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Superconductivity in the recently proposed ground-state structures of atomic metallic hydrogen is
investigated over the pressure range 500 GPa to 3.5 TPa. Near molecular dissociation, the electron–
phonon coupling λ and renormalized Coulomb repulsion are similar to the molecular phase. A nearly
continuous increase in the critical temperature Tc with pressure is thus found in this range, to ∼356K
near 500 GPa. As the atomic phase stabilizes with increasing pressure, λ increases, causing Tc to
approach 481K near 700 GPa. At the first atomic–atomic structural phase transformation near 1 –
1.5 TPa, a discontinuous jump in λ occurs, causing a significant increase in Tc of up to 764K.

PACS numbers: 74.20.Pq, 74.10.+v, 74.62.Fj, 74.20.Fg

I. INTRODUCTION

At relatively low pressures, hydrogen exists in an insulating molecular phase. In 1935, Wigner and Huntington
predicted that sufficient pressure would cause both a molecular-to-atomic transition and metallization1. Recent
ab initio calculations support these predictions, and have revealed the precise details associated with both effects.
Calculations based on ab initio random structure searching by Pickard and Needs2 as well as McMahon and Ceperley3

suggest that the molecular-to-atomic transition occurs near 500 GPa, the latter study also revealing a profusion of
structures that atomic hydrogen adopts; and exact-exchange calculations based on density-functional theory (DFT) by
Städele and Martin4 suggest a metallization pressure of at least 400 GPa. In 1968, Ashcroft predicted an even further
transition in high-pressure hydrogen, a metallic-to-superconducting one5. Within the framework of Bardeen–Cooper–
Schrieffer (BCS) theory6, three key arguments support this prediction: (i) the ions in the system are single protons,
and their small masses cause the vibrational energy scale of the phonons to be remarkably high (e.g., kB〈ω〉 ≈ 2300K
near 500 GPa, where kB is Boltzmann’s constant and 〈ω〉 is the average phonon frequency – see below), as is thus
the prefactor in the expression for the critical temperature Tc; (ii) since the electron–ion interaction is due to the
bare Coulomb attraction, the electron–phonon coupling should be strong; and (iii) at the high pressures at and above
metallization, the electronic density of states N(0) at the Fermi surface should be large and the Coulomb repulsion
between electrons should be relatively low, typical features of a high-density system. These arguments will be revisited,
and demonstrated to indeed be the case, below.

Ever since the prediction of high-Tc superconductivity in hydrogen5, a large number of efforts have focused on
determining the precise value(s) of Tc

7–22. In the molecular phase, the high-pressure metallic Cmca structure (which
transitions to the atomic phase2,3) has recently been studied in-depth20–22, and shown to have a Tc that increases up to
242K near 450 GPa. In the atomic phase, estimations of Tc have varied widely, but in general suggest a large increase
with pressure7–19. Early calculations suggested that Tc ≈ 135 – 170K near 400 GPa (although, it is now believed that
this is within the molecular phase2,3, as discussed above)14; near 480 – 802 GPa, more recent calculations suggest
that Tc ≈ 282 – 291K18; and near 2 TPa, calculations suggest that Tc can reach 600 – 631K in the face-centered cubic
(fcc) lattice16,17. The latter two studies will be discussed further below.

However, previous studies of superconductivity in atomic metallic hydrogen have simply assumed candidate ground-
state structures, in a number of cases the fcc lattice8–10,12,16,17. Recently, McMahon and Ceperley demonstrated
that such structures are incorrect, and provided a comprehensive picture of the (presumably correct) ground-state
structures from 500 GPa to 5 TPa3. Molecular hydrogen was shown to dissociate near 500 GPa, consistent with
the predictions of Pickard and Needs2. With increasing pressure, atomic hydrogen passes through two ground-state
structural phases before transforming to a close-packed lattice, such as fcc or possibly the hexagonal close-packed (hcp)
lattice. The first is a body-centered tetragonal structure with space-group I41/amd (Hermann–Mauguin space-group
symbol, international notation) with a c/a ratio greater than unity, as shown in Fig. 1. Including estimates of proton
zero-point energies (ZPEs), I41/amd was demonstrated to transform into a layered structure with space-group R-3m
near 1 TPa, also shown in Fig. 1, which is similar to a possible high-pressure phase of lithium23. R-3m remains stable
to ∼3.5 TPa, eventually compressing to a close-packed lattice. Given such novel crystal phases and that Tc can be very
sensitive to structural details11, as well as the fact that modern methods of calculating values of Tc should be more
accurate than those used in earlier studies, it is of great interest to re-investigate the long-outstanding predictions of
superconductivity in atomic metallic hydrogen.

