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Motivated by the recent observation of antiferromagnetic correlations in the paramagnetic phase of iron pnic-
tides, we study the finite temperature spin dynamics of a two dimensionalJ1−J2 antiferromagnet. We consider
the paramagnetic phase in the regime of a(π, 0) collinear ground state, using the modified spin wave theory.
Below the mean field Ising transition temperature, we identify short-range anisotropic antiferromagnetic corre-
lations. We show that the dynamical structure factorS(q, ω) contains elliptic features in the momentum space,
and determine its variation with temperature and energy. Implications for the spin-dynamical experiments in the
iron pnictides are discussed.

I. INTRODUCTION

High temperature superconductivity in the iron pnictides1,2

arises by doping antiferromagnetic parent compounds3.
Hence, the strength of the electronic correlations, the nature
of magnetism, and the relationship between magnetic excita-
tions and the superconductivity are important issues for un-
derstanding the emergence of high temperature superconduc-
tivity in these materials. In the parent iron pnictides, theNéel
transition into a(π, 0) antiferromagnet is either preceded by
or concomitant with a tetragonal-to-orthorhombic structural
transition. The(π, 0) magnetic order by itself can be under-
stood either by invoking a local momentJ1 − J2 model4–11

or an itinerant model with nearly nested electron and hole
pockets12–14.

The experimentally observed “bad metal” behavior, the
Drude-weight suppression15,16 and the temperature-induced
spectral-weight transfer16–18 place these materials near to a
Mott transition4,9,19,20; a Mott insulator can emerge when
the iron square lattice either expands21 or contains ordered
vacancies22. In a metallic system close to a Mott transi-
tion, quasi-local moments are expected to arise; this pic-
ture is further supported by the experimental observation of
zone boundary spin wave excitations in the magnetically or-
dered state at low temperatures23. The inelastic neutron scat-
tering experiments demonstrated the need for an anisotropic
J1 − J2 model with J1x 6= J1y, which may reflect an or-
bital ordering24–26while pointing to the relevance of magnetic
frustration from the extracted ratio(J1x + J1y)/2J2 ∼ 123.
Therefore, results in the tetragonal, paramagnetic phase of the
parent compounds are of great importance for understanding
the relevance of an isotropicJ1 − J2 model as well as the
strength of the underlying magnetic frustration. Recent inelas-
tic neutron scattering measurements of Dialloet al.27 on the
tetragonal, paramagnetic phase ofCaFe2As2 represent a first
step in this direction. Even above the concomitant first order
structural and Néel transition temperature, they have observed
anisotropic spin dynamics around the(π, 0) wave vector, and
the inferred ratioJ1/J2 ∼ 0.55 is similar to that of the or-
dered phase.

Motivated by these experimental results we study the spin
dynamics of a two dimensionalJ1 − J2 antiferromagnet.
While theoretical studies exist on the order-from-disorder
phenomenon and phase diagram of theJ1 − J2 model28,29,

the spin dynamics in the paramagnetic phase of the model
in the(π, 0) collinear regime has not yet been systematically
studied. We carry out the calculations using a modified spin
wave theory30, which incorporates the1/S corrections that are
important for capturing the order-from-disorder phenomenon
and the associated dynamical properties. We discuss the im-
plications of our results for the iron pnictides, includingthe
role of itinerant electrons.

Our paper is organized as follows. In Sec. II we introduce
the relevantJ1 − J2 model and describe the modified spin
wave theory calculations. In Sec. III we analyze the excitation
spectrum obtained from modified spin wave theory, and asso-
ciated behavior of the spin-spin correlation length. In Sec. IV
we analyze the dynamic structure factor calculated by using
the modified spin wave theory results. In Sec. V we con-
sider the fluctuation effects due to itinerant electrons within
a Ginzburg-Landau framework. In Sec. VI we describe the
relation between our theoretical results and the experimental
data obtained in the paramagnetic phase of iron pnictides. We
provide a summary of our work in Sec. VII. The technical
details of fitting the experimental data and consideration of
inter-planar exchange coupling using modified spin wave the-
ory are respectively relegated to Appendix A and Appendix
B.

II. MODEL AND MODIFIED SPIN WAVE THEORY

The model is defined by the Hamiltonian

H = J1
∑

〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉

Si · Sj , (1)

whereJ1 andJ2 respectively denote the antiferromagnetic ex-
change couplings between spins located in the nearest (〈ij〉)
and next-nearest neighbor (〈〈ij〉〉) sites on a square lattice.
Classically, forJ2/J1 > αc = 0.5, the lattice decouples into
two independently Néel ordered, interpenetrating lattices, and
the angleφ between the staggered magnetizations of these two
sublattices, as illustrated in Fig. 1 inset is arbitrary. Anorder-
from-disorder transition at temperatureTσ breaks the fourfold
rotational symmetry of the square lattice down to a twofold
rotational symmetry of the rectangular lattice, andφ = 0, π
emerge as degenerate ground states atT = 028. Since quan-
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tum fluctuations makeαc > 0.5, for definiteness we will focus
onJ2/J1 > 1.

