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At low temperatures, spin ice is populated by a finite densityof magnetic monopoles—pointlike topologi-
cal defects with a mutual magnetic Coulomb interaction. We discuss the properties of the resulting magnetic
Coulomb liquid in the framework of Debye Hückel theory, forwhich we provide a detailed context-specific
account. We discuss both thermodynamical and dynamical signatures, and compare Debye Hückel theory to
experiment as well as numerics, including data for specific heat and AC susceptibility. We also evaluate the
entropic Coulomb interaction which is present in addition to the magnetic one and show that it is quantitatively
unimportant in the current compounds.

I. INTRODUCTION

Spin systems with long-range interactions, where each spin
interacts with all others, present a formidable challenge to the-
oretical analysis. While simplifications occur in the limitof
infinite range interactions, the case of dipolar interactions in
three spatial dimensions is particularly complex due to their
(non-integrable) algebraic decay combined with angular de-
pendence on the spin direction1. As the determination of the
behaviour of even a spin model with only short ranged com-
peting interactions can pose a non-trivial problem, it is a priori
not obvious how long-range interactions can be treated.

A remarkable counterexample to this case for pessimism
is provided by spin ice2, a dipolar Ising magnet on the py-
rochlore lattice that fails to order down to the lowest temper-
atures accessed. To a fine approximation, which we detail
below, spin ice is governed by a model dipolar Hamiltonian
about which quite a lot is known,

H = Jnn
ex

∑

〈ij〉
Si · Sj

+
µ0

4π

∑

i<j

[

Si · Sj

r3ij
− 3(Si · rij)(Sj · rij)

r5ij

]

,

whereJnn
ex is the exchange interaction truncated at the nearest-

neighbour level, the spinsSi point parallel to the local [111]
axis (see Fig. 1), andµ0 is the vacuum permeability. The
rare earth spinsSi have typically a dipole moment of approx-
imately10 µB (µB = Bohr magneton).

Most prominently, the model Hamiltonian has an extensive
set of ground states which can be specified by a purely local
“ice rule”. Their entropy is known to an excellent approxima-
tion due to Pauling’s work already in the context of water ice
and it has been observed experimentally3. TheT → 0 static
correlations are averages over this ground state manifold and
their long distance forms are known as they are described by
an emergent gauge field in the Coulomb phase4–8, which have
also been observed experimentally9–11.

At low temperatures the physics of the system turns out
to allow a further simplification. The excitations about the

FIG. 1. The magnetic moments in spin ice reside on the sites ofthe
pyrochlore lattice, which consists of corner sharing tetrahedra. These
sites are at the same time the midpoints of the bonds of the diamond
lattice (black) defined by the centres of the tetrahedra. TheIsing
axes are the local [111] directions, which point along the respective
diamond lattice bonds. The bonds of the pyrochlore lattice are in the
[110] directions, while a line joining the two midpoints of opposite
bonds on the same tetrahedron defines a [100] direction.

ground state manifold take the form of magnetic monopoles—
pointlike defects that interact via a magnetic Coulomb inter-
action energy which is independent of the background spin
state12. In this regime, the magnetic monopoles are sparse,
as their number is suppressed on account of their excitation
gap. This in turn has two implications. Firstly, the static
correlators continue to be dominated by their knownT = 0
forms up to the inter-monopole separation, whereupon they
match onto the asymptotics of the paramagnetic phase13. Sec-
ondly, the low temperature thermodynamics of spin ice can
be transformed from that of a dense set oflocaliseddipolar
spins to that of a dilute set ofitinerant Coulombically inter-
acting particles—a (magnetic) Coulomb liquid as first noted
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in Ref. 12:

H =
µ0

4π

∑

i<j

qiqj
rij

+∆
∑

i

(

qi
2µ/ad

)2

,

where the chargesqi take the values±2µ/ad, µ ≃ 10µB be-
ing the dipole moment of a spin andad the distance between
the centres of adjacent tetrahedra (diamond lattice constant in
Fig. 1), and∆ is the energy cost of a monopole.

