go4, = 1.07, and 9P betweewr < z andwr > v/22 + 1 is not observed in

A; = 10.54.J,. Note that aTy: 0. our calcugiation is consis- Fig- 3 but is instead left as shoulders. The processes beyond
tent with that of ReftL. More details regarding the renormal- the modified spin wave theory are expected to smear the two-
ized p andA ; obtained from a sigma model calculation will P&ak structure and also n11/02d|fy tgfz_)e?écallng timie the phase

be discussed in the section V. Abo¥,, the nearest neigh- coherence time- (A, /T)"/=/A,* o

bor bond correlations vanish, and two gaps become equal, Béyond thew < 7" limit, we focus on the distribution of
Ar = Ay = /—u(8Tagury — 1). As theCy, symmetry spectral weight in momentum space. Figs. 4(a) and 4(b) il-
is restored abové,, the velocity anisotropy disappears and lustrate the behavior at low energies. Providee: 7,0, the

Vi = U1y = Vog = Vay = 4Jogatya. anisotropy of the correlation lengths gives rise to an tdlip

feature centered arourid, 0). The overall size of the ellipses

is reduced as the temperature is decreased, reflectinggicre
IV. DYNAMIC STRUCTURE FACTOR ing correlation lengths. On the other hand, the elliptitias

only weak temperature dependence; the ratio of two correla-

tion lengths is almost unaffected by temperature variation

'_I'he dynamic structure factor is calculated in th_e m_odn‘le < T, due to the weak temperature dependence of the
spin wave theory through the average of the longitudinal an elocity ratiovr, /v;
xr Y-

fransverse spin structure factors. It is expressed as With increasing energy, the evolution of the spectral weigh

1 distribution is illustrated in Figs. 4(b)-4(d). At intermiate
Slaw) = > > [cosh(20kq — 261) — s5] energies, whew is comparable to the peak energy in the dis-
k s5=%1 persiorey (see Fig. 2), there are features nfdr+1/2)r, 0),
XO(w — S€ktq — 56Nt oM (21)  whose spectral weight is relatively small at the tempegatur
shown in Fig. 4(c) but will increase with lowering temper-
wheren)” = nyc + 1 andny = n. ature. The most visible spectral feature, however, is asso-

Consider firstv < T', and low temperatureB < A ;. The  ciated with the expanding ellipses surroundirgr, 0) and
dominant contribution t&(q,w) comes from the vicinity of (0, £7), as is clearly seen in the high-energy spectrum shown
the (,0) wave vector. In the limitr — ¢,,| < A;' = T/v,  inFig. 4(d).
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The choice ofr = + respectively correspond to short range
(,0) or (0, ) order. For short ranger,0) order,m — m’
becomes gapped and we find that order parameter dynamics
can be approximately determined in terms of a sin@(8)

order parameter fieldl = m + m’. The effective action for

this field at quadratic order is given by

Sa T/dqz [r 4+ wAq + @i + v + wi + ylwil]
1

xM? (25)

wherev?, = (c+v/4), andw, = 27Tl is the Matsubara
frequency. With further assumption of small amplitude fluc-
tuations, we can writdl = Myn, wherell, is the constant
I ¥ amplitude, andh is the unit vector field. Thus low energy dy-

0 05 1 15 2 namics is now determined by a damped, anisotropic nonlinear
q/m q/m sigma model. We consider the following damped nonlinear
sigma model action

S =N WA O
y

FIG. 4. (Color online) Distribution of the dynamic struatufactor

in the momentum space for different temperatures and eegerghe S rp= i /d2 2 2 2 n 2
temperatures and frequencies corresponding to pane(d)(aje re- i 2ug QXI: [U ¢ it 7|‘*’1H In(q,w)|

spectively given by (&)'/J> = 0.5, w/J2 = 2.0, (b) T/ J2 = 2.1, (26)
“/? _:425‘0' ©@©T/)2 =21, w/h =30, @)T/5 =21, |, writing the above equation we have rescalgd, /v, ¢, —
w/Ja = 45. Gz, and /v [vyq, — gy, andv = /0,7y, to write the ac-
tion in spatially isotropic form, ang = v/p = v—lxll is
V. THE ROLE OF ITINERANT ELECTRONS AND the coupling constant with dimension of length. The scal-
GINZBURG-LANDAU CONSIDERATIONS ing behavior of the correlation length in the quantum disord

phase and quantum critical regime for this damped nonlin-
ear sigma model has been analyzed in Ref. 44. Here we will
only consider the thermally disordered or renormalized-cla
sical regime. In the largév limit, the gap in the excitation
spectrumA can be determined from the saddle point equation