This Article is outlined as follows: in Section II, the theoretical background used for estimating Tc in this work is
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FIG. 1: (color online). Ground-state structures of atomic metallic hydrogen. (left) Conventional unit-cell of I41/amd at 700
GPa. (right) 2 × 2 × 1 supercell of R-3m at 2 TPa. a and c parameters are shown in the figure, as discussed in the text.
Fictitious bonds have been drawn for clarity.

presented; computational details are given in Section III; in Section IV, properties of the ground-state structures of
atomic metallic hydrogen as a function of pressure, such as lattice parameters and vibrational properties influencing
the I41/amd→ R-3m transition, are presented and discussed; superconductivity is investigated in Section V; Section
VI concludes.

II. THEORETICAL BACKGROUND

According to the BCS theory of superconductivity6, there is a simple relationship between Tc, 〈ω〉, N(0), and the
pairing potential V arising from the electron–phonon interaction,

kBTc = 1.14〈ω〉 exp

[
− 1

N(0)V

]
. (1)

This relation is valid as long as kBTc � 〈ω〉, corresponding to weak coupling – see below.
McMillan later solved the finite-temperature Eliashberg equations for Tc

24, which including a correction by Dynes25

can be written as

kBTc =
〈ω〉
1.2

exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
, (2)

where λ is the attractive electron–phonon-induced interaction and µ∗ is the renormalized Coulomb repulsion. In high-
density atomic hydrogen, Ashcroft15 demonstrated via an ab initio calculation that µ∗ = 0.089, which is remarkably
close to µ∗ = 0.085 obtained from the Bennemann–Garland formula17, both results similar to the somewhat standard
value for a high-density system of µ∗ ≈ 0.1. In this work, we therefore take µ∗ = 0.089 for estimating Tc. It should
be noted that this approximation fails in molecular hydrogen15, as investigated thoroughly in Refs. 20–22 using a
specialized formulation of DFT for superconductivity where µ∗ is calculated ab initio. Although, at high densities,
µ∗ is found to nonetheless be 0.08 (e.g., pressures just above 460 GPa, near molecular dissociation)22.

For λ & 1.3 (which in fact corresponds to the situations considered below), Eq. (2) often provides a lower bound
to Tc. In this case, both a strong-coupling correction as well as a correction for the shape-dependence of Tc with 〈ω〉
must be made. The first of these will be shown below to be especially important in atomic metallic hydrogen. These
corrections are included in the Allen–Dynes equation26,

kBTc = f1f2
ωln

1.2
exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
(3)

where ωln is the logarithmic average frequency [i.e., ln(ωln) = 〈lnω〉 ] and

f1 =
[
1 + (λ/Λ1)

3/2
]1/3

(4)

f2 = 1 +
(ω̄2/ωln − 1)λ2

λ2 + Λ2
2

(5)
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denote the strong-coupling and shape corrections, respectively, where ω̄2 = 〈ω2〉1/2 and Λ1 and Λ2 are fitting param-
eters (e.g., to full solutions of the Eliashberg equations).