We define a local spin quantization axis along the classical
ordering direction at each site (Ω

cl
i ), as illustrated in an inset

to Fig. 1. We then introduce the corresponding Dyson-Maleev
(DM) boson representation for the spin operators at each site:
Si ·Ωcl

i = S − a†iai, as well asS+
i =

√
2S(1 − a†iai/2S)ai

andS−
i =

√
2Sa†i . The modified spin wave theory30 treats

the self-energy of thea-bosons as a static quantity, which
renormalizes their dispersion; in this respect, it is similar to
the large-N Schwinger boson mean field theory31. Following
Takahashi30,32, we express the Hamiltonian, Eq. (1), in terms
of the DM bosons in momentum space. The procedure is to
minimize the free energyF = 〈H〉−TS under the constraint
of zero magnetization,〈S − a†iai〉 = 0, with respect to varia-
tional parameters which enterF . These are the boson disper-
sion ǫk, the angleφ and the Bogoliubov angleθk. The latter
enters in a Bogoliubov transformation that mixes the operators
of the two interpenetrating Néel sublattices and renders the
non-zero temperature density matrix diagonal30. The equal
time correlators〈Si ·Sj〉 can be written in terms of expectation

values like〈a†iaj〉. Therefore, we define ferromagnetic and
antiferromagnetic bond correlationsfij = 〈a†iaj〉 = 〈aia†j〉
andgij = 〈aiaj〉 = 〈a†ia

†
j〉. The explicit expressions for the

bond correlations are given by

fij =
1

N

∑

k

cosh 2θk(nk +
1

2
) exp(−ik · rij) (2)

gij =
1

N

∑

k

sinh 2θk(nk +
1

2
) exp(−ik · rij), (3)

wherenk = [exp(εk/T )−1]−1 is the Bose occupation factor.
In terms offij andgij the equal time spin correlator〈Si ·

Sj〉 can be expressed as

〈Si · Sj〉 = cos2
φij

2

[

S +
1

2
− f(0) + fij

]2

− sin2
φij

2

[

S +
1

2
− f(0) + gij

]2

(4)

whereφij = φ, π−φ, π, for horizontal, vertical and diagonal
bonds respectively (see Fig. 1). Using the expression for〈Si ·
Sj〉 for different bonds, the total energy can be written as

E =
J1N

2

∑

δ1=±x̂

[

cos2
φ

2

(

S +
1

2
− f(0) + fx

)2

− sin2
φ

2

(

S +
1

2
− f(0) + gx

)2]

+
J1N

2

∑

δ2=±ŷ

[

sin2
φ

2
×

(

S +
1

2
− f(0) + fy

)2

− cos2
φ

2

(

S +
1

2
− f(0) + gy

)2]

− J2N

2

∑

δ3=±x̂±ŷ

(

S +
1

2
− f(0) + gx+y

)2

(5)

Notice that the expression for total energy only contains the
nearest and next nearest neighbor bond correlation parame-
ters fx, fy, gx, gy and gx+y. The constraint of zero mag-
netization, appropriate forT > TN (for the two dimen-
sional problemTN = 0), is enforced by the Lagrange mul-
tiplier µ. Minimizing E − TS − µf(0) with respect to
εk, φ, θk, we obtaintanh 2θk = Ak/Bk, εk =

√

B2
k −A2

k

andsinφ
(

f2
y + g2y − f2

x − g2x
)

= 0, where

Ak = 2J1

(

sin2
φ

2
gxCx,k + cos2

φ

2
gyCy,k

)

+4J2 gx+yCx+y,k (6)

Bk = 2J1

(

sin2
φ

2
(gx − fy) + cos2

φ

2
(gy − fx)

)

+2J1

(

cos2
φ

2
fxCx,k + sin2

φ

2
fyCy,k

)

+ 4J2 gx+y − µ

(7)

and we have introduced the form factorsCx,k = cos kxa,
Cy,k = cos kya, andCx+y,k = cos kxa cos kya. Now using
tanh 2θk = Ak/Bk in Eq. 3, we obtain the following set of

self-consistent equations

fα =
1

N

∑

k

Bk

ǫk

(

nk +
1

2

)

Cα,k, α = x, y (8)

gα =
1

N

∑

k

Ak

ǫk

(

nk +
1

2

)

Cα,k, α = x, y, x+ y (9)

S +
1

2
= f(0) =

1

N

∑

k

Bk

ǫk

(

nk +
1

2

)

(10)

We identify two important temperature scalesT0 andTσ0

such thatT0 > Tσ0, by solving the self-consistent equations.
The temperatureT0 = J2(S+1/2)[log(1/S+1)]−1 marks the
onset of the largest bond correlationgx+y, while Tσ0 marks
the onset of nearest neighbor bond correlations. ForT > T0,
all the bond correlations vanish and we have decoupled lo-
cal moment behavior. The first order transition from the cor-
related to decoupled moment state atT0 is an artifact of the
mean-field theory30. In the temperature rangeTσ0 < T < T0,
the sublattice angleφ remains arbitrary, and the system has
C4v rotational symmetry. ForT < Tσ0 there are two degener-
ate solutionsφ = π, with gy = fx = 0, gx 6= 0, fy 6= 0, gx 6=
fy, andφ = 0, with x ↔ y switching. An Ising order pa-
rameter, which is defined classically asσ = Ω1 ·Ω2 = cosφ,



3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

2.16 2.20
0.0

0.2

0.4  

 

M
F 

pa
ra

m
et

er
s

T/J
2

 f
y

 g
x

 g
x+y

 

T
0

 

 

T/J
2

T
0

g
x

f
y

g
x+y

FIG. 1. (Color online) The temperature dependence of the mean field
parameters, forS = 1 andJ1/J2 = 0.8. The decoupled Néel sub-
lattices are illustrated in the upper right corner, which also defines
the angleφ.
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FIG. 2. (Color online)The dispersionεk along high symmetry direc-
tions in the paramagnetic Brillouin zone for different temperatures
andS = 1, J1/J2 = 0.8. The curves from top to bottom viewed at
the left end are forT/J2 = 0.5, 1.0, 2.0, 2.1, 2.2. The plotted direc-
tions in the Brillouin zone are displayed in the upper right corner

is modified toσ ∝ 2
(

cos2 φ
2
(f2

x + g2y)− sin2 φ
2
(f2

y + g2x)
)

,

and becomes nonzero belowTσ0. We identify this tempera-
ture as the mean field “Ising transition” temperature; fluctua-
tions will reduce the actual transition toTσ < Tσ0. In the fol-
lowing, we will focus on the state withφ = π. The spectrum
is gapped at any nonzero temperature, but becomes gapless at
T = 0 giving rise to(π, 0) antiferromagnetic order via a Bose
condensation.