A. Anti-ferromagnetic fluctuations

The description of the iron pnictides in terms of bad met-
als invokes quasi-localized moments coupled to itinerkt-e
tronts wrlostehspl\(jlcttrtatl weigthé derent?]s on thetproximity cg‘ the - / d%q 1
system to the Mott transition For the parent compounds, _ 3
tr)lle low-energy spin dynamics can be d%scribed in Et)erms of a 1 A (2m)? v2q* + wf + i + A2
Ginzburg-Landau functiondlS = S, + Sy + .. ., where

- e
vg

whereA ~ 7/a is the momentum cutoff. The Matsubara sum
can be performed in terms of digamma functions, and after the
momentum integration the left hand side can be expressed in
terms of the logarithm of the gamma function. Here we con-
sider two extreme limits of /(277T") < 1 andv/(2#T) > 1.
wherem andm’ are O(3) vectors respectively for the mag- In the limit v/(27T) < 1, we obtainz = 1 nonlinear
netizations of the two decoupled sublattices,and ¢, are ~ Slgma model result

measured with respect tatr, 0) or (0, £7), w < 1 is the _

coherent fraction of the single-electron spectral weiginil sinh A — sinh vA exp (2ﬂ> (28)

7 is the strength of spin damping caused by the coupling to 2T 2T gT

the itinerant electronsS, contains not only terms of the form

m*, m’* andm2m’?, but also an order-from-disorder term
(m - m’)? with a negative coefficiet. Eq. (24) implies that
elliptic features will occur in the dynamical responsesreve < 20 <1 1 )> Texp(

Sy = /dqdw[(r +wAq + cq® + w? + y|w|)(m? + m’?)

+o(q; — ¢;)m - m'], (24)

In the limit of small temperatures, such that > T, and
A <« T, we obtain the result for smajl limit,
. : : : : 2mp
the regime where the Ising order is not static but fluctuating A = T'exp T 29)
and short-ranged; the primary role of the itinerant elettro g Ja

beyond shifting- through the positivevAq term, is to pro-  whereg., = 4x/A is the coupling strength for zero temper-

T

vide damping effects to such features. aturez = 1 quantum critical point, ang is the renormal-
Well below the mean-field Ising transition temperature, theized spin stiffness constant. From this expression we find
thermal fluctuations of the Ising order parameter +(m - ¢ = v/T exp(252) in the renormalized classical regime de-

m’)/|m||m’| in the effective action of Eq. (24)can be ignored. scribed byl < 2mp. For2mp > T, one obtains: = 1
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quantum critical behaviot ~ v/T. If we go beyond the (cos k, + cos k, ) ¥l 73y, andcos k, cos k, ¥l 730 etc.,
N — oo limit, or perform a two loop renormalization group Where\IJL = (c! N ol «.) describes the orbital and spin
. . . . . . . s xz,ks? “yz,ks .
calculation in the renormalized C';szfésreglme, we wiltifi  dependent fermion creation operators. Among the various
the correct classical resift~ exp(=#)***. By, bilinears, the conventional nematic order parameter and
For~/(2nT) > 1, the physical properties are governed the ferro-orbital order parameter respectively corresptn
by ?.z :d2 ?onlllnear §|gmzaf model. The freq_uer;%gsum IS (cosk, — cos ky)\I/LS\I/l-cs and ‘I’LSTB‘I’ks- Notice that we
performed after imposing a frequency cut-off = v*A%/y,  can couple other orbitals, following the same symmetry
and after performing the momentum integration we obtain  pased criterion. When we integrate out the itinerant fensjo

2w oA 2022 A2 the contributions to the Ising order parametewill arise

—r = log N +logDl (1 + T + ﬁ) from generalizedB,, particle-hole susceptibilities, and the

9 B ™ ™ quadratic part of the low energy action forwill have the

2logT (14 20 4+ A% ) L ioer (14 -2 form
& 2T 27yT & 27T o
(30)  Salo] = /dqz [rg +wAo +¢* + Yo lo(q, wi)[?
_ 1