In the original Allen–Dynes equation26,

Λ1 = 2.46 (1 + 3.8µ∗) (6)

Λ2 = 1.82 (1 + 6.3µ∗) (ω̄2/ωln) . (7)

However, a least-squares analysis between Tc as predicted by Eq. (3) and that calculated numerically in the Eliashberg
formalism for a fcc lattice of atomic metallic hydrogen at 2 TPa17 suggests the following reparametrization

Λ1 = 2.26 (1− 1.28µ∗) (8)

Λ2 = 2.76 (1 + 8.86µ∗) (ω̄2/ωln) , (9)

which interestingly provides more accurate values of Tc for a selection of low-temperature superconductors as well17.
In passing, we note that there is a very recent further reparametrization19 that appears especially well-suited for
calculating Tc for a range of µ∗ values (which could be useful for studying both the molecular and atomic phases
concurrently, for example).

In this work, values of Tc are calculated using both Eqs. (2) and (3) as well as both parametrization for Λ1 and Λ2,
in order to give a range of estimates for Tc.

III. COMPUTATIONAL DETAILS

All calculations were performed using the ab initio Quantum ESPRESSO (QE) DFT code27. A norm-conserving
Troullier–Martins pseudopotential28 with a core radius of 0.65 a.u. was used to replace the 1/r Coulomb potential of
hydrogen. This radius was chosen to ensure no core-overlap up to the highest pressure considered in this work (3.5
TPa). The Perdew-Burke-Ernzerhof exchange and correlation functional29 was used for all calculations. A basis set
of plane waves with a cutoff of 120 Ry was also used, giving a convergence in energy to better than ∼0.2 mRy/proton,
as well as 243 k-points for Brillouin-zone (BZ) sampling with the smearing scheme of Methfessel–Paxton30 and a
fictitious smearing temperature T of kBT = 0.02 Ry. Phonons were calculated using density functional perturbation
theory as implemented within QE. Additional computational details pertaining to the calculations of phonons and
electron–phonon interactions will be provided and discussed in Section V.

IV. GROUND-STATE STRUCTURES OF ATOMIC METALLIC HYDROGEN

In this section, the structural changes that occur in atomic metallic hydrogen as a function of pressure are discussed.
On the basis of our previous study3, we consider I41/amd at pressures from 500 GPa to 1.5 TPa and R-3m from 1 to
3.5 TPa. We first consider the lattice changes that occur (e.g., compression). We then consider the I41/amd→ R-3m
transition and discuss the vibrational properties of each structure that contribute to it, in anticipation of the results
that are to follow in Section V. A further discussion of the ground-state and metastable structures of atomic metallic
hydrogen can be found in Ref. 3.

A. Lattice Parameters

In terms of their primitive unit-cells, I41/amd is tetragonal (with a = b 6= c) with two symmetry inequivalent atoms
at Wyckoff positions (0, 0, 1/2) and (0, 1/2, 3/4), and R-3m is hexagonal (also with a = b 6= c) and a single symmetry
inequivalent atom at the origin. The lattice parameters of both structures can therefore be specified completely by
a and the c/a ratio, as indicated in Fig. 1. For the pressure ranges under consideration, the lattice parameters and
corresponding Wigner–Seitz radii rs are shown in Tables I and II, respectively.

Between 500 – 700 GPa, I41/amd resists compression along the c axis, as can be seen in the c/a ratio which
increases from 2.545 to 2.764. Above 700 GPa, the resistance continues, but the compression becomes much more
uniform. For example, by 1.5 TPa, the c/a ratio increases to only 2.849. In R-3m, on the other hand, the c/a ratio
remains relatively constant in the middle of its stability range near 3.05 – 3.06. However, near the predicted transition
pressures of ∼1 and 3.5 TPa (see below and Ref. 3) there is a preferred compression along the c axis, in the latter
case eventually compressing directly to fcc3.
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TABLE I: Lattice parameters and corresponding Wigner–Seitz radii rs of I41/amd as a function of pressure.

Pressure (TPa) a (a.u.) c/a rs (a.u.)

0.5 2.299 2.545 1.226

0.6 2.227 2.599 1.197

0.7 2.134 2.764 1.170

0.8 2.094 2.769 1.149

0.9 2.058 2.774 1.130

1.0 2.027 2.778 1.113

1.5 1.893 2.849 1.049

TABLE II: Lattice parameters and corresponding Wigner–Seitz radii rs of R-3m as a function of pressure.

