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In this work we consider a generalization of the symmetry classification of topological insulators
to non-Hermitian Hamiltonians which satisfy a combined PT -symmetry (parity and time-reversal).
We show via examples, and explicit proofs from separate bulk and gapless boundary state perspec-
tives that the typical paradigm of forming topological insulator states from Dirac Hamiltonians is not
compatible with the construction of non-Hermitian PT -symmetric Hamiltonians. The topological in-
sulator states are PT -breaking phases and have energy spectra which are complex (not real) and thus
are not consistent quantum theories.

With recent interest generated in the field of topo-
logical insulators and superconductors[1–8], the sym-
metry classification of (primarily free-fermion) Hamil-
tonians has resurfaced[9–13]. The first example of a
topological insulator (TI), the integer quantum Hall ef-
fect (IQHE), is gapped in the bulk and exhibits gapless,
robust states on its boundaries. Most other examples
of topological insulators[1, 3–8] share these character-
istic features. One interesting distinction between the
IQHE and, for example, the quantum spin Hall effect
(QSHE), is that the IQHE is completely robust to any
type of Hamiltonian perturbation, while the QSHE is
only robust to perturbations that preserve time-reversal
symmetry T. A full symmetry protected classification of
topological insulators[11, 12] and superconductors[11]
based on charge-conjugation, time-reversal, and chiral
symmetries was then unified into a periodic table[13].

In addition to the classification theory of TI’s, Hamil-
tonian symmetries are important in the theory of
non-Hermitian Hamiltonians[14–18] where it has been
shown that non-Hermitian Hamiltonians can still de-
scribe viable quantum systems as long as PT symme-
try is unbroken. By PT we mean the combined opera-
tion of a parity/inversion symmetry P, and T. Given a
non-Hermitian HamiltonianH that satisfies [H,PT ] = 0
one can provide necessary and sufficient conditions that
the energy spectrum of H be real[16]. It is thus natural
to attempt to extend the periodic table of TI’s to non-
Hermitian Hamiltonians which satisfy PT -symmetry.
Although our initial hope was to find non-Hermitian ex-
amples of TI states we instead show that TI phases are
incompatible with the PT -symmetric construction of (at
least a large class of) non-Hermitian Hamiltonians. The
TI states are PT -breaking and exhibit imaginary eigen-
values even when H has been constructed to preserve
PT -symmetry.

In this Letter we start by showing a few pedagogi-
cal examples of PT-symmetric Dirac Hamiltonians that
are perturbed away from being Hermitian. We offer
these examples to show how the construction of non-
Hermitian PT -symmetric TI states fails. Our focus
is on Dirac Hamiltonians because they are the mini-
mal models for topological insulators. An extension

to generic insulator Hamiltonians with many bands is
straight-forward. After the examples, we provide a
more proof of necessary conditions for the bulk spec-
tra of such Dirac Hamiltonians to have a fully real spec-
trum (i.e. eigenvalues are real for all values of the mo-
menta). Finally, we give some arguments about the
properties of the gapless boundary states that show that
PT-symmetry, non-Hermiticity, and topological insula-
tor states do not seem to be compatible.

Before we begin with the examples let us list the rel-
evant symmetry properties we will use in this Letter.
The T -operator is represented by T = UK where U
is a unitary operator and K is complex conjugation.
Depending on U we can have T 2 = ±1. For a Bloch
Hamiltonian H(p) to be invariant under T we must
have TH(p)T−1 = H(−p). The P -symmetry, which we
will call parity when needed, is a unitary operator with
P 2 = +1. There is no requirement on which spatial co-
ordinates the P operator inverts and for now we will
leave it unspecified for generality. The condition that a
Bloch Hamiltonian be P -invariant is PH(p)P−1 = H(p̄)
where p̄ is a symbol characterizing a given P by indicat-
ing which coordinates are inverted and which remain
unaffected. As an example, if all the coordinates are in-
verted then p̄ = −p. Finally, the condition that a Bloch
Hamiltonian be PT -symmetric is PTH(p)(PT )−1 =
H(−p̄) and equivalently requires that H(p) is either
both odd or both even under P and T separately. We
occasionally mention charge-conjugation symmetry C
which requires CH(p)C−1 = −H∗(−p).

1D DIRAC HAMILTONIANS

We will begin the examples in 1D with the gapped
continuum Dirac Hamiltonian

H1D(p) = vF pσ
y +mσz (1)

which is P, T, and PT symmetric with the symmetry op-
erators T = K, P = σz and p̄ = −p. This Hamiltonian
also satisfies a C symmetry with C = σx and provides
an example of a Z2 topological insulator protected by
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FIG. 1. Energy spectrum of H ′
1D,lattice (Eq. 4) with open

boundaries vs. m (a)∆ = 0 gives a real spectrum with zero-
modes for −2 < m < 0.(b) real part of energy spectrum and
(c) imaginary part of energy spectrum for ∆ = 0.1. Complex
eigenvalues exist in the former topological phase.