Now in the limit20?A?/(2myT) > 1 andA?/(27T) < 1, (32)
we can use the asymptotic behavior of the '(1 + z) to
obtain the gap\ at large Landau damping, In the above equatio, is the Landau damping strength, and

r, IS the mass term arising from the localized model, and
A = oA ex _277_0(1/ —1/ges) ) = vAex _2mp on_ > 0 is fe_rmi(_)n co_ntribution to the I_sing mass. This
P T g Je2 P T fermionic contribution will suppress the Ising transititam-

- (31) perature from its mean field valug, to 7,,. But, the corre-
with 1/ge.o = (vA2%)(21log2 — 1)/(472y). Notice that correct lation length of the Ising order parameter will remain appre
renormalized classical behavior of the correlation lerfgth  ciable up to the mean field temperatig). Since Ising tran-
large Landau damping is found from the saddle point equasition occurs due to in plane magnetic fluctuations, comside
tion. For2mp <« T we findz = 2 quantum critical behavior ation of inter-layer coupling does not significantly modifiye
A ~ /2m~T, augmented by logarithmic corrections. From Ising correlations.
the expressions of.1, g.2 we find that the stiffness for the ~ When we consider the magnetic and Ising order parame-
z = 2 case is smaller than the= 1 case. This reflects the ter fluctuations on the same footing, further changes in the
role of Landau damping. transition temperatures will arise from the self interaictof

To summarize, in the limits of both small and large Landaus, m, m’, and their mutual interactiomm - m’. The inter-
damping, the correlation length has an exponential teraperalay of Ising and magnetic order parameters, and their self-
ture dependence in the renormalized classical regime. Thigteractions are crucial to determining if there will be aeo
will be the basis of our fitting the correlation length, whish  comitant first order transition or two separate second order
described in Appendix A. phase transitions. Despite the suppression of actualitrans

If we consider the effects of the inter-layer antiferromag-tion temperatures and the possible complexity regardiag th
netic exchange coupling. in addition to the/; — J, model  actual nature of the transitions, we still expect that theeso
by using modified spin wave theory (see Appendix C), we ob{ation lengths of the magnetic and the Ising order pararaeter

tain a finite mean field anti-ferromagnetic transition tenape  will remain sizable up to their respective mean field traosit
ture T'vo. Within the Ginzburg-Landau framework this corre- temperatures.

sponds to setting(T") = 0. The fermion contributionvAq

being positive, will decrease the transition temperatuwenf

the mean field valu€'y, to a smaller valuey. However VI]. IMPLICATIONS FOR IRON PNICTIDES

there will be significant amount of three dimensional antife

romagnetic fluctuations up to the mean field Neel temperature o - qetailed theoretical studies provide the basis to un-
T'no. AboveTlyo the magnetic fluctuations are essentially tWo e rstand the anisotropic spin responses that have been ob-

dimensional. served in the paramagnetic phase of the parent iron pnic-
tides CaFeyAs,?’. These observations, made at tempera-
tures above the first order antiferromagnetic/structueai-t
sition, can be understood if the transition temperaturesis a
sumed to be considerably lower than the mean-field Ising tran
Since the Ising order parameter breaks symmetry, and  sjtion temperature by the effects of fluctuations and cagpli
in particular corresponds B, representation of the tetrago- to phonons. To compare our theoretical results with therexpe
nal lattice, it will couple to all the singlet fermion biliaes,  iments of Ref. 27 we have fitted the low frequency experimen-
which correspond taB,, representation. Without the loss ta] data with the dynamic structure factor calculated withie
of generality if we consider a two orbital model of fermions saddle point approxima‘[ion of an anisotropic' damped nenli
including onlyd,. andd,. orbitals, the Ising order param- ear sigma model, which follows from the action of Eq. (24).
etero will couple to (cos k, — cos ky)\I/LS\I/kS, \I/LSTg\I/kS, Within the saddle point approximation the imaginary part of

B. Ising fluctuations



5 o3fi a ’ ized classical approximation for the correlation lengtbvgs

12 £5 meV
E =) % that both fermion induced moment reduction, and Landau
061 06 ‘ 15 damping can sufficiently renormalize the stiffness cortstan

10 (see Appendix A). In Appendix B we have considered the
o4 5 effects of the weak inter-layer exchange couplihgusing

04

[0,k, 0] in (r. 1. u.)
[0,k, O] in (r. . u.)

[0,k, 0] in (r. 1. u.)
[0,k, 0] in (r. L. u.)