Pressure (TPa) a (a.u.) c/a rs (a.u.)

1.0 1.832 3.236 1.111

1.5 1.758 3.061 1.047

2.0 1.685 3.054 1.002

2.5 1.629 3.051 0.969

3.0 1.584 3.047 0.942

3.5 1.564 2.943 0.919

B. I41/amd → R-3m Transition

Static-lattice enthalpy calculations indicate that I41/amd transforms to R-3m near 2.5 TPa, but dynamic-lattice
calculations (in the harmonic approximation) suggest that this pressure is significantly reduced to ∼1 TPa3. In
this section, we use the harmonic and quasiharmonic approximations to further investigate the I41/amd → R-3m
transition, in anticipation of the results that are to follow in Section V.

Ground-state enthalpies for I41/amd and R-3m (defined by the parameters in Tables I and II, respectively) were
calculated at 1 and 1.5 TPa; Table III. ZPEs at each pressure were estimated using the harmonic approximation:
EZPE =

∫
dω F (ω)~ω/2, where F (ω) is the phonon density of states (PHDOS), and are shown in Table III as well.

Neglecting zero-point pressures (ZPPs) and making the simple approximation that the total enthalpies are given by
H + EZPE (as was done in Ref. 3) suggests that the I41/amd → R-3m transition occurs nearly midway between 1
and 1.5 TPa, which is very close to, but slightly higher than our original estimate of 1 TPa3. Going beyond this

TABLE III: Ground-state enthalpies and ZPEs of I41/amd and R-3m at 1 and 1.5 TPa. Pressures P are in TPa and enthalpies
and energies are in Ry/proton.

P = 1.0 1.5

H

I41/amd −0.49955 −0.32022

R-3m −0.49534 −0.31768

EZPE

I41/amd 0.02708 0.03120

R-3m 0.02395 0.02769

H + EZPE

I41/amd −0.47247 −0.28902

R-3m −0.47140 −0.28999
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FIG. 2: (color online). PHDOS of I41/amd (dashed red line) and R-3m (solid blue line) at 1.5 TPa. The results have
been normalized by the number of atoms per primitive unit-cell. Negative values indicate imaginary frequencies (and thus
instabilities, as discussed in the text).

approximation, the total enthalpies, including the ZPPs, can be estimated using a linear approximation,

Htot = Havg + EZPE, avg + pZPEVavg (10)

where

pZPE = −∂EZPE

∂V
(11)

is the ZPP, V is the volume, and the subscripts avg denote the average values of each quantity between 1 and 1.5 TPa.
[Note that the latter two quantities in Eq. (10) correspond to the zero-point enthalpy.] Estimating pZPE using a simple
finite difference gives total enthalpies of −0.35765 and −0.35976 Ry/proton for I41/amd and R-3m, respectively, at
1.25 TPa. This suggests that the actual transition pressure is a bit lower than the simple enthalpy estimate, and is
coincidentally in agreement with our original prediction of ∼1 TPa3.

As can be inferred from Table III and the discussion above, the large decrease in the I41/amd→ R-3m transition
pressure from the static-lattice prediction (∼2.5 TPa3) arises primarily from the significantly lower EZPE in R-3m (as
well as a smaller contribution from the lower pZPE). To help understand this, the PHDOS for both structures is shown
in Fig. 2. It can be seen that there are three differences that lead to this behavior: (i) the density of high-frequency
phonons is greater in I41/amd, and also occurs at higher frequencies (3180 – 4430 cm−1 vs 3000 – 4230 cm−1); (ii)
I41/amd has a significant density of mid-frequency phonons (∼1400 – 3000 cm−1), while such modes are mostly
absent in R-3m (e.g., I41/amd shows peaks at 1510, 2150, and 2990 cm−1); and (therefore) (iii) the PHDOS of R-3m
is mostly concentrated at low frequencies (. 1400 cm−1).