III. LOW ENERGY SPECTRUM AND CORRELATION
LENGTH

The boson dispersionǫk is shown in Fig. 2. Forφ = π, and
T ≪ Tσ0, the low energy physics is governed by the excita-
tions in the vicinity of the ordering vector(π, 0), where the
absolute minimum of the dispersion is located. Near(π, 0),
the dispersion can be approximated by

ǫk =
[

v21x(π − kx)
2 + v21yk

2
y +∆2

1

]
1

2 (11)

∆1 = [−µ(8J2gx+y + 4J1gx − µ)]
1

2 (12)

v1x = a(4J2gx+y + 2J1gx) (13)

v1y = a

[

(4J2gx+y + 2J1gx)(4J2gx+y − 2J1fy)

+2J1fyµ

]
1

2

(14)

Similarly in the vicinity of (0, π), the excitation can be ap-
proximated as

ǫk =
[

v22xk
2
x + v22y(π − ky)

2 +∆2
2

]
1

2 (15)

∆2 = [(8J2gx+y − 4J1fy − µ)(4J1gx − 4fy − µ)]
1

2 (16)

v2x = a(4J2gx+y − 2J1gx) (17)

v2y = a

[

4J2gx+y(4J2gx+y − 2J1gx) + 2J1fy(4J2gx+y

+2J1gx − 4J1fy − µ)

]
1

2

. (18)

At low temperaturesT ≪ Tσ0, the Lagrange multiplierµ is
exponentially small, and∆1 ≪ ∆2. Therefore the spin-spin
correlation length at low temperatures will be dominated by
the smallest gap∆1 = T exp[−∆J/T ], where∆J = 2πρ
is the Josephson energy, withρ = m0v1y being the stiffness
andm0 the staggered magnetization atT = 0. The velocity
anisotropy yields two correlation lengths,ξx = v1x/∆1 and
ξy = v1y/∆1.

The low energy excitations around(π, 0) can also be de-
scribed in terms of an anisotropicO(3) nonlinear sigma
model. Ignoring the1/S corrections and weak tempera-
ture dependence of the bond parameters, we can takegx =
fy = gx+y = S, and obtain bare parameters of the sigma
modelχ−1

⊥0
= 4(2J2 + J1)a

2, ρx0 = (2J2 + J1)S
2, and

ρy0 = (2J2 − J1)S
2. The spatial anisotropy is captured

by two direction dependent spin stiffness constantsρx0 and
ρy0, andχ⊥0 is the bare uniform transverse susceptibility.
The spin wave velocities before1/S corrections are given by
v1x =

√

ρx0/χ⊥0, andv1y =
√

ρy0/χ⊥0. The temperature
dependence of the gap is determined by the bare Josephson
energy scale

∆J0 = 2πρ0 = 4πJ2S
2

√

1− J2
1

4J2
2

, (19)

whereρ0 =
√
ρx0ρy0 is the bare, geometric mean stiffness

constant. For parameter valuesS = 1, andJ1/J2 = 0.8, we
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FIG. 3. (Color online) The sharpening of the dynamic structure factor
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find ∆J0 = 11.5J2. After solving the mean field equations,
we obtain the Josephson energy scale

∆J =
πmv1y

a
= πm

[

(4J2gx+y + 2J1gx)(4J2gx+y

−2J1fy) + 2J1fyµ

]
1

2

, (20)

wherem is the staggered magnetization at zero tempera-
ture and captures the1/S corrections to∆J . For S = 1,
J1/J2 = 0.8, we have found the zero temperature parame-
tersm = 0.83, gx = 0.96, fy = 0.91, gx+y = 1.07, and
∆J = 10.54J2. Note that, atT = 0, our calculation is consis-
tent with that of Ref.11. More details regarding the renormal-
izedρ and∆J obtained from a sigma model calculation will
be discussed in the section V. AboveTσ0, the nearest neigh-
bor bond correlations vanish, and two gaps become equal,
∆1 = ∆2 =

√

−µ(8J2gx+y − µ). As theC4v symmetry
is restored aboveTσ0, the velocity anisotropy disappears and
v1x = v1y = v2x = v2y = 4J2gx+ya.

IV. DYNAMIC STRUCTURE FACTOR

The dynamic structure factor is calculated in the modified
spin wave theory through the average of the longitudinal and
transverse spin structure factors. It is expressed as

S(q, ω) = 1

N

∑

k

∑

s,s̄=±1

[cosh(2θk+q − 2θk)− ss̄]

×δ(ω − sǫk+q − s̄ǫk)n
s
k+qn

s̄
k (21)

wheren+

k = nk + 1 andn−
k = nk.