» (b) » the modified spin wave theory. Fot/J> = 0.1 the mean
Sy a— . 02 04 06 08 field Neel temperaturdy, and the mean field Ising tran-
(h 0.0 n (r1.0) (1. 0. OFin (rLw.) sition temperaturd’,, become very close. However as we
08 | 12 12 have discussed in Sec. V, despite the suppression of the ac-
10 925 meV il Mo tual transition temperature due to various fluctuation rmech
06} 8 8 nisms, the magnetic and the Ising correlation lengths nemai
| 6 " 6 sizable up to the mean-field transition temperatures. In the
04 M 4 . 4 temperature regimé&y < T < Ty, there are three dimen-
2 B sional antiferromagnetic fluctuations. However if we cdesi
_ sl ¥ o T T the ratio of the in-plane and inter-plane correlation lésgt
[h,0, 0] in (r.l0) [h, 0, 0] in (r.Lu.) (measured in units of corresponding lattice spacing), we fin
€. /& ~ (J./(2J2 + J1))Y/2. This ratio is of course material
FIG. 5. Panels (a) and (b) respectively demonst&e — Q,.o =  dependent. For weak inter-layer coupling of Ref. 27, this ra
12meV) atT = 180K obtained from our theory and data of Ref. 27. tjg is ~ 0.2, and magnetic fluctuations are indeed quasi-two
Panels (c) and (d) respectively demonstigifg — Q,w = 39meV) dimensional.
atT = 180K obtained from our theory and data of Ref. 27. We have : ; ; ; .
usedJ; /J> = 0.55%7, Jo = 9.8meV ar¥d7 = 47meV . To facilitate Finally our discussion regﬁrd'ng the effect of |t|t:1er§ue(oel .
the comparison with experimental result, we have plotted frethe trons IS most pertl_nent to the parer_n syste_m;, ut is consis-
Brillouin zone corresponding to the two-Fe unit cell insted that tent with the experimental observation of similar low-egyer

for the one-Fe unit cell used in the rest of the paper. anisotropic responses in the carrier-doped iron pnictid&s
the staggered susceptibility is given by VIl.  SUMMARY AND CONCLUSIONS

—1 . . . .
X” (- Q,w) = X1 W We have addressed the spin dynamics in the paramagnetic

Y2w? + (w? = v3 (g — m)? —vigs — A?)? phase of a two dimensional; — J, antiferromagnet on a
(33)  square lattice at a finite temperature, using modified spiewa

The velocities of the effective model are taken from the mod-theory. Within the modified spin wave theory we have iden-

ified spin wave calculations. The details of our proceduee artified a mean field Ising transition temperatufg,, below

provided in Appendix A. which theCy,, symmetry of the square lattice is spontaneously
The comparison of our results with that of Ref. 27 arebroken. In the Ising ordered phase the system demonstrates
shown in Fig. 5. The calculated elliptic features®fq —  short range(w, 0) or (0, 7) antiferromagnetic order. In or-

Q,w) (Fig. 5(a)) is compatible with that seen experimentallyder to systematically understand the finite temperatune- spi
(Fig. 5(b)) at low frequencies. This continues to be the ease dynamics in the paramagnetic phase of iron pnictides, we hav
higher frequencies, as shown in Fig. 5(c) and Fig. 5(d). Thealescribed the fermionic contributions and self-intex@cef-
experimental results in the paramagnetic phase are censist fects of the order parameter fields within a Ginzburg-Landau
with our conclusions that as temperature is lowered, thkpea framework. We have found that the fermion contribution and
in the momentum space sharpen but the ellipticity is onlythe self-interaction effects can considerably decreaséldel
weakly affected. Our estimated values of exchange corsstanand the Ising transition temperatures from their corredpon
are consistent with that of Ref. 27. Whenis smaller than ing mean field values. However the correlation lengths of the
the excitation gap\, the dynamic structure factor is peaked magnetic and Ising order parameters can remain appreciable
atqg = Q. Forw > A, the intensity peak gets shifted to up to the mean field transition temperatures. Based on this
lg — Q| = Vvw? — AZ/v as shown in Fig. 5(c), and the?*  assumption, we have fitted the experimental data of Ref. 27,
term in the dynamics is important to capture this feature als using our theoretical results. The calculated anisotrégae
observed in the experiment as shown in Fig. 5(d). tures of the spin response are compatible with experiments f
Interlayer magnetic couplings in the parent iron arsenideslifferent frequencies.
vary considerably among the materials, but are always rela- Finally, our calculations of the spin fluctuations at high
tively weak. In Ref. 27, the interlayer coupling in param-  energies should help understand future experiments. High-
agnetic CaFgAs, was shown to be very weak, with./ J> = energy spin spectrum at the low-temperature ordered state
0.1, being smaller than its counterpart in the magneticallyof CaFeAs,? has already provided valuable information on
ordered phase at low temperature. Consideration of such the x-y anisotropy of the exchange interactions. Similar ex
weak interlayer coupling does not appreciably change the eperiments have recently been reported in B#3g*° and
timated exchange constants and the in-plane spin dynamicSrFeAs,*!, including at temperatures just above the Néel
An estimation of the spin stiffness constant using a renbrma transition where strong orbital anisotropy has devel6p&d