In passing, we note that R-3m shows a small density of imaginary phonon states at 1.5 TPa. Estimating the
resulting energy within the harmonic approximation3 shows that it integrates to 1.372 · 10−5 Ry/proton. While this
is within the accuracy of our calculations, this behavior is expected considering that it is indicative of instability in a
lattice of ions treated classically; and classically, the I41/amd→ R-3m transition occurs near 2.5 TPa3, as discussed
above. This is further confirmed by the fact that the instability goes to zero with increasing pressure, while such
behavior begins to develop in I41/amd – see Ref. 3. We will return to this point below.

Considering that the PHDOS are quite different between I41/amd and R-3m and it is finite-temperature effects
that are focused on below (i.e., Tc), the possibility of vibrational entropic stabilization of one phase over the other
exists. In order to estimate this, the quasiharmonic approximation can be used,

F (V, T ) = E0(V ) + kBT

∫ ∞
0

dω F (ω) ln

[
sinh

(
~ω

2kBT

)]
(12)

where F (V, T ) is the Helmholtz free-energy and E0(V ) is the static-lattice energy. From this, the Gibbs free energy
G can be calculated via G = F + pV , given p. At T = 0K, p is given by the external pressure plus the ZPP [Eq.
(11)]. However, for a fixed V , p is a function of T , due to thermal expansion of the lattice caused by anharmonic
phonons. Contrary to the expectation that such effects may be large31, calculations of the melting line of atomic
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FIG. 3: (color online). G vs T for I41/amd (dashed red line) and R-3m (solid blue line) at 1.5 TPa.

metallic hydrogen (not shown)32 indicate that thermal expansion is small, at least up to a few hundred K where the
system is likely to melt anyway; and since the purpose of this discussion is just to understand qualitative changes that
may arise at finite temperature, we can estimate p using the T = 0K value. Figure 3 shows the resulting estimates of
G. Despite their remarkably different PHDOS, the behaviors of G with T are rather similar for both I41/amd and
R-3m. Thus, temperature is not expected to significantly affect the I41/amd→ R-3m transition.

Based on these results, below we consider I41/amd from 500 GPa to 1.5 TPa and R-3m from 1 to 3.5 TPa, and,
for the sake of discussion, the I41/amd→ R-3m transition to occur between 1 and 1.5 TPa.

V. SUPERCONDUCTIVITY

In this section, we investigate superconductivity in the I41/amd and R-3m structures of atomic metallic hydrogen.
We first provide relevant computational details not discussed in Section III, and convergence of the parameters
necessary to evaluate Eqs. (2) and (3). We then present and discuss the calculated parameters and use them to
calculate values of Tc.

A. Computational Details

In order to estimate Tc using Eqs. (2) and (3), 〈ω〉, ωln, ω̄2, and λ must all be determined. Of course, the frequency
parameters can be calculated directly from the PHDOS. For example, 〈ω〉 = (1/nph)

∫
dω F (ω)ω, where nph is the

number of phonon modes and
∫
dω F (ω) = nph. In order to calculate λ, however, a (slowly convergent) double-

delta integration must be performed on the Fermi surface – see Ref. 33 for a complete discussion and the precise
implementation details within QE. In order to accurately perform this integration, very dense k-point (electronic)
and q-point (phonon wave-vector) grids can be used with the delta functions approximated as Gaussians. For both the
I41/amd and R-3m structures, we found that an electronic grid of 483 k-points (and using 243 k-points to calculate
phonons, as discussed in Section III) gave convergence with no discernible error. Details of the q-point grids will be
given below. For both structures and each pressure considered, λ was calculated using Gaussian broadenings from
0.005 to 0.05 Ry in steps of 0.005 Ry. The values reported below were then chosen using the broadening for which λ
appeared to be converged to within ∼0.05. In most cases, broadenings of 0.02 – 0.025 Ry were sufficient. However, in
a few cases (e.g., R-3m at and above 2 TPa), broadenings of up to ∼0.035 Ry were used.