Consider firstω ≪ T , and low temperaturesT ≪ ∆J . The
dominant contribution toS(q, ω) comes from the vicinity of
the(π, 0) wave vector. In the limit|π − qx| ≪ λ−1

x = T/vx

andqy ≪ λ−1
y = T/vy, we can analytically31,33,34calculate

S(q, ω), which satisfies a dynamic scaling relation

S(π − qx, qy, ω) = τS0(π − qx, qy)Φ(z, ωτ), (22)

whereS0(π − qx, qy) is the equal time structure factor, and
τ = ∆−1

1 is the scaling time.S0 also satisfies a scaling form
S0(π − qx, qy) = ξxξy/(4πλ

2
y)Λ(z), wherez = [(ξ2x(π −

qx)
2 + ξ2yq

2
y]

1/2/2. The scaling functions are given by

Φ(x, y) =
1

2Λ(x)|y|
√

x2 + (x2 − y2)2

(

Θ(x2 − y2)
2

π

× arctan

[

|y|
√

x2 − y2

x2 + (x2 − y2)2

]

+Θ(y2 − x2 − 1)

)

.

Λ(z) =
log[z +

√
1 + z2]

z
√
1 + z2

(23)

Whenz → 0, Λ(z) → 1, and forz ≫ 1, Λ(z) → log(z)/z2.
The second limit corresponds to momentum scales between
inverse correlation length and inverse thermal length, where
the system appears to have long range order (Goldstone mode
behavior). The results forS0 are in agreement with one loop
scaling results of a quantum nonlinear sigma model35,36.

A number of features follow from Eqs. (22,23). As a func-
tion of energy for a fixedq with z ≫ 1, S(q, ω) has a broad
peak aroundω ∼ z/τ . As a function ofq for a fixedω,
S(q, ω) sharpens as temperature is reduced reflecting the in-
crease of correlation length; this is also seen from the results
of direct numerical calculations (Fig. 3). In the numericalcal-
culations ofS(q, ω) in Eq. (21), a Lorentzian broadening of
the delta functions has been employed, and consequently the
gap betweenωτ < z andωτ >

√
z2 + 1 is not observed in

Fig. 3 but is instead left as shoulders. The processes beyond
the modified spin wave theory are expected to smear the two-
peak structure and also modify the scaling timeτ to the phase
coherence time∼ (∆J/T )

1/2/∆1
35,36.

Beyond theω ≪ T limit, we focus on the distribution of
spectral weight in momentum space. Figs. 4(a) and 4(b) il-
lustrate the behavior at low energies. ProvidedT < Tσ0, the
anisotropy of the correlation lengths gives rise to an elliptic
feature centered around(π, 0). The overall size of the ellipses
is reduced as the temperature is decreased, reflecting increas-
ing correlation lengths. On the other hand, the ellipticityhas
only weak temperature dependence; the ratio of two correla-
tion lengths is almost unaffected by temperature variations for
T ≪ Tσ0, due to the weak temperature dependence of the
velocity ratiov1x/v1y.

With increasing energy, the evolution of the spectral weight
distribution is illustrated in Figs. 4(b)-4(d). At intermediate
energies, whenω is comparable to the peak energy in the dis-
persionǫk (see Fig. 2), there are features near((1±1/2)π, 0),
whose spectral weight is relatively small at the temperature
shown in Fig. 4(c) but will increase with lowering temper-
ature. The most visible spectral feature, however, is asso-
ciated with the expanding ellipses surrounding(±π, 0) and
(0,±π), as is clearly seen in the high-energy spectrum shown
in Fig. 4(d).
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V. THE ROLE OF ITINERANT ELECTRONS AND
GINZBURG-LANDAU CONSIDERATIONS

A. Anti-ferromagnetic fluctuations

The description of the iron pnictides in terms of bad met-
als invokes quasi-localized moments coupled to itinerant elec-
trons whose spectral weight depends on the proximity of the
system to the Mott transition9. For the parent compounds,
the low-energy spin dynamics can be described in terms of a
Ginzburg-Landau functional9 S = S2 + S4 + . . ., where

S2 =

∫

dqdω[(r + wAQ + cq2 + ω2 + γ|ω|)(m2 +m′2)

+v(q2x − q2y)m ·m′], (24)

wherem andm′ are O(3) vectors respectively for the mag-
netizations of the two decoupled sublattices,qx and qy are
measured with respect to(±π, 0) or (0,±π), w < 1 is the
coherent fraction of the single-electron spectral weight,and
γ is the strength of spin damping caused by the coupling to
the itinerant electrons.S4 contains not only terms of the form
m4, m′4 andm2m′2, but also an order-from-disorder term
(m ·m′)2 with a negative coefficient28. Eq. (24) implies that
elliptic features will occur in the dynamical responses even in
the regime where the Ising order is not static but fluctuating
and short-ranged; the primary role of the itinerant electrons,
beyond shiftingr through the positivewAQ term, is to pro-
vide damping effects to such features.

Well below the mean-field Ising transition temperature, the
thermal fluctuations of the Ising order parameterσ = ±〈m ·
m

′〉/|m||m′ | in the effective action of Eq. (24)can be ignored.

