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We investigate the effects of the
√
5×

√
5 Fe vacancy ordering on the orbital and magnetic order in

(K,Tl,Cs)yFe2−xSe2 using a three-orbital (t2g) tight-binding Hamiltonian with generalized Hubbard
interactions. We find that vacancy order enhances electron correlations, resulting in the onset of
a block antiferromagnetic phase with large moments at smaller interaction strengths. In addition,
vacancy ordering modulates the kinetic energy differently for the three t2g orbitals. This results in
a breaking of the degeneracy between the dxz and dyz orbitals on each Fe site, and the onset of
orbital order. Consequently, we obtain a novel inverse relation between orbital polarization and the
magnetic moment. We predict that a transition from high-spin to low-spin states accompanied by
a crossover from orbitally-disordered to orbitally-ordered states will be driven by doping the parent
compound with electrons, which can be verified by neutron scattering and soft X-ray measurements.

PACS numbers: 74.70.Xa, 75.25.Dk, 71.27.+a, 71.30.+h

I. INTRODUCTION

At ambient pressure, FeSe undergoes a superconduct-
ing transition at 8K1. However, when it is exposed to
potassium, thallium or cesium, the superconducting tran-
sition temperature roughly quadruples reaching a value
just above 30K2–4. Such a significant increase in Tc is
due entirely to the effect K, Tl or Cs have when they
are intercalated between the FeSe layers, the primary fo-
cus of this paper. The average atomic ratios of K:Fe:Se
are 0.39:0.85:12 in these new iron-chalcogenide supercon-
ductors. Hence, the new iron-based superconductors are
iron deficient. In fact, the new wrinkle the AyFe2−xSe2
(A=K, Tl, Cs) superconductors have introduced into the
field of novel superconductors is iron vacancy order. The
Fe vacancies form a

√
5×

√
5 pattern5–7. Such vacancy or-

dering occurs at a higher temperature than the transition
to the block antiferromagnetic phase with an unusually
large magnetic moment of 3.3µB per Fe ion8 (See Fig. 1).
By contrast, FeSe is non-magnetic while FeTe1−xSex has
moment up to 2.0µB in the non-superconducting state.
With such a large moment, one might anticipate that the
correlations in the new family of iron chalcogenide super-
conductors are strongly enhanced. In fact, they are. In
sharp contrast to other families of iron-based supercon-
ductors, AyFe2−xSe2 for x > 0.5 are insulating5, pos-
sibly of the Mott type. This raises the possibility that
superconductivity in these materials is enhanced as a re-
sult of the increased number of unpaired d-electrons that
form the Mott insulating state, as has been proposed
recently9. Consistent with this picture is the experimen-
tal finding that superconductivity is strongly suppressed
with a small amount of Co doping10.
Due to enhanced correlations in the AyFe2−xSe2 su-

perconductors, local 3d models with Hubbard-type in-
teractions are required to describe the system11,12. Con-
sequently a vacancy-modulated J1-J2 model has been
proposed13 and applied to analyze the magnetic phase
diagram14–16 for the insulating parent compounds. How-
ever, very few studies17 consider both hopping and on-
site interactions. In this paper, we construct such

a model exploiting a three-orbital (t2g) tight-binding
Hamiltonian with full on-site Hubbard interactions.
The vacancies are introduced with a

√
5 ×

√
5 order

which is observed in crystal X-ray diffraction studies for
K0.8+yFe1.6−xSe2

5–7, corresponding to 20% of the Fe va-
cancies. We find that the vacancy ordering affects both
the orbital and magnetic properties. On the one hand,
the presence of the vacancy lattice explicitly breaks the
degeneracy between the dxz and dyz orbitals at neighbor-
ing sites. For example, at site 1 of Fig. 1, the vacancy
along the −y direction leads to different modulations of
the hopping terms for dxz and dyz, due to their spatial
anisotropy. Without loss of generality, we will assume
that the dxz orbital is favored at site 1. We can repeat
this analysis for each Fe site, resulting in the particular
orbital order as illustrated in Fig. 1, without turning on
any interactions. This particular orbital order directly
results in the breaking of local C4 symmetry, which has
been hinted at by a recent NMR study18. On the other
hand, vacancy ordering also enhances the correlation ef-
fects by reducing the kinetic energy, leading to a block an-
timagnetic order at smaller interaction strengths. These
two tendencies compete with one another as the system
is doped away from the insulating parent state, giving
rise to a novel inverse relation between the orbital polar-
ization and the magnetic moment.