C symmetry[12]. We can add an additional term to the
Hamiltonian to get

H
′

1D(p) = pσy +mσz + i∆σx (2)

which is P-odd, T-odd, C-even, PT-even and non-
Hermitian and where we set vF = 1. Since we have
not broken C-symmetry the Z2 classification naively
should remain intact. 1D Dirac Hamiltonians with non-
Hermitian potentials have been studied in, for example,
Ref. 19. The energy spectrum of this Hamiltonian is sim-
ple to calculate:

E± = ±
√
p2 +m2 −∆2 (3)

which is real as long as |m| > |∆|. So we see it is pos-
sible to add a non-Hermitian perturbation to the Dirac
Hamiltonian and keep the spectrum to be entirely real
for values of m both < 0 and > 0. Note that the per-
turbation has the special property {i∆σx, H1D(p)} = 0
which will become important later.

Although it is promising that there is a regime where
this non-Hermitian Hamiltonian will have a real spec-
trum, there is already something worrying about the
spectrum. With ∆ = 0 this model has a gap-closing
phase transition at m = 0 which separates a trivial insu-
lator phase from a topological insulator phase[12]. We
see here that if ∆ 6= 0 this phase transition becomes
destabilized when 0 < |m| < |∆|. To properly describe

the TI phase we need to use a lattice version of this Dirac
Hamiltonian with a Bloch form

H ′1D,lattice(p) = (sin p)σy +(1+m−cos p)σz + i∆σx (4)

where we have set the lattice constant a = 1. When
∆ = 0 the lattice Hamiltonian is in a trivial insulator
phase when m < −2 or m > 0, and a topological insula-
tor when −2 < m < 0. With non-vanishing ∆ we have
E± = ±

√
1 + (1 +m)2 −∆2 − 2(1 +m) cos p. To be a

viable spectrum this must be real for all −π ≤ p ≤ π.
In Fig. 1a we show the spectrum for ∆ = 0 as a func-
tion of m with open boundary conditions. This clearly
shows the boundary state zero modes which persist
when −2 < m < 0. In Fig. 1b,c we show the real and
imaginary parts of the energy spectrum when ∆ = 0.1.
This shows that as soon as the system nears the phase
boundary to the topological insulator state the spectrum
develops imaginary pieces and thus generates a PT -
breaking phase. This is a common feature and shows
that the 1D topological insulator state here cannot be
reached when ∆ 6= 0.

2D DIRAC HAMILTONIANS

2D becomes more complicated because of two rea-
sons (i) there are two natural definitions of P : parity
(x, y) → (x,−y) and inversion (x, y) → (−x,−y) which
both satisfy P 2 = 1 (ii) from the conventional classifica-
tion theory of topological insulators it is natural to look
at both 2-band and 4-band models. We won’t exhaust all
these cases, but only provide some instructive examples.

2-band models: Let us consider the Hamiltonian
which represents the continuum model of a Chern
insulator[20]:

H
(2)
2D(p) = pxσ

x + pyσ
y +mσz (5)

with T = K and P = σx. This P corresponds to a par-
ity symmetry and sends py → −py so p̄ = (px,−py).
Unfortunately this Hamiltonian cannot be made PT -
symmetric even before we perturb it because the mass
term breaks PT. Next, let us consider the same Hamil-
tonian with T = K and P = σz where this P is an in-
version symmetry with p̄ = −p. Again even the base
Hamiltonian is not PT -symmetric because the px term
breaks PT. Finally, if we consider the same Hamiltonian
with T = iσyK and P = σz and p̄ = −p the mass term
breaks PT. From these few attempts it seems like we
cannot get any interesting non-Hermitian TI Hamilto-
nians with 2-bands. We will see why this is so in the
general proof section, but the basic idea is that there
are no additional matrices M which anticommute with
H

(2)
2D(p).
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4-band models: Let us start with a continuum QSH
Hamiltonian[1, 3]:

H
(4)
2D(p) = pxΓ1 + pyΓ2 +mΓ0 (6)

with Γ1 = τx ⊗ σx, Γ2 = τx ⊗ σy, Γ3 = τy ⊗ I, Γ4 =
τx⊗σz, and Γ0 = τz⊗ I. This has symmetry generators
T = iσyK and P = Γ0 and p̄ = −p. We can perturb
this Hamiltonian with the non-Hermitian PT-symmetric
matrices {iτx ⊗ I, iτy ⊗ σi, iτz ⊗ σi, iI ⊗ σi} but none
of these anti-commute with the Hamiltonian and will
lead to imaginary bulk eigenvalues as we will see in the
following section.