The choice ofσ = ± respectively correspond to short range
(π, 0) or (0, π) order. For short range(π, 0) order,m − m

′

becomes gapped and we find that order parameter dynamics
can be approximately determined in terms of a singleO(3)

order parameter fieldM = m +m
′

. The effective action for
this field at quadratic order is given by

S2 ≈ T

∫

dq
∑

l

[

r + wAQ + q2xv
2
x + q2yv

2
y + ω2

l + γ|ωl|
]

×M2 (25)

wherev2x/y = (c ± v/4), andωl = 2πT l is the Matsubara
frequency. With further assumption of small amplitude fluc-
tuations, we can writeM = M0n, whereM0 is the constant
amplitude, andn is the unit vector field. Thus low energy dy-
namics is now determined by a damped, anisotropic nonlinear
sigma model. We consider the following damped nonlinear
sigma model action

Seff =
T

2vg

∫

d2q
∑

l

[

v2q2 + ω2
l + γ|ωl|

]

|n(q, ωl)|2

(26)
In writing the above equation we have rescaled

√

vy/vxqx →
qx, and

√

vx/vyqy → qy, andv =
√
vxvy, to write the ac-

tion in spatially isotropic form, andg = v/ρ = v−1χ−1

⊥ is
the coupling constant with dimension of length. The scal-
ing behavior of the correlation length in the quantum disorder
phase and quantum critical regime for this damped nonlin-
ear sigma model has been analyzed in Ref. 44. Here we will
only consider the thermally disordered or renormalized clas-
sical regime. In the largeN limit, the gap in the excitation
spectrum∆ can be determined from the saddle point equation

T
∑

l

∫

Λ̄

d2q

(2π)2
1

v2q2 + ω2
l + γ|ωl|+∆2

=
1

vg
(27)

whereΛ̄ ∼ π/a is the momentum cutoff. The Matsubara sum
can be performed in terms of digamma functions, and after the
momentum integration the left hand side can be expressed in
terms of the logarithm of the gamma function. Here we con-
sider two extreme limits ofγ/(2πT ) ≪ 1 andγ/(2πT ) ≫ 1.

In the limit γ/(2πT ) ≪ 1, we obtainz = 1 nonlinear
sigma model result

sinh
∆

2T
= sinh

vΛ̄

2T
exp

(

2πv

gT

)

(28)

In the limit of small temperatures, such thatvΛ̄ ≫ T , and
∆ ≪ T , we obtain the result for smallγ limit,

∆ = T exp

(

−2πv

T

(

1

g
− 1

gc1

))

= T exp

(

−2πρ

T

)

(29)

wheregc1 = 4π/Λ̄ is the coupling strength for zero temper-
aturez = 1 quantum critical point, andρ is the renormal-
ized spin stiffness constant. From this expression we find
ξ = v/T exp(2πρT ) in the renormalized classical regime de-
scribed byT ≪ 2πρ. For 2πρ ≫ T , one obtainsz = 1
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quantum critical behaviorξ ∼ v/T . If we go beyond the
N → ∞ limit, or perform a two loop renormalization group
calculation in the renormalized classical regime, we will find
the correct classical resultξ ∼ exp(2πρT )34,35 .

For γ/(2πT ) ≫ 1, the physical properties are governed
by a z = 2 nonlinear sigma model. The frequency sum is
performed after imposing a frequency cut-offωc = v2Λ̄2/γ,
and after performing the momentum integration we obtain

2πv

gT
= log

vΛ̄

∆
+ log Γ

(

1 +
2v2Λ̄2

2πγT
+

∆2

2πγT

)

−2 logΓ

(

1 +
v2Λ̄2

2πγT
+

∆2

2πγT

)

+ log Γ

(

1 +
∆2

2πγT

)

(30)

Now in the limit 2v2Λ̄2/(2πγT ) ≫ 1 and∆2/(2πγT ) ≪ 1,
we can use the asymptotic behavior of thelog Γ(1 + x) to
obtain the gap∆ at large Landau damping,

∆ = vΛ̄ exp

(

−2πv

T
(1/g − 1/gc2)

)

= vΛ̄ exp

(

−2πρ

T

)

(31)
with 1/gc2 = (vΛ̄2)(2 log 2− 1)/(4π2γ). Notice that correct
renormalized classical behavior of the correlation lengthfor
large Landau damping is found from the saddle point equa-
tion. For2πρ ≪ T we findz = 2 quantum critical behavior
∆ ∼ √

2πγT , augmented by logarithmic corrections. From
the expressions ofgc1, gc2 we find that the stiffness for the
z = 2 case is smaller than thez = 1 case. This reflects the
role of Landau damping.

To summarize, in the limits of both small and large Landau
damping, the correlation length has an exponential tempera-
ture dependence in the renormalized classical regime. This
will be the basis of our fitting the correlation length, whichis
described in Appendix A.

If we consider the effects of the inter-layer antiferromag-
netic exchange couplingJz in addition to theJ1 − J2 model
by using modified spin wave theory (see Appendix C), we ob-
tain a finite mean field anti-ferromagnetic transition tempera-
tureTN0. Within the Ginzburg-Landau framework this corre-
sponds to settingr(T ) = 0. The fermion contributionwAQ

being positive, will decrease the transition temperature from
the mean field valueTN0 to a smaller valueTN . However
there will be significant amount of three dimensional antifer-
romagnetic fluctuations up to the mean field Neel temperature
TN0. AboveTN0 the magnetic fluctuations are essentially two
dimensional.