It will be instructive to experimentally map out the high-

energy spectrum at higher temperatures in the paramagnetic 10 ' ' ' ' '
phase. O Ourfit
O Ref. 27
8L & ~ exp(2mp'T) | -
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Appendix A: Procedure of comparing with the experimental
data : . : ! : !
150 200 250 300

We analyze the experimental data of Ref. 27 by using the T(K)

imaginary part of the staggered susceptibifityqg — Q, w),

which is calculated within the saddle p_oint app_roximationf FIG. 6. (Color online) Comparison between the correlatiamgths

Eq. 26. From the saddle point calculation we find ¢ = /&€, extracted from our fitting and that of Ref. 27. The fitted

1 spin stiffness constants are shown in the inset.

X1 v

P+ (@7 = (g, — 7P — g — A7)
(A1)  the comparison for this frequency is shown in Fig. 5(c) and

At q = Q, we have Fig. 5(d) of the main text. The consideration of theterm in

. the effective action, leads to an interesting feature oftire

X w (A2) namic structure factor. For low frequencies such that A,
Yw? + (w? — A2)? X (q — Q,w is peaked at; = Q. But at higher frequencies

h is th it i tibilitv. W | such thatv > A, the intensity peak occurs away from the
Wnerex 1S the uniform fransverse Susceptibiiity. e ca Cu'antiferromagnetic wave-vector and its location is detaadi

late the velocitiess, and v, using Eq. 13 and Eq. 14, and by |q — Q| = vo? — AZ/v. This shift in the intensity peak
for the exchange constants we choake = 10meV a2n7d carL cIearI)|/ seen by com|/3aring Fig. 5(a) and Fig. 5(c). Simila
J1 o _0'55‘]2 - 5-5’_””6‘/’ as determined by_DlaIIet al.*". shift in the intensity peak can also be seen in the experiahent
By f'_tt'ng the experimental data_l we determine the temperazag i by comparing Fig. 5(b) and Fig. 5(d). For the correla
ture independent Landau da_m_pmg strengtmd tbe temper- - iqn length we have compared our and experimental results in
ature dependent gapr. By fitting the data fory (0,w) at g g by plotting the temperature dependence of the geomet-
T'= 180K, with the formula from Eq. A2, we find the Landau yic mean of, and,. By fitting the correlation length with the
damping strength and the gap at 180K At low frequen-  yenormalized classical formula, we have obtained an estima
cies, Eq. (A2) can be further approximated by a Lorentzianio for the stiffness constant. The fermion induced reiuct
with a widthT'r ~ A?/,/42 —2A2. At the relatively low  of the magnetic momernitZy, and Landau damping are found

temperature ofi80K, the Lorentzian form is a good fit to g significantly reduce the stiffness constant in compartso
Eq. (A2) upto frequencies of abott meV, andl'r = TmeV. g pureJ; — J, model.

At the high temperature &00K’, the Lorentzian form, which

becomes a poorer fit to Eq. (A2) over the same frequency

range, yields'r = 44meV. The definition of the energy . ) .

line-width as'; is the same notation as used in Ref. 27, but ~ Appendix B: Effects of interlayer exchange coupling

the constany used in Ref. 27 is not the conventional Landau

damping strength and has a different meaning from ours. Our The quasi-2D nature of the spin dynamics was clearly
estimation isy = 47meV. For the available data at nonzero shown in Ref. 27. To explain the observed 0, 7) antifer-

q — Q at different temperatures, we use the valueyado  romagnetic order, an interlayer antiferromagnetic cawpli,
determined, and find thA& at different temperatures. Using was assumed and, was estimated to be: 0.1.J5. To as-

the values o, v, andA, we find the correlation lengtf, sess the effects of, on the spin dynamics we first incorpo-
and¢,. The comparison of our theoretically calculated dy-rate the three dimensional effects in our modified spin wave
namic structure factor with the fitted parameter values, andheory calculations. For simplicity we assume the sulgatti
the experimental results at low frequen@mel” are shown angle¢ = 7. The modification to our discussion in section |
in Fig. 5(a) and Fig. 5(b) of the main text. Even at highercomes through an additional interlayer antiferromaneatiah
energyw = 39meV our results for the dynamic structure fac- correlation parametey,. The Ising transition will be deter-
tor are in reasonable agreement with experimental data, andined by the vanishing of in plane nearest neighbor bond cor-