We can write down another Hamiltonian in 2D

H
(4)
2DB(p) = pxΓ2 + pyΓ3 +mΓ0 (7)

This has symmetry operators T = K and P = Γ0 with
p̄ = −p. There are two interesting terms with which we
can perturb the Hamiltonian

∆H
(4)
2D = i∆1Γ1 + i∆4Γ4 (8)

Adding these terms to the Hamiltonian gives us an en-
ergy spectrum

E± = ±
√
p2x + p2y +m2 −∆2

1 −∆2
4 (9)

which is real as long as m2 ≥ ∆2
3 + ∆2

4. However, this
model, with T = K is not known to exhibit a robust
topological insulator state anyway, but we see there is
the same problem with the gap-closing transition lead-
ing to a PT -breaking region.

NECESSARY CONDITIONS FOR REAL BULK
EIGENVALUES

The generic features of the example models is that if
there is a PT -symmetric, non-Hermitian matrix that an-
ticommutes with H(p) then we can have real eigenval-
ues, but the topological insulator phase is PT -breaking.
If the only PT -symmetric non-Hermitian matrices com-
mute with at least one term of H(p) then even the bulk
eigenvalues will not be real for all of momentum space.
We formalize this statement now.

Theorem: For a PT symmetric Hamiltonian of the
Dirac form H = pΓ + mQ + i∆S where p,m,∆ are real
parameters, S,Q,Γ are Hermitian (linear) matrices with
S2 = Q2 = Γ2 = 1 and {Q,Γ} = 0, the quantities {Q,S}
and {Γ, S}must vanish to have a real bulk spectrum.

Proof: Assume we have a Hamiltonian

H(p) = pΓ +mQ+ i∆S. (10)

By contradiction let us assume that [S,Q] = 0 so that
the anti-Hermitian term commutes with the mass term.

For the point p = 0 the Hamiltonian reduces to H(0) =
mQ + i∆S. Since S and Q commute they can be simul-
taneously diagonalized. Since S2 = Q2 = +1 the eigen-
values of these matrices are ±1. Thus the eigenvalues of
H(0) can only be ±m ± i∆ and are always imaginary
if ∆ 6= 0. This is a contradiction and so we know that
{S,Q} = 0 must hold if the spectrum is to be real for all
allowed p.

Now we want to prove the second necessary condi-
tion by contradiction. Assume that {S,Q} = 0, which
we now know must hold, but [S,Γ] = 0. The Hamil-
tonian at finite p is as above and H2(p) = (p2 + m2 −
∆2)I + ip∆{Γ, S}. From our assumptions {Γ, S} = 2ΓS
and (ΓS)2 = +1 so the eigenvalues of {Γ, S} are ±1.
Thus the eigenvalues of H2(p) are

E2
± = (p2 +m2 −∆2)± 2ip∆

=⇒ ±E± = ±
√

(p± i∆)2 +m2. (11)

This means that for all non-zero p the eigenvalues will
be imaginary. This is a contradiction and thus we have
proven that both {S,Q} = {S,Γ} = 0 are necessary con-
ditions for the bulk spectra to be real. �

Corollary: For Hamiltonians of the form H(p) =
paΓa +mQ+ i∆S where {Γa, Q} = 0 and (Γa)2 = Q2 =
S2 = 1 we must have {S,Γa} = {S,Q} = 0 for all values
of a.

Proof: The case involving the mass term is unchanged
from above. For the momentum term, by contradiction,
assume that there is a value a = a0 such that [S,Γa0 ] = 0.
We can then set all pa = 0 for a 6= a0 and use the same
theorem as above to prove the result. �

Thus, we see that to give a real spectrum we must
have an S that is a Clifford algebra generator along with
the generators Γa and Q. To satisfy PT symmetry we
need

(PT )iS(PT )−1 = −i(PU)S∗U−1P−1 = iS

=⇒ (PU)S∗ + S(PU) = 0 (12)

this means that if S = S∗ then PT symmetry re-
quires {PU, S} = 0. If S = −S∗ then PT symme-
try requires [PU, S] = 0. The form of the energy spec-
trum for such an anti-commuting S will be E± =
±
√∑

a p
2
a +m2 −∆2.