B. Ising fluctuations

Since the Ising order parameter breaksC4v symmetry, and
in particular corresponds toB1g representation of the tetrago-
nal lattice, it will couple to all the singlet fermion bilinears,
which correspond toB1g representation. Without the loss
of generality if we consider a two orbital model of fermions
including onlydxz anddyz orbitals, the Ising order param-
eterσ will couple to (cos kx − cos ky)Ψ

†
ksΨks, Ψ

†
ksτ3Ψks,

(cos kx+cosky)Ψ
†
ksτ3Ψks, andcos kx cos kyΨ

†
ksτ3Ψks etc.,

whereΨ†
ks = (c†xz,ks, c

†
yz,ks) describes the orbital and spin

dependent fermion creation operators. Among the various
B1g bilinears, the conventional nematic order parameter and
the ferro-orbital order parameter respectively correspond to
(cos kx − cos ky)Ψ

†
ksΨks and Ψ†

ksτ3Ψks. Notice that we
can couple otherd orbitals, following the same symmetry
based criterion. When we integrate out the itinerant fermions,
the contributions to the Ising order parameterσ will arise
from generalizedB1g particle-hole susceptibilities, and the
quadratic part of the low energy action forσ will have the
form

S2[σ] =

∫

dq
∑

l

[

rσ + wA0 + q2 + γσ
|ωl|
q

]

|σ(q, ωl)|2

(32)

In the above equationγσ is the Landau damping strength, and
rσ is the mass term arising from the localized model, and
wA0 > 0 is fermion contribution to the Ising mass. This
fermionic contribution will suppress the Ising transitiontem-
perature from its mean field valueTσ0 to Tσ. But, the corre-
lation length of the Ising order parameter will remain appre-
ciable up to the mean field temperatureTσ0. Since Ising tran-
sition occurs due to in plane magnetic fluctuations, consider-
ation of inter-layer coupling does not significantly modifythe
Ising correlations.

When we consider the magnetic and Ising order parame-
ter fluctuations on the same footing, further changes in the
transition temperatures will arise from the self interaction of
σ, m, m

′

, and their mutual interactionσm · m′

. The inter-
play of Ising and magnetic order parameters, and their self-
interactions are crucial to determining if there will be a con-
comitant first order transition or two separate second order
phase transitions. Despite the suppression of actual transi-
tion temperatures and the possible complexity regarding the
actual nature of the transitions, we still expect that the corre-
lation lengths of the magnetic and the Ising order parameters
will remain sizable up to their respective mean field transition
temperatures.

VI. IMPLICATIONS FOR IRON PNICTIDES

Our detailed theoretical studies provide the basis to un-
derstand the anisotropic spin responses that have been ob-
served in the paramagnetic phase of the parent iron pnic-
tides CaFe2As2

27. These observations, made at tempera-
tures above the first order antiferromagnetic/structural tran-
sition, can be understood if the transition temperature is as-
sumed to be considerably lower than the mean-field Ising tran-
sition temperature by the effects of fluctuations and coupling
to phonons. To compare our theoretical results with the exper-
iments of Ref. 27 we have fitted the low frequency experimen-
tal data with the dynamic structure factor calculated within the
saddle point approximation of an anisotropic, damped nonlin-
ear sigma model, which follows from the action of Eq. (24).
Within the saddle point approximation the imaginary part of
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FIG. 5. Panels (a) and (b) respectively demonstrateS(q − Q, ω =
12meV ) atT = 180K obtained from our theory and data of Ref. 27.
Panels (c) and (d) respectively demonstrateS(q−Q, ω = 39meV )
atT = 180K obtained from our theory and data of Ref. 27. We have
usedJ1/J2 = 0.5527, J2 = 9.8meV andγ = 47meV . To facilitate
the comparison with experimental result, we have plotted here in the
Brillouin zone corresponding to the two-Fe unit cell instead of that
for the one-Fe unit cell used in the rest of the paper.

the staggered susceptibility is given by

χ
′′

(q−Q, ω) =
χ−1
⊥ γω

γ2ω2 + (ω2 − v2x(qx − π)2 − v2yq
2
y −∆2)2

(33)
The velocities of the effective model are taken from the mod-
ified spin wave calculations. The details of our procedure are
provided in Appendix A.

The comparison of our results with that of Ref. 27 are
shown in Fig. 5. The calculated elliptic features ofS(q −
Q, ω) (Fig. 5(a)) is compatible with that seen experimentally
(Fig. 5(b)) at low frequencies. This continues to be the caseat
higher frequencies, as shown in Fig. 5(c) and Fig. 5(d). The
experimental results in the paramagnetic phase are consistent
with our conclusions that as temperature is lowered, the peaks
in the momentum space sharpen but the ellipticity is only
weakly affected. Our estimated values of exchange constants
are consistent with that of Ref. 27. Whenω is smaller than
the excitation gap∆, the dynamic structure factor is peaked
at q = Q. For ω > ∆, the intensity peak gets shifted to
|q − Q| =

√
ω2 −∆2/v as shown in Fig. 5(c), and theω2

term in the dynamics is important to capture this feature also
observed in the experiment as shown in Fig. 5(d).

Interlayer magnetic couplings in the parent iron arsenides
vary considerably among the materials, but are always rela-
tively weak. In Ref. 27, the interlayer couplingJz in param-
agnetic CaFe2As2 was shown to be very weak, withJz/J2 =
0.1, being smaller than its counterpart in the magnetically
ordered phase at low temperature. Consideration of such a
weak interlayer coupling does not appreciably change the es-
timated exchange constants and the in-plane spin dynamics.
An estimation of the spin stiffness constant using a renormal-

ized classical approximation for the correlation length shows
that both fermion induced moment reduction, and Landau
damping can sufficiently renormalize the stiffness constant
(see Appendix A). In Appendix B we have considered the
effects of the weak inter-layer exchange couplingJz using
the modified spin wave theory. ForJz/J2 = 0.1 the mean
field Neel temperatureTN0 and the mean field Ising tran-
sition temperatureTσ0 become very close. However as we
have discussed in Sec. V, despite the suppression of the ac-
tual transition temperature due to various fluctuation mecha-
nisms, the magnetic and the Ising correlation lengths remain
sizable up to the mean-field transition temperatures. In the
temperature regimeTN < T < TN0, there are three dimen-
sional antiferromagnetic fluctuations. However if we consider
the ratio of the in-plane and inter-plane correlation lengths
(measured in units of corresponding lattice spacing), we find
ξz/ξx ≈ (Jz/(2J2 + J1))

1/2. This ratio is of course material
dependent. For weak inter-layer coupling of Ref. 27, this ra-
tio is ∼ 0.2, and magnetic fluctuations are indeed quasi-two
dimensional.