The transformation is extremely helpful as much is known
about Coulomb liquids, with a venerable history spanning
fields from statistical physics all the way to the chemistry of
electrolytes. Indeed, the known properties of the Coulomb
liquid have led to an explanation of the ‘liquid-solid’ phase
transition of spin ice in a[111] field12, as well as of its mag-
netic specific heat10 in zero field. More recently, much atten-
tion has been devoted to the study of the “magnetricity”14 in
these “magnetolytes”15, the equilibrium and non-equilibrium
behaviour of such a magnetic Coulomb liquid, inspired by the
analogous electric phenomena such as the Wien effect14,16.

In this paper, expanding on our previous work in Ref. 10,
we develop a low-energy theory for spin ice in the framework
of the Debye-Hückel (DH) theory of a dilute Coulomb liq-
uid. DH theory will be familiar to readers from many different
disciplines but to our knowledge has never been applied to a
three-dimensional magnetic material before the advent of spin
ice.

The purpose of this paper is two-fold. First, it gives a de-
tailed and context-specific account of the DH theory for spin
ice. Second, its ability to model experimental data is un-
derlined. In particular, we show that an existing framework
to describe the dynamics of spin ice, when supplemented by
DH theory, provides improved agreement with existing exper-
imental and numerical data on the AC-susceptibility of spin
ice17–21.

This is perhaps as good a point as any to digress and address
the concerns of readers who may be worried that our replace-
ment of spins by monopoles is too good to be true. Here three
points are in order. First, as we have already noted above, the
spins do enter the static correlations but in a manner that is
understood. Second, a given monopole configuration can be
“dressed” by many spin configurations. However summing
over these dressings generates an effective entropic Coulomb
attraction between the monopoles at long wavelengths (see
e.g., Ref. 22) which canalsobe included in the Coulomb/DH
framework. We will address this point is Sec. V and find that
the entropic effect can be ignored for the present set of spin
ice compounds. Third, there is still a remaining issue that
not all monopole configurations are in fact compatible with
some spin configuration, and moreover the spins can induce
non-trivial structure to the monopole energy landscape which
in turn can significantly alter dynamical properties of spinice
out of equilibrium23. However, these are weak constraints on
the Coulomb framework and it seems highly unlikely that they
play any role in determining equilibrium properties.

We close the introduction by remarking on the range of ap-
plicability of the Coulomb liquid/DH theory framework in the
actual compounds (see Fig. 2). At high temperatures, above a

scaleTp, we are in a conventional paramagnetic regime where
the monopoles are dense. BelowTp the monopoles become
sufficiently dilute that they can be treated by DH theory. At
a much lower temperatureTd, the Coulomb phase is unsta-
ble to ordering transitions24–26, the details of which are not
entirely settled. For the model Hamiltonian,Td ≡ 0. While
the Coulomb liquid framework should thus apply in the range
Td < T < Tp, the equilibrium DH treatment runs into prob-
lems around a temperatureTf > Td where the system falls
out of equilibrium before any ordering is visible. Much of the
interest in the spin ice compounds Dy2Ti2O7 and Ho2Ti2O7

derives from the fact thatTd, Tf < Tp, so that there is a win-
dow where Coulomb physics is well visible.

ordered phase spin ice (Coulomb) phase

f

out of equilibrium (expm.)

T ~ 500 mK

p

T

T ~ 2 KdT = 60 mK?

FIG. 2. Schematic illustration of the different temperature regimes
in spin ice, separated byTd, Tf , andTp as explained in the text.
The putative ordering belowTd appears to be prevented by freezing
of the magnetic degrees of freedom belowTf , as evidenced e.g., by
a discrepancy between field-cooled and zero-field-cooled magnetisa-
tion. At temperatures of aboutTp, the materials cross over to a trivial
paramagnetic behaviour.