II. MODEL

We start from a three-orbital (t2g) tight-binding model
with the hopping parameters adopted from Ref. 19. The
vacancies with a

√
5×

√
5 order lead to an enlarged unit

cell (see Fig. 1). The kinetic energy then takes the form

HK =
∑

k,i,j,α,β,µ

ξαβij (k)c†iαµ(k)cjβµ(k), (1)

where c†iαµ creates an electron on orbital α with spin µ at
site i. We have i = 1, 2, . . . , 8, as labeled in Fig. 1, and

ξαβij (k) =
∑

tαβij exp [ik · (rj − ri)], with tαβij being the
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FIG. 1. (Color online) Illustration of the
√
5 ×

√
5 Fe va-

cancy order, subsequent block antiferromagnetic order, and
possible orbital order due to the presence of vacancies. The
Fe vacancies are represented by the gray circles. The dashed
lines depict the unit cell that contains 8 Fe atoms and 2 Fe va-
cancies. J1, J2, J

′

1, and J
′

2 denote the intra- and inter-block
nearest-neighbor and next-nearest-neighbor superexchanges,
respectively.

hopping amplitudes and k defined within the Brillouin
zone of the enlarged unit cell. We further consider the
following Hubbard interactions on each site

HI =
∑

α

Un̂α↑n̂α↓ +
∑

β>α

(V − J

2
)n̂αn̂β −

∑

β>α

2J ~Sα · ~Sβ

+
∑

β>α

J ′
(

c†α↑c
†
α↓cβ↓cβ↑ + h.c.

)

, (2)

where U , V , J and J ′ are the intra- and inter-orbital
Coulomb repulsion, Hund’s coupling, and pair hopping,
respectively. It is assumed that U = V +2J and J = J ′.
By using the standard mean-field decoupling

〈

c†iαµciβν

〉

=
1

2
(niα + µmiα) δαβδµν , (3)

where µ = ±1 for up and down spins, respectively, we
derive the mean-field interaction term

HI =
∑

k,i,α,µ

(ǫiα − µηiα) c
†
iαµ(k)ciαµ(k) + C, (4)

where

ǫiα =
U

2
niα +

(

V − J

2

)

∑

β 6=α

niβ , (5)

ηiα =
U

2
miα +

J

2

∑

β 6=α

miβ , (6)
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FIG. 2. (Color online) The total staggered magnetic moment
m of the block antiferromagnetic phase at each Fe site as a
function of Coulomb repulsion U for different Hund’s cou-
plings J . (a) The filling n = 3.0; (b) n = 4.0.

and the constant

C = −U

4

∑

i,α

(

n2
iα −m2

iα

)

− 2V − J

4

∑

i,α6=β

niαniβ

+
J

4

∑

i,α6=β

miαmiβ . (7)

The Hamiltonian H = HK+HI is solved with mean-field
parameters niα andmiα determined self-consistently. We
choose different initial conditions of niα and miα that
may yield solutions of different spin configurations to de-
termine the phase diagram presented in this paper. We
emphasize that this mean-field treatment is not adequate
to address strong correlations, but it should produce
qualitatively correct result regarding the ground state
properties.
We will mainly focus on filling levels between n = 3 and

n = 4, corresponding to the state of high spin S = 3/2
and low spin S = 1, respectively, in the limit of strong
interactions. The motivation for this choice is as follows.
The atomic configuration of an Fe ion in FeSe is Fe2+,



3

corresponding to six electrons in the five d-orbitals. Due
to the crystal field splitting, eg orbitals have lower en-
ergy than t2g orbitals. Doping K, Tl or Cs into FeSe
introduces one more electron to some of the Fe ions; thus
in (K,Tl,Cs)yFe2−xSe2 there exists a mixture of Fe2+ and
Fe+. Naively, the large magnetic moment of 3.3µB ob-
served in experiment8 follows from simply averaging the
number of iron ions Fe2+ with 4 unpaired electrons (1
in the eg and 3 in the t2g orbitals) and Fe+ ions with
three (3 in the t2g orbitals). Consequently, we treat the
parent material as having three electrons in the t2g or-
bitals. Increasing the content of K, Tl or Cs corresponds
to electron-doping away from the parent compound. As
a result, the range of filling levels between n = 3 and
n = 4 in a three-band model is experimentally relevant
for this system.