In order to determine a sufficient density for the q-point grids (used also for the phonon calculations), a series of
calculations with 13, 23, 43, 63, and 83 q-points were performed, using I41/amd at 500 GPa as a test case (we also
considered R-3m at 2 TPa – not shown). It should be kept in mind that such rigorous testing with respect to q-points
is especially important in atomic metallic hydrogen with large values of λ, as inadequate sampling has been shown to
cause significantly incorrect results13,14. In fact, our calculations below suggest that the results of a recent study18

considering Cs-IV (which also has the I41/amd structure), over a more narrow pressure range than considered here
using only 33 q-points gives somewhat incorrect values for λ, both in magnitude and its trend with pressure. The
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TABLE IV: Convergence of 〈ω〉, ωln, and λ with the number of q-points for I41/amd at 500 GPa.

No. of q-points 〈ω〉 (K) ωln (K) λ

13 1660 1438 17.91

23 2307 1953 2.82

43 2277 2031 2.06

63 2287 1997 1.67

83 2295 2068 1.81

FIG. 4: (color online). Temperature prefactors kB〈ω〉 (solid blue line) and kBωln (dashed red line) as a function of pressure in
atomic metallic hydrogen.

values of λ for the various densities of q-points, as well as values of 〈ω〉 and ωln, are shown in Table IV. (Note that
for all calculations, the dense electronic grid containing 483 k-points was used.) Relative convergence in λ is seen
to require at least 63 q-points (to be within 10% of the converged value, for example). This is likely due to Fermi
surface “hot spots” that have been shown to exist in other alkali metals34, which can significantly contribute to the
electron–phonon interaction. Table IV also shows, on the other hand, that 〈ω〉 and ωln achieve relative convergence
with as little as 23 q-points, which is consistent with the density found necessary in our previous work to accurately
calculate the PHDOS (for ZPEs) of the structures of atomic metallic hydrogen3.

Below, 83 q-points were used for all calculations (as well as those previously discussed in Section IV), corresponding
to 59 and 150 total q-points in the irreducible BZs for I41/amd and R-3m, respectively.

B. Superconducting Parameters

As shown in Fig. 4, 〈ω〉 and ωln are both extremely high, and increase significantly with pressure3; 〈ω〉 increases from
2295K to 4056K as the pressure is increased from 500 GPa to 3.5 TPa, and while ωln is significantly less (especially
for R-3m), it nonetheless increases from 2068K to 3308K over the same range. Furthermore, there is a significant
decrease in both 〈ω〉 and ωln at the I41/amd→ R-3m transition (e.g., by 765K and 926K, respectively, at 1.5 TPa),
consistent with the results and discussion in Section IV B.

More interesting is the behavior of λ with pressure; Fig. 5. Near molecular dissociation (∼500 GPa), the values of
λ in both the atomic and molecular phases are remarkably close. In I41/amd, λ ≈ 1.81 (see also Table IV), and in
the molecular phase (Cmca), λ ≈ 2 just above 460 GPa, but appears to slowly decrease with increasing pressure – see
Refs. 20 and 22. Thus, given that λ and µ∗ are similar in both phases near molecular dissociation (see again Section
II for a discussion of µ∗), a nearly continuous variation in Tc is likely to occur with increasing pressure in this range.

A large increase in λ is seen to occur between 500 – 700 GPa, from 1.81 to 2.32. To help understand this, the
electron–phonon spectral function, α2F (ω), at 500 GPa is compared to that at 700 GPa in Fig. 6. It can be seen
that there is an increase in coupling to both the low and high-frequency phonon modes as the atomic phase stabilizes,
while there is relatively little change in the coupling to those at mid frequency. The former increase is unexpected,
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FIG. 5: (color online). Electron–phonon-induced interaction λ as a function of pressure in atomic metallic hydrogen.

FIG. 6: (color online). Electron–phonon spectral function α2F (ω) for I41/amd at 500 and 700 GPa.

as with increasing pressure the PHDOS shifts to higher frequencies, as is indicated in Fig. 4. The sharp increase in
λ, along with the increased 〈ω〉 and ωln (see again Fig. 4), suggests that a correspondingly large increase in Tc should
occur over this small pressure range, which is shown below to indeed be the case.