The remainder of this paper is organised as follows: we
first provide DH background, discuss specificities of its ap-
plication in the spin ice setting, discuss its range of validity
and finally apply it to experiment. In addition, we discuss
two other topics of import in this context. Firstly, we deter-
mine the size of the entropic Coulomb interaction between
monopoles. Secondly, we compute the low-temperature mo-
bility of magnetic monopoles in spin ice with a single-spin flip
dynamics believed to be appropriate for experimental com-
pounds Dy2Ti2O7 and Ho2Ti2O7.

II. DEBYE-H ÜCKEL FREE ENERGY

We now turn to the application of DH theory to spin ice.
The reader not interested in details of the formalism can skip
ahead to Section IV.

A. Non-interacting monopoles

To lay the foundation, let us start by considering the sim-
ple case of non-interacting monopoles, corresponding to a
nearest-neighbour spin ice model. Since the monopole de-
scription of spin ice is valid only when the density of defective
tetrahedra is sufficiently small, i.e., at low temperatures, we
consider only the less costly defects (3in-1out and 3out-1in
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tetrahedra) and neglect charge 2 excitations altogether (4in-
0out and 4out-0in) as they cost four times as much energy.
The internal energyU of the system is thus proportional to
the number of monopolesN ,

U = N∆ = Ntρ∆ , (2.1)

where∆ is the energy cost of an isolated monopole (assumed
in the following to be measured in Kelvin) andρ ≡ N/Nt is
the monopole density per tetrahedron.

The number of configurations that an ensemble ofN/2 pos-
itive (hard-core) monopoles andN/2 negative ones can take
on a lattice ofNt sites (Nt being the total number of tetrahedra
in the system) is given by

W =

(

Nt

N/2N/2 (Nt −N)

)

. (2.2)

Using Stirling’s approximation in the largeNt and largeN
limit, we obtain theS = kB lnW ‘entropy of mixing’,

S ≡ S/kB
= −Nt [2(ρ/2) ln (ρ/2) + (1− ρ) ln(1 − ρ)] (2.3)

with a concomitant free energy per spin

Fnn

NskB
=

U − TS

Ns
(2.4)

where the number of spins is twice the number of tetrahe-
dra,Ns = 2Nt. Minimizing with respect toρ, we obtain the
known expression for the total monopole density

ρnn =
2 exp(−∆/T )

1 + 2 exp(−∆/T )
. (2.5)

For smallT , and hence smallρnn, ρnn ≃ 2 exp(−∆/T ). For
largeT , Eq. (2.5) tends asymptotically to the value2/3, which
is clearly incorrect – as expected since random Ising spins on
a pyrochlore lattice yield a densityρrandom= 5/8 of defective
tetrahedra. This can be seen e.g., if we consider a single tetra-
hedron: out of the24 = 16 allowed Ising configurations, only
6 satisfy the 2in-2out condition and the remaining10 config-
urations violate charge neutrality.

B. Debye-Hückel contribution

One of the major approximations in Sec. II A is the fact that
the long range Coulomb interactions between the monopoles
were entirely neglected12. Taking advantage of the analogy
between spin ice defects and a two-component Coulomb liq-
uid (in the absence of appplied magnetic fields), we can use
the Debye approximation to estimate the magnetostatic con-
tribution to the free energy (in degrees Kelvin per spin):27

Fel

NskB
= − NT

4NsπρV a3d

[

(adκ)
2

2
− (adκ) + ln(1 + adκ)

]

κ =

√

µ0q2ρV
kBT

, (2.6)

whereρV = N/V is the dimensionful volume density of
monopoles andad is the distance between the centres of two
neighbouring tetrahedra (i.e., the dual diamond lattice con-
stant).

It is convenient to express the dimensionless quantityadκ
in terms of the Coulomb energy between two neighbouring
monopolesEnn ≡ µ0q

2/(4πad kB),

adκ =
√
4π

√

Enn

T
(ρV a3d). (2.7)

Hereq stands for the magnitude of the monopole charge (q =
2µ/ad, whereµ is the rare earth magnetic moment12).