X (a—Q,w) =

X (0,w) =



9

relationsg, and f,. In the presence aof, there is a finite, responding to Bose condensationad. The expression for
mean field antiferromagnetic transition temperatflitg, cor-  total energy in Eq. 5 changes into

2
E:—% ZA<S+%—f(O)+gI) +% ZA<S+——f +fy) J2N > (S+%—f(0)

5=+ Sr==% d3=+2+7

2 2
+gm+y> J2N Z (S + % - f(o) + gw) 7(81)

61=+2

and the expressions fak, and By, are modified according to vy =a [(4ngm+y - 201g0 + 20.9.)(Agery — 2J1f,)

Ax = 2J1ngz,k +4J5 gm+ycac+y,k + 2ngzcz,k (BZ)

2
By =2J; (gw - fu) + 2Jlfycy,k +4J2 Goty — 1+ 2ngza +2J1fy,u:| (BlO)
(B3)

1
. ) , . = cl(4JoGpry +2J19s +2J.9.)2J.9.]2 Bl11
whereC, i = cos k.c, andc is the interlayer separation. After Y c[(4/290+y 19 9:)27::] ( )

accounting for the possibility of a finite staggered magreeti We further notice that the velocities are well approximated
tion belowTy, the mean field equations are given by

J:

e~ 25a(J1 +2J2)y\ /1 + ————— B12
By 1 v a(J1 +2J3) +J1+2J2 (B12)

y =mo + = Z Nk + Cy,kv (B4)
v AV 22— 2 (B13)

N . YN 2L
k —
a—mo—i——z <nk+ )Ca_,k,oz—:c,:c—l—y,z vzzvmf J. (B14)
aV 2Js+ J;
(BS)

and even in the presence of finifg, the ratiov, 2/71;1 remains
By 1 unchanged. Foyd,/Jo = 0.1 andc/a =~ 3.026<" we obtain
S + 5 = Mo+ & Z < e + ) (B6) v, /v, ~ 0.6, and téis leads to sma/ller inter-planar correlation
length €. < &, /&&y)- In our comparison with experi-
ForS =1, .J;/J> = 0.8, ¢ = a, the dependence dfy,  ments we have looked at the data that corresponds to in-plane
andT,, on J,/.J, are shown in Fig. B. The temperature de- dynamics, i.e.q — Q = (¢, — 7,¢,,0), and consequently
pendence of the mean field bond parameters/fgi/, = 0.1  all the formulas remain unaffected. We also note that the ef-
are shown in Fig. B. With increasing., the Neel tempera- fects of inter-planar coupling inside the magneticallyereti
ture gradually increases and asymptotically approa@hgs phase have been considered in Réfé! using similar tech-
Since the mean field Ising transition is a consequence of theique. However our results are derived for the paramagnetic
two-dimensional magnetic fluctuations, is not modified  phase, which are essentially different from those desdribbe
by the finite interlayer coupling.. For.J./J, = 0.1, and  Refs®™".
andJ, ~ 10meV we obtainTyg ~ T,9 ~ 240K, which
is much higher than the actual Neel and structural tramsitio
temperature. Therefore the fluctuating anisotropy effeits
be important over a wide range of temperature, and the finite
J. does not change this conclusion.
Below 7,4, by expanding the dispersion arou@ =
(m,0,7), we obtain

€k = [vg(ﬂ' —k)? + vgkg +v3(r—k,)* + AQ] (B7)

1
A = [—p(8J2gs+y +4J19x +4J29: — p)]?
pw=_0for T < Ty (B8)

Ve = Q (4J291+y + 2Jlgm)(4ngm+y +2J19s

=

+2J:9:)| (B9)
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FIG. 7. Panel (a) shows the comparison between the mean fiestd N
temperaturéd’no and mean field Ising transition temperatig), as

a function of the inter-planar coupling., for J;/J. = 0.8, and

S = 1. Panel (b) shows the temperature dependence of different
mean field parameters fok. /J> = 0.1.
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