III. RESULTS

We first plot the total staggered magnetic moment
m =

∑

α miα as a function of the Coulomb repulsion
U for different Hund’s exchanges J . Our results are dis-
played in Fig. 2. For filling factors of n = 3, m turns up
almost continuously with increasing U , featuring an in-
termediate regime with metallic block antiferromagnetic
order. This phase is sandwiched between the paramag-
netic phase at small U and the magnetic insulating phase
at large U [Fig. 2(a)]. The only exception is the small
ratio of J and U , which actually signals the presence
of competing phases as we will explain later. However,
the situation changes dramatically for n = 4. The mag-
netic moment m turns on abruptly at a critical value
of U , where the system undergoes a transition from a
paramagnetic metal to a block antiferromagnetic insula-
tor [Fig. 2(b)]. Compared with earlier studies20 of the
same model without any vacancy order, we find that
the intermediate metallic phase with a non-zero magnetic
moment disappears, and the insulating behavior obtains
at a much smaller U . Hence, we have confirmed that
the presence of vacancy order indeed enhances electron
correlations. Note that the real materials are possibly
located close to the edge of the insulating phase where
a block antiferromagnetic order with a large moment is
supported by a relatively small Coulomb repulsion U and
an intermediate Hund’s coupling J .
We now address orbital order. As mentioned earlier,

orbital order of the type shown in Fig. 1 should be present
even in the absence of any interactions. This is indeed
confirmed by Figs. 3(a) and (b), where the occupation
number of the dyz orbital is larger than that of dxz on site
1 at U = 0. Of course, we need to invert the occupation
numbers of these two orbitals on site 2, and so on. We
note that the result here is different from that of Fig. 1
where the dxz orbital is favored on site 1. This difference
is due to the choice of hopping parameters. Nevertheless,
the physical idea remains the same that the vacancy or-
der produces different kinetic energy modulations at the
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FIG. 3. (Color online) (a,b) The occupation number nα and
(c,d) the magnetic moment mα for each of the three t2g or-
bitals at site 1 as a function of U for J = 0.20U . (a,c) n = 3.0;
(b,d) n = 4.0.

dxz and dyz orbitals, breaking their degeneracy and lead-
ing to orbital order. The resultant orbital polarizations,
however, will depend on the set of tight-binding hopping
parameters chosen.
From Fig. 3, we notice that for n = 3, the orbital

order is reduced once the magnetic order sets in and fi-
nally diminishes at large U . This novel inverse relation
between orbital polarization (nxz − nyz) and magnetic
moment can be naturally understood within our model.
Since all the three orbitals are singly-occupied with their
spins pointing along the same direction in the high-spin
S = 3/2 state, no orbital order can occur and vice versa.
On the other hand, for n = 4, the orbital order is greatly
enhanced by the magnetic order. Because the dxy or-
bital has a higher band energy than do the dxz and dyz
orbitals as shown in the LDA calculations21, the sys-
tem with n = 4 finally evolves into the state in which
dyz is doubly-occupied whereas dxz and dxy are singly-
occupied, consistent with the low-spin S = 1 state of the
largest orbital polarizations.
The discussion above immediately suggests that the

phase transition from the high-spin and orbitally-
disordered state at filling n = 3 to the low-spin and
orbitally-ordered state at n = 4 is non-trivial. In order
to simplify our calculations, we fix J = 0.20U , consis-
tent with our earlier considerations. From Fig. 4(a), the
total staggered magnetic moment m exhibits a contin-
uous change when we vary the filling level n, and the
inverse relation between the orbital polarization and the
magnetic moment remains until n ≈ 3.8, where a sharp
transition of the orbital polarization occurs for a large
enough Coulomb repulsion U & 0.8 [Fig. 4(b)]. The sys-
tem changes from a dxz-polarized state into a state where
the dyz orbital dominates. From the experimental point
of view, the two states, although having similar magnetic
moments, have opposite orbital polarizations. This ob-
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FIG. 4. (Color online) (a) The total magnetic moment and
(b) the orbital polarization, defined as the occupation num-
ber difference between the dxz and dyz orbitals at site 1, as
functions of filling n and Coulomb repulsion U . We choose
the Hund’s coupling J = 0.20U .

servation can help us determine the parameter space of
the real material.

It should also be noted that our study is based on
self-consistent mean-field theory. Although the block an-
tiferromagnetic (BAF) phase does emerge as a solution
in a large part of phase diagram, there are still other pos-
sible magnetically ordered states. For this purpose, we
consider two other possibilities, the ferromagnetic (FM)
phase where the spins are all aligned in the same di-
rections, and the checkerboard antiferromagnetic (CAF)
phase where the spins on nearest-neighbor sites are an-
tiparallel. There are certainly other possible configura-
tions which are ignored here for simplicity. We find that
self-consistent solutions can be obtained for all the three
phases. By comparing the energies of each state, we ob-
tain the phase diagram shown in Fig. 5, where the param-
agnetic (PM) phase is characterized by a vanishing mag-
netic moment. As illustrated by the phase diagram, the
block antiferromagnetic phase nearly always has the low-
est energy in the regime of interest, which confirms that
our model does support a ground state that is consistent
with the experimental observations. We also notice that
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FIG. 5. (Color online) The phase diagram obtained by com-
paring the energies of different mean-field solutions. Refer
to the main text for the meanings of the abbreviations. (a)
n = 3.0; (b) n = 4.0.