There are8 diamond lattice sites in a16-spin cubic unit cell
of side(4/

√
3) ad. The total volume of the system can then

be written asV = (Nt/8)(4/
√
3)3 a3d and

ρV a
3
d =

N

V/a3d
=

3
√
3

8
ρ. (2.8)

As a result, we arrive at

Fel

NskB
= − T

3
√
3π

[

(adκ)
2

2
− (adκ) + ln(1 + adκ)

]

(2.9)

adκ =

√

3
√
3πEnn

2T

√
ρ ≡ α(T )

√
ρ, (2.10)

where the last equation defines the functionα(T ). In the
low temperature limit, the magnetostatic contribution scales
asρ3/2, namely

Fel

NskB
≃ − T

3
√
3π

(adκ)
3

3

≃ −
√

π

8
√
3
Enn

√

Enn

T
ρ3/2. (2.11)

We can then combine Eqs. (2.9) and (2.10) with Eq. (2.4)
from Sec. II A to obtain a mean field free energy – per spin in
degrees Kelvin – of an ensemble ofN monopoles on a lattice
with long range Coulomb interactions:

F

NskB
=

ρ

2
∆+

Tρ

2
ln

(

ρ/2

1− ρ

)

+
T

2
ln(1− ρ)

− T

3
√
3π

{

α2(T ) ρ

2
− α(T )

√
ρ+ ln [1 + α(T )

√
ρ]

}

α(T ) =

√

3
√
3πEnn

2T
. (2.12)

Note that this reduces to the non-interacting limit if we set
Enn = 0.

Minimizing with respect to the defect densityρ, one obtains
a self-consistent set of equations:

d(F/NskB)

dρ
= ∆+ T ln

(

ρ/2

1− ρ

)

− Enn

2

α(T )
√
ρ

1 + α(T )
√
ρ
= 0

ρ =
2 exp

[

−
(

∆
T − Enn

2T

α
√
ρ

1+α
√
ρ

)]

1 + 2 exp
[

−
(

∆
T − Enn

2T

α
√
ρ

1+α
√
ρ

)] . (2.13)
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Unfortunately, Eq. (2.13) cannot be solved analytically and
one has to resort to numerical methods to obtainρ(T ). We
find that the recursive approach

ρ0 = ρnn =
2 exp(−∆/T )

1 + 2 exp(−∆/T )

ρℓ+1 =
2 exp

[

−
(

∆
T − Enn

2T

α
√
ρℓ

1+α
√
ρℓ

)]

1 + 2 exp
[

−
(

∆
T − Enn

2T

α
√
ρℓ

1+α
√
ρℓ

)] (2.14)

converges with acceptable accuracy in less than5 iterations.
Substitutingρ ≡ ρℓ→∞ ≃ ρ5 into Eq. (2.12) we obtain nu-
merically the approximate free energy of dipolar spin ice asa
function of temperature.

Between Eqns. (2.12) and (2.13) we have obtained the free
energy for monopoles in the DH approximation. From this
one can compute several thermodynamic quantities of interest
(see e.g., Sec. VI A).

III. SPIN ICE PARAMETERS AND DH INTERNAL
CONSISTENCY

We first derive the parameters describing the Dy2Ti2O7 and
Ho2Ti2O7 spin ices within the dumbbell model12 in the sub-
sequent subsection. Following the determination of the pa-
rameters, we discuss the range of temperatures over which the
treatment is valid.

A. Spin ice parameters in the dumbbell model

The usefulness of the dumbbell model lies in the fact that it
correctly captures the long-distance form of the dipolar inter-
action – as well as the magnetic Coulomb interaction between
the monopoles – while preserving the degeneracy of the spin
ice states. At the same time, a model of such simplicity can-
not do justice to the full short-distance structure of the inter-
actions present in the real compound, which include further-
neighbour superexchange as well as quadrupolar interaction
terms between the spins. We will thus find in the following
sections that the best fit to both numerics and experiment re-
quires slight adjustments to the dumbbell model parametersto
obtain quantitatively optimal fits.