Finally our discussion regarding the effect of itinerant elec-
trons is most pertinent to the parent systems, but is consis-
tent with the experimental observation of similar low-energy
anisotropic responses in the carrier-doped iron pnictides37–39.

VII. SUMMARY AND CONCLUSIONS

We have addressed the spin dynamics in the paramagnetic
phase of a two dimensionalJ1 − J2 antiferromagnet on a
square lattice at a finite temperature, using modified spin wave
theory. Within the modified spin wave theory we have iden-
tified a mean field Ising transition temperatureTσ0, below
which theC4v symmetry of the square lattice is spontaneously
broken. In the Ising ordered phase the system demonstrates
short range(π, 0) or (0, π) antiferromagnetic order. In or-
der to systematically understand the finite temperature spin-
dynamics in the paramagnetic phase of iron pnictides, we have
described the fermionic contributions and self-interaction ef-
fects of the order parameter fields within a Ginzburg-Landau
framework. We have found that the fermion contribution and
the self-interaction effects can considerably decrease the Neel
and the Ising transition temperatures from their correspond-
ing mean field values. However the correlation lengths of the
magnetic and Ising order parameters can remain appreciable
up to the mean field transition temperatures. Based on this
assumption, we have fitted the experimental data of Ref. 27,
using our theoretical results. The calculated anisotropicfea-
tures of the spin response are compatible with experiments for
different frequencies.

Finally, our calculations of the spin fluctuations at high
energies should help understand future experiments. High-
energy spin spectrum at the low-temperature ordered state
of CaFe2As223 has already provided valuable information on
the x-y anisotropy of the exchange interactions. Similar ex-
periments have recently been reported in BaFe2As240 and
SrFe2As241, including at temperatures just above the Néel
transition where strong orbital anisotropy has developed42,43.
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It will be instructive to experimentally map out the high-
energy spectrum at higher temperatures in the paramagnetic
phase.
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Appendix A: Procedure of comparing with the experimental
data

We analyze the experimental data of Ref. 27 by using the
imaginary part of the staggered susceptibilityχ(q − Q, ω),
which is calculated within the saddle point approximation for
Eq. 26. From the saddle point calculation we find

χ
′′

(q−Q, ω) =
χ−1

⊥ γω

γ2ω2 + (ω2 − v2x(qx − π)2 − v2yq
2
y −∆2)2

(A1)
At q = Q, we have

χ
′′

(0, ω) =
χ−1
⊥ γω

γ2ω2 + (ω2 −∆2)2
(A2)

whereχ⊥ is the uniform transverse susceptibility. We calcu-
late the velocitiesvx and vy using Eq. 13 and Eq. 14, and
for the exchange constants we chooseJ2 = 10meV and
J1 = 0.55J2 = 5.5meV , as determined by Dialloet al.27.
By fitting the experimental data we determine the tempera-
ture independent Landau damping strengthγ and the temper-
ature dependent gap∆. By fitting the data forχ

′′

(0, ω) at
T = 180K, with the formula from Eq. A2, we find the Landau
damping strengthγ and the gap∆ at 180K. At low frequen-
cies, Eq. (A2) can be further approximated by a Lorentzian
with a widthΓT ≈ ∆2/

√

γ2 − 2∆2. At the relatively low
temperature of180K, the Lorentzian form is a good fit to
Eq. (A2) up to frequencies of about40meV, andΓT = 7meV .
At the high temperature of300K, the Lorentzian form, which
becomes a poorer fit to Eq. (A2) over the same frequency
range, yieldsΓT = 44meV . The definition of the energy
line-width asΓT is the same notation as used in Ref. 27, but
the constantγ used in Ref. 27 is not the conventional Landau
damping strength and has a different meaning from ours. Our
estimation isγ = 47meV . For the available data at nonzero
q − Q at different temperatures, we use the value ofγ so
determined, and find the∆ at different temperatures. Using
the values ofvx, vy and∆, we find the correlation lengthξx
andξy. The comparison of our theoretically calculated dy-
namic structure factor with the fitted parameter values, and
the experimental results at low frequency12meV are shown
in Fig. 5(a) and Fig. 5(b) of the main text. Even at higher
energyω = 39meV our results for the dynamic structure fac-
tor are in reasonable agreement with experimental data, and
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FIG. 6. (Color online) Comparison between the correlation lengths
ξ =

√

ξxξy extracted from our fitting and that of Ref. 27. The fitted
spin stiffness constants are shown in the inset.

the comparison for this frequency is shown in Fig. 5(c) and
Fig. 5(d) of the main text. The consideration of theω2 term in
the effective action, leads to an interesting feature of thedy-
namic structure factor. For low frequencies such thatω < ∆,
χ

′′

(q − Q, ω is peaked atq = Q. But at higher frequencies
such thatω > ∆, the intensity peak occurs away from the
antiferromagnetic wave-vector and its location is determined
by |q −Q| =

√
ω2 −∆2/v. This shift in the intensity peak

can clearly seen by comparing Fig. 5(a) and Fig. 5(c). Similar
shift in the intensity peak can also be seen in the experimental
results by comparing Fig. 5(b) and Fig. 5(d). For the correla-
tion length we have compared our and experimental results in
Fig. 6 by plotting the temperature dependence of the geomet-
ric mean ofξx andξy . By fitting the correlation length with the
renormalized classical formula, we have obtained an estima-
tion for the stiffness constant. The fermion induced reduction
of the magnetic momentM0, and Landau damping are found
to significantly reduce the stiffness constant in comparison to
a pureJ1 − J2 model.