Figure 6 also shows that significant electron–phonon coupling occurs into modes at all frequencies. This suggests that
the large value of λ is primarily due to the electron–ion interaction being the bare (unscreened) Coulomb attraction,
which was one of the reasons for the original prediction of high-Tc superconductivity in hydrogen5. Although, there
does appear to be slight additional coupling into the high-frequency modes. In order to understand this, phonon
dispersion curves and linewidths γ (the latter directly proportional to λω) for I41/amd at 700 GPa are shown in Figs.
7 and 8, respectively. The linewidths are seen to be largest for the high-frequency modes at the Γ point (or close
to it). This suggests that the strongest electron–phonon coupling arises from local vibrations (e.g., those within each
unit cell). Such vibrations are likely to result in the largest variation of the potential, consistent with the suggestion
above that the large value of λ is primarily due to the bare Coulomb attraction.

At the I41/amd → R-3m transition near 1.5 TPa, a large jump in λ occurs, from 1.43 to 3.39. This can be
understood by comparing α2F (ω) for both structures; Fig. 9. In R-3m, the large value of λ is seen to occur from
a strong coupling into the low-frequency modes [λ = 2

∫
dω α2F (ω)/ω]. This appears to be primarily due to the

correspondingly high PHDOS at low frequencies (see also below), which is absent in I41/amd (see again Section
IV B). (Comparing Figs. 6 and 9 also shows that in I41/amd there is a decrease in coupling into all modes with an
increase in pressure above 700 GPa, especially at low frequencies.)

Insight into the large electron–phonon coupling with the low-frequency modes in R-3m can be obtained again from
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FIG. 7: (color online). Phonon dispersion curves for I41/amd at 700 GPa. The numbers 5 and 6 denote the highest-frequency
phonon modes at Γ.

FIG. 8: (color online). Phonon linewidths for I41/amd at 700 GPa. The numbers 5 and 6 denote the linewidths corresponding
to coupling to the highest-frequency phonon modes at Γ.

FIG. 9: (color online). Electron–phonon spectral function α2F (ω) for I41/amd (dashed red line) and R-3m (solid blue line) at
1.5 TPa.
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FIG. 10: (color online). Phonon dispersion curves for R-3m at 1.5 TPa. Negative values correspond to imaginary frequencies
and indicate instabilities, as discussed in the text. The lowest-frequency (and unstable) mode is denoted using the number 1.

FIG. 11: (color online). Phonon linewidths for R-3m at 1.5 TPa. The linewidth corresponding to coupling to the unstable
phonon mode is denoted using the number 1.

phonon dispersion curves and γ, as shown in Figs. 10 and 11 at 1.5 TPa. Large imaginary frequencies at the L and F
points of the BZ show that R-3m has significant lattice instabilities, which is expected when the protons are treated
classically – see Section IV B and Ref. 3. Furthermore, Fig. 11 shows that the strongest electron–phonon coupling
occurs near the F point. These results suggest that, at the F point, the lattice instability and strong electron–phonon
coupling are directly related, indicative of polaron formation. This analysis is consistent with that in Ref. 16, where
λ values as high as ∼7.32 calculated for the fcc lattice near 2 TPa16,17 were attributed to the lattice being close
to unstable and strong coupling with the low-frequency (possibly unstable) modes. (Note also that fcc has an even
higher PHDOS at low frequencies compared to R-3m3.)

With increasing pressure, λ in R-3m decreases from its maximum to ∼1.98 by 3.5 TPa. Figure 12 shows that this
results from a weakened coupling into the low-frequency modes that was responsible for the sharp increase in λ in
the first place (near the I41/amd→ R-3m transition). This is likely due to an overall decrease in the PHDOS at low
frequencies with increasing pressure (not shown), as the lattice (of classical ions) stabilizes3.