We also take this opportunity to caution the reader that the
’microscopic’ parameters themselves are subject to changeon
the level of a few percent as experiments and their detailed nu-
merical modeling evolve (and, hopefully, improve) over time.
Such changes can be innocuous (e.g. a 1% change to the dia-
mond lattice constant) but since some of the resulting physics
is rather delicate, they can feed through to relatively larger
corrections, most prominently as a factor3 in the estimated
value ofTd!25,26

From the pyrochlore lattice constanta = 3.54 Å one ob-
tains the diamond lattice constantad =

√

3/2 a = 4.34 Å.
Combined with the spin magnetic momentµ = 10µB (µB =
9.27 10−24 J/Tesla), this gives the monopole chargeq ≃

4.6 µB/Å ≃ 4.28 10−13 J/(Tesla m) (see Ref. 12 and Sup-
plementary Information therein).

Inserting the dipolar coupling constant

D =
µ0

4πkB

µ2

a3
≃ 1.41K

(µ0/4π = 10−7 N/A2, kB = 1.38 10−23 J/K) and the nearest-
neighbour exchange couplingJ ≃ −3.72 K for Dy2Ti2O7

(J ≃ −1.56 K for Ho2Ti2O7) into the expression for the bare
cost of a single isolated monopole in Ref. 12, we obtain

∆ =
1

2
v0q

2 =
2J

3
+

8

3

[

1 +

√

2

3

]

D (3.1)

=

{

4.35K for Dy2Ti2O7 (J = −3.72K)

5.79K for Ho2Ti2O7 (J = −1.56K)
.

The energy of two monopoles at nearest neighbour distance
is:

Enn =
µ0

4πkB

q2

ad
≃ 3.06K. (3.2)

Therefore, the creation of two neighbouring monopoles by a
single spin flip event in a spin ice configuration where all tetra-
hedra satisfy the 2in-2out rules incurs an energy cost

∆s = 2∆− Enn ≃
{

5.64K for Dy2Ti2O7

8.52K for Ho2Ti2O7
. (3.3)

As a final remark, it is interesting to compare the force be-
tween two monopoles at nearest neighbour distance,

Fnn =
µ0

4π

q2

a2d
≃ 9.74 10−14 N, (3.4)

to that between two eletrons at the same distance,Fel ≃
1.22 10−9 N, four orders of magnitude stronger! By contrast,
a pair of Dirac monopoles would experience a force of almost
10−5N.

B. Internal consistency: screening length vs. monopole
separation and lattice constant

The Debye screening lengthξDebye is given by the inverse
of the constantκ in Eq. (2.10). In units of the diamond lattice
constantad this amounts to

ξDebye

ad
=

1

adκ
=

√

2T

3
√
3πEnn

1√
ρ
. (3.5)

The dependence ofξDebye/ad on temperature, after substi-
tutingρ(T ) from the numerical solution of Eq. (2.13) is illus-
trated in Fig. 3 (using for instance∆ = 4.7 K).

We anticipate here that there is a systematic discrepancy
between the DH approximation and the MC simulation results
on the heat capacity forT & 1 K (see Fig. 7). To understand
this, we note the following.
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FIG. 3. Plot of the Debye screening length vs temperature, using the
density from the numerical solution to the Debye-Hückel calculation
in Sec. II B.

Firstly, aboveT ≃ 1 K the screening length becomes
shorter than the lattice spacing. This artefact arises because
the DH term in the free energy was derived in the contin-
uum. ForT & 1 K one thus needs to consider the DH results
with caution. Having said this, once the screening length gets
very short, the long range nature of the Coulomb interaction
becomes less important. One can then reliably truncate the
interactions to short range and use alternative approachesto
compute the free energy and other thermodynamic quantities,
as illustrated for instance in Appendix A.