in the regime where J/U is small, a variety of phases
obtain depending on the parameters, which suggests the
ratio J/U may have an intermediate value in the real
materials.
To further demonstrate the stability of the BAF spin

configuration, we consider the strong coupling limit,
namely a superexchange Heisenberg model due to the
presence of the orbital order (see Fig. 1). For simplic-
ity, the dxy orbital is dropped due to its higher on-site
energy19. We also assume the largest orbital polarization
on each site, corresponding to an S = 1/2 state. The
magnetic superexchanges arise from the virtual hopping
processes including the nearest-neighbor (NN) σ-bond t1,
π-bond t2 and the next-nearest-neighbor (NNN) intra-
orbital t3, inter-orbital t4, following the definitions of
Ref. 19. We will assume that t1 > t2, which produces
the orbital order displayed in Fig. 1. Straightforward
calculations yield

J1 = −2
(

t21 + t22
)

(

1

V − J
− 1

V + J

)

, (8)

J ′
1 =

4t21
U

, (9)

J2 =
4t23
U

− 4t24

(

1

V − J
− 1

V + J

)

, (10)

J ′
2 =

4t24
U

− 4t23

(

1

V − J
− 1

V + J

)

, (11)

where J1, J2, J
′
1, and J ′

2 represent the intra- and inter-
block NN and NNN superexchanges, respectively, as il-
lustrated in Fig. 1.
Let’s discuss J1 and J ′

1 first. It is not surprising that J
′
1

is always positive because it is related to a superexchange
process between two sites occupied by the same orbital.
Interestingly, we find that J1 is always negative due to
the Hund’s coupling, which can be understood as follows.
Because J1 is the superexchange involving two sites with
different orbitals, the intermediate high-energy states can
be either spin parallel or spin antiparallel. If there is no
Hund’s coupling, these two intermediate states are degen-
erate and their contributions to the exchange constant



5

cancel each other. This can be checked by setting J = 0
in Eq. (8). Turning on Hund’s coupling J favors the spin
parallel intermediate state, leading to J1 < 0. Our results
of J1 and J ′

1 can also be understood as the consequence
of a generalized Goodenough-Kanamori rule.
The signs of J2 and J ′

2, however, depend on the hop-
ping parameters and interaction strengths. But J2 and
J ′
2 are usually antiferromagnetic because the first term

is proportional to t2/U , thereby winning out over the
second term that scales as t2J/V 2. Compared to earlier
LDA results13, in which a large antiferromagnetic inter-
block NNN exchange J ′

2 dictates the magnetic ground
state, the BAF spin configuration is mostly stabilized
by a ferromagnetic intra-block NN J1 and an antiferro-
magnetic inter-block NN J ′

1 in our model. Actually the
signs of the exchange constants we predicted here agree
with the fitting results of recent inelastic neutron scat-
tering experiments22, which lends further support to our
model.

IV. SUMMARY

In conclusion, we have studied the phase diagram of
the orbital and magnetic orderings using a three-orbital
(t2g) tight-binding model with generalized Hubbard in-
teractions for the recently discovered high-temperature
superconductor (K,Tl,Cs)yFe2−xSe2. The

√
5 ×

√
5 or-

dering of Fe vacancies has been put into the calculations
explicitly. We have shown that while the vacancy order-
ing breaks local C4 symmetry on each Fe site, thereby

yielding an orbitally ordered state, which has been hinted
at by a recent NMR study18, it also enhances the corre-
lation effects resulting in magnetic ordering with a large
moment. These two trends compete, leading to a novel
inverse relation between orbital polarization and mag-
netic moment in the ground state.

We have also derived an effective Heisenberg model
with both vacancy and orbital orders in the strong cou-
pling limit. By superexchange mechanism, we have found
that the intra- and inter-block nearest-neighbor (J1, J

′
1)

and next-nearest-neighbor (J2, J ′
2) superexchanges do

fall into the parameter region which favors the block an-
tiferromagnetic phase as the ground state, and signs of
these exchange constants agree with a recent inelastic
neutron scattering experiment.22 This provides another
strong support for our theory. Furthermore, we pre-
dict that a transition from high-spin to low-spin states
together with a crossover from orbitally-disordered to
orbitally-ordered states will be driven by doping the par-
ent compound with electrons, which might be verified by
further neutron scattering and soft X-ray measurements.
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