C. Tc Values

Using the parameters in Figs. 4 and 5, Eqs. (2) and (3) were used to calculate Tc; Fig. 13. They are seen
to be remarkably high, but nonetheless consistent with the discussion above. The Allen–Dynes equation and its
reparametrization17, in most cases, give much higher estimates than the McMillan formula (as expected, based on the
discussion in Section II). Given that ωln is significantly less than 〈ω〉, the increase is thus due entirely to the correction
factors f1 and f2. Comparing these, in a number of cases, shows that it is f1 (the strong-coupling correction) that is
most important, especially in the reparametrized Allen–Dynes equation17. For example, at 700 GPa f1 ≈ 1.31 and
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FIG. 12: (color online). Electron–phonon spectral function α2F (ω) for R-3m at 2 and 3 TPa.

FIG. 13: (color online). Values of Tc for atomic metallic hydrogen calculated using Eqs. (2) and (3). The estimated value of
Tc for the high-pressure molecular phase20–22 is shown as x.

f2 ≈ 1.03.
Just above molecular dissociation, Tc ≈ 315 – 356K. The increase in λ combined with increases in 〈ω〉 and ωln

with pressure cause Tc to increase up to 403 – 481K by 700 GPa. With increasing pressure, Tc then decreases (in the
I41/amd phase). However, at the I41/amd→ R-3m transition, a large jump in Tc occurs, from 370 – 377K to 561 –
703K. This is due entirely to the jump in λ, considering that 〈ω〉 and ωln are significantly lower in R-3m compared to
I41/amd (see Fig. 4). Although, with increasing pressure, Tc again decreases. It is interesting to note that secondary
maxima in Tc occur in both I41/amd and R-3m. Given that there appears to be monotonic decreases in λ above their
maxima in both structures (see Fig. 5), this behavior is simply due to an interplay between λ and 〈ω〉 or ωln. In any
event, ∼764K represents an approximate upper bound to Tc in atomic metallic hydrogen, and possibly conventional
superconductors altogether (i.e., those described by BCS theory).

VI. CONCLUSIONS

In conclusion, we investigated superconductivity in the ground-state structures of atomic metallic hydrogen over the
range 500 GPa to 3.5 TPa. Near molecular dissociation, the electron–phonon coupling λ and renormalized Coulomb
repulsion in the atomic phase were demonstrated to be similar to the values in the molecular phase. This suggests
a nearly continuous increase in Tc with pressure during the molecular-to-atomic transition, to ∼356K near 500 GPa.
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As the atomic phase stabilizes with increasing pressure, λ increases, causing Tc to increase to ∼481K near 700 GPa.
Near the first atomic–atomic structural phase transformation near 1.5 TPa, a large jump in λ occurs due to a high
PHDOS at low frequencies, causing Tc to increase to as high as 764K.

While the Tc values presented in this work seem incredibly high, they are nonetheless reasonable. However, there are
two caveats. First of all, even the lowest pressures considered in this work are higher than those currently obtainable
in low-temperature experiments (∼342 GPa35). Nonetheless, all of them are important to planetary physics (albeit in
most cases at temperatures higher than the calculated values of Tc). The other caveat is that it is quite possible that
the Tc values are even higher than the melting temperatures. However, this suggests the interesting possibility that the
atomic metallic solid phases of hydrogen (at least the I41/amd and R-3m structures) exist entirely in superconducting
states.
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4 M. Städele and R. M. Martin, Phys. Rev. Lett. 84, 6070 (2000).
5 N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
6 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
7 T. Schneider and E. Stoll, Physica 55, 702 (1971).
8 L. G. Caron, Phys. Rev. B 9, 5025 (1974).
9 R. P. Gupta and S. K. Sinha, in Superconductivity in d- and f-band Metals, edited by D. H. Douglass (Plenum: New York,

1976), pp. 583–592.
10 A. C. Switendick, in Superconductivity in d- and f-band Metals, edited by D. H. Douglass (Plenum: New York, 1976), pp.

593–605.
11 M. D. Whitmore, J. P. Carbotte, and R. C. Shukla, Can. J. Phys. 57, 1185 (1979).
12 B. I. Min, H. J. F. Jansen, and A. J. Freeman, Phys. Rev. B 30, 5076 (1984).
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