Secondly, asT approaches the Curie-Weiss temperature of
about 2K, the average separation between monopoles,d ∼
ad ρ

−1/3, becomes comparable to the lattice constantad and
the monopole picture is no longer appropriate to describe spin
ice – monopoles are useful as long as they are sparse, other-
wise it is more efficient to work directly with the microscopic
spin degrees of freedom. (In addition, for even higher val-
ues ofT , the neglect of doubly-charged monopoles becomes
problematic.) For instance, it would be more appropriate to
use a conventional high-temperature series expansion.

Another parameter of physical relevance is the ratio of
screening length to monopole separation: the larger this ra-
tio, the more appropriate a continuum description is. The di-
mensionful monopole densityρV can be expressed in terms
of the monopole density per tetrahedronρ (which appears
in the DH calculations in Sec. II) using the relationρV =
3
√
3ρ/(8a3d). From it, we can obtain the average monopole

separationρ−1/3
V . By comparing these two length scales, one

observes that DH theory is near an ‘internal’ limit of validity,
as the ratioξDebye/ρ

−1/3
V is close to one throughout the range

of interest. Indeed,ξDebye/ρ
−1/3
V & 1 only below300 mK,

dropping by a factor three towards its minimum at1 K (not
shown).

C. Role of the magnetostatic contribution

It is interesting to quantify how big the change brought
about by the DH accounting of Coulomb interactions and
screening actually is. To do this, let us consider the density
of monopoles, which will play a role later in the comparison
with Monte Carlo simulation results (Sec. IV A). In Fig. 4 we
plot the ratio of the monopole densities from Sec. II B with
and without the magnetostatic contribution Eq. (2.9), using
parameters appropriate for spin ice Dy2Ti2O7. Within the re-
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FIG. 4. Ratio of the monopole densities from Sec. II B obtained with
and without the Debye-Hückel magnetostatic contribution, Eq. (2.9),
as a function of temperature.

gionT . 1 K, one notices that DH theory can lead to a more
than two-times larger monopole density. Given that spin ice
materials are prone to falling out of equilbrium at tempera-
turesT . 0.5 K, the behaviour of the system in the temper-
ature window where DH corrections are sizeable is of crucial
relevance to experiment. In the limit of low temperatures, the
DH correction instead becomes less and less important.

D. Monopole-antimonopole pairing

Debye-Hückel theory neglects the association of
monopoles into neutral dipolar pairs (see Ref. 31 and
references therein). Although this can in general lead to size-
able discrepancies between DH predictions and experiments,
we argue hereafter that pairing corrections are small for the
observables in spin ice that we consider here, due to the com-
bination of its limit of validity (T . 1 K, see Sec. III B) and
the relatively larger energy cost for a monopole excitation,
∆ ∼ 4 − 5 K, in comparison to the Coulomb energy when
hard core charges come into “contact” (nearest-neighbour
distance),Enn ≃ 3.06 K.

In order to show this, let us assume that monopoles in spin
ice are either free (densityρ0), if separated by a distance larger
thanℓB, or bound in a pair, if separated by a distanced shorter
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thanℓB. Here we chooseℓB to equal the Bjerrum length, at
which the thermal energykBT equals the Coulomb energy:

ℓB/ad =
µ0

4πad

(2µ/ad)
2

2kBT
≃ 1.54

T [K]
for Dy2Ti2O7, (3.6)

We now consider only Coulomb interactions amongst free
monopoles and between the two monopoles belonging to the
same pair, while we neglect monopole-pair and pair-pair in-
teractions, on the grounds that they are generally weaker and
they decay faster with distance. We also neglect excluded
volume effects (therefore, any results we obtain ought to be
treated with care as the density of monopoles approaches
unity, which is anyway not the regime we are interested in).

The free energyf0 for the fraction of free monopoles in
the system is straightforwardly given by Eq. 2.12. The po-
tential energy term for the bound pairs, of densitiesρd