BOUNDARY/INTERFACE STATES

Let us return back to the 1D Hamiltonian specified in
Eqs. 1,2. There is a region of the TI phase (i.e. where
−2 < m < 0) where |m| could be greater than |∆| and
thus could have a real bulk spectrum, but from Fig. 1b,c
we see that the phase is still PT -breaking. To illustrate
why the TI state is PT -breaking we need to consider the
gapless boundary states. We will do this in the simplest
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possible way and capture the essential details by consid-
ering two interfaces between regions described by Dirac
Hamiltonians with m(x) = −m0 for x < −x0 next to
a region with m(x) = m0 > 0 for −x0 < x < x0 and
finally with m(x) = −m0 for x > x0. We assume that
|m0| ≥ |∆| so that the bulk energy spectrum is real in
each region and that 2x0 � ~vF /m0 so that for our pur-
poses the interfaces are independent of each other. Note
that this potential satisfies m(x) = m∗(−x) and is thus
PT symmetric. The 1D Hamiltonian is

H = −i d
dx
σy +m(x)σz. (13)

This Hamiltonian has two zero-energy boundstates[21]
one per interface domain wall given by

Ψ±0 (x) =
1√
2

exp

[
±
∫ x

±x0

m(x′)dx′
](

1
∓1

)
. (14)

We see something interesting that occurs here,

PTΨ+
0 (x) = PΨ+∗

0 (x) = σzΨ+∗
0 (−x) = Ψ−0 (x) (15)

This means that Ψ0 is not an eigenstate of PT and thus
we do not expect it to have a real eigenvalue if we add
a non-Hermitian PT symmetric term[15, 16]. The PT
symmetry transforms one boundary state into the other
one. This is not so strange since the P symmetry should
interchange the two ends of the 1D system, or in this
case the states on each domain wall.

Now let us perturb the Hamiltonian by i∆σx, as in
the 1D example above, and focus near a single domain
wall. The unperturbed system has Ψ0 as a zero energy
state. Adding the perturbation is trivial since Ψ0 is al-
ready an eigenstate of σx. Thus we see that perturbing
the domain wall states changes the energies of the states
from E = 0 to E = ±i∆ which is obviously imaginary.
Thus, the domain wall, and by analogy, TI boundary
states break the PT -symmetry and are not compatible
with a real energy spectrum.

To show that this is not a pathological case for the 1D
Hamiltonian let us consider the 2D Hamiltonian in Eq. 7
which will still have (unprotected) bound states on mass
domain walls. We will assume the domain walls are in
the y-direction this time. The Hamiltonian is then

H
(4)
2D = pxΓ2 − i d

dy
Γ3 +m(y)Γ0 (16)

where px is a number. For px = 0 we can use the same
ansatz as in the 1D case but this time there are two zero-
energy solutions per wall. For an upward stepping do-
main wall we find

Ψ0A =
1√
2


1
0
−1
0

 , Ψ0B =
1√
2


0
1
0
−1

 . (17)

For px 6= 0 these solutions do not automatically diago-
nalize Γ1 and we are left with a reduced 2× 2 problem

H
(eff)
ij = 〈Ψ0i|pxΓ2|Ψ0j〉 = pxσ

y
ij (18)

where i, j = A,B. Now if we add the allowed, anti-
commuting non-Hermitian terms i∆1Γ1 + i∆4Γ4 the ef-
fective Hamiltonian of the edge states becomes

H
(eff)
ij = pxσ

y
ij + 〈Ψ0i|i∆1Γ1 + i∆4Γ4|Ψ0j〉

= pxσ
y
ij + i∆1σ

x
ij + i∆4σ

z
ij (19)

This Hamiltonian is simple to diagonalize has energies

E± = ±
√
p2x −∆2

1 −∆2
4 (20)

which are imaginary at least at px = 0 if either of the
∆i 6= 0. Thus again the boundary spectrum is imaginary.
The states Ψ0A/B are not eigenstates of the PT operator
and will be transformed into the allowed states on the
opposite wall by PT. These arguments generalize to the
other topological insulator classes and show that such a
phase is always PT -breaking.

With this proof in place one can immediately begin
to search for exceptions. The first place to look would
be topological superconductors whose boundary states
have weight on both boundaries. We performed a cur-
sory test of some classes of topological superconduc-
tors and were not able to construct an interesting non-
Hermitian PT-symmetric phase. The presence of Majo-
rana boundary fermions which are non-local may pro-
vide a way around the boundary state problem but we
leave this open for future work. Also, our result does not
immediately apply to topological insulator states pro-
tected by point-group symmetries like inversion[22–24]
or even C4 symmetry[25]. In this case, however, we be-
lieve that our result can easily be adapted to at least a
large class of these models since again they can usually
expressed using minimal Dirac-type models where our
results would immediately carry over. This does leave
open the possibility of finding non-Hermitian topologi-
cal phases, but without Dirac-type Hamiltonians at their
foundation.

After the submission of this manuscript a preprint ap-
peared with overlapping results[26]. Where the papers
overlap, the results agree. The motivation behind the
two works is quite different and our interpretation of
the appearance of complex energy eigenvalues as an in-
consistency in the quantum theory is strict compared to
that work.
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