Appendix B: Effects of interlayer exchange coupling

The quasi-2D nature of the spin dynamics was clearly
shown in Ref. 27. To explain the observed(π, 0, π) antifer-
romagnetic order, an interlayer antiferromagnetic couplingJz
was assumed andJz was estimated to be∼ 0.1J2. To as-
sess the effects ofJz on the spin dynamics we first incorpo-
rate the three dimensional effects in our modified spin wave
theory calculations. For simplicity we assume the sublattice
angleφ = π. The modification to our discussion in section I
comes through an additional interlayer antiferromanetic bond
correlation parametergz. The Ising transition will be deter-
mined by the vanishing of in plane nearest neighbor bond cor-
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relationsgx andfy. In the presence ofJz , there is a finite,
mean field antiferromagnetic transition temperatureTN0, cor-

responding to Bose condensation ofa’s. The expression for
total energy in Eq. 5 changes into

E = −J1N

2

∑

δ1=±x̂

(

S +
1

2
− f(0) + gx

)2

+
J1N

2

∑

δ2=±ŷ

(

S +
1

2
− f(0) + fy

)2

− J2N

2

∑

δ3=±x̂±ŷ

(

S +
1

2
− f(0)

+gx+y

)2

− JzN

2

∑

δ1=±ẑ

(

S +
1

2
− f(0) + gx

)2

,(B1)

and the expressions forAk andBk are modified according to

Ak = 2J1gxCx,k + 4J2 gx+yCx+y,k + 2JzgzCz,k (B2)

Bk = 2J1(gx − fy) + 2J1fyCy,k + 4J2 gx+y − µ+ 2Jzgz,

(B3)

whereCz,k = cos kzc, andc is the interlayer separation. After
accounting for the possibility of a finite staggered magnetiza-
tion belowTN0, the mean field equations are given by

fy = m0 +
1

N

′

∑

k

Bk

ǫk

(

nk +
1

2

)

Cy,k, (B4)

gα = m0 +
1

N

′

∑

k

Ak

ǫk

(

nk +
1

2

)

Cα,k, α = x, x+ y, z

(B5)

S +
1

2
= m0 +

1

N

′

∑

k

Bk

ǫk

(

nk +
1

2

)

(B6)

For S = 1, J1/J2 = 0.8, c = a, the dependence ofTN0

andTσ0 on Jz/J2 are shown in Fig. B. The temperature de-
pendence of the mean field bond parameters forJz/J2 = 0.1
are shown in Fig. B. With increasingJz, the Neel tempera-
ture gradually increases and asymptotically approachesTσ0.
Since the mean field Ising transition is a consequence of the
two-dimensional magnetic fluctuations,Tσ0 is not modified
by the finite interlayer couplingJz . For Jz/J2 = 0.1, and
andJ2 ∼ 10meV we obtainTN0 ≈ Tσ0 ∼ 240K, which
is much higher than the actual Neel and structural transition
temperature. Therefore the fluctuating anisotropy effectswill
be important over a wide range of temperature, and the finite
Jz does not change this conclusion.

Below Tσ0, by expanding the dispersion aroundQ =
(π, 0, π), we obtain

ǫk =
[

v2x(π − kx)
2 + v2yk

2
y + v2z(π − kz)

2 +∆2
]

1

2 (B7)

∆ = [−µ(8J2gx+y + 4J1gx + 4Jzgz − µ)]
1

2 ,

µ = 0, for T < TN (B8)

vx = a

[

(4J2gx+y + 2J1gx)(4J2gx+y + 2J1gx

+2Jzgz)

]
1

2

(B9)

vy = a

[

(4J2gx+y + 2J1gx + 2Jzgz)(4J2gx+y − 2J1fy)

+2J1fyµ

]
1

2

(B10)

vz = c [(4J2gx+y + 2J1gx + 2Jzgz)2Jzgz]
1

2 (B11)

We further notice that the velocities are well approximatedby

vx ≈ 2Sa(J1 + 2J2)

√

1 +
Jz

J1 + 2J2
(B12)

vy ≈ vx

√

2J2 − J1
2J2 + J1

(B13)

vz ≈ vx
c

a

√

Jz
2J2 + J1

(B14)

and even in the presence of finiteJz, the ratiovy/vx remains
unchanged. ForJz/J2 = 0.1 andc/a ≈ 3.02627 we obtain
vz/vx ∼ 0.6, and this leads to smaller inter-planar correlation
length (ξz < ξx,

√

ξxξy). In our comparison with experi-
ments we have looked at the data that corresponds to in-plane
dynamics, i.e.,q − Q = (qx − π, qy, 0), and consequently
all the formulas remain unaffected. We also note that the ef-
fects of inter-planar coupling inside the magnetically ordered
phase have been considered in Refs.45–47 using similar tech-
nique. However our results are derived for the paramagnetic
phase, which are essentially different from those described in
Refs.45–47.
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FIG. 7. Panel (a) shows the comparison between the mean field Neel
temperatureTN0 and mean field Ising transition temperatureTσ0, as
a function of the inter-planar couplingJz , for J1/J2 = 0.8, and
S = 1. Panel (b) shows the temperature dependence of different
mean field parameters forJz/J2 = 0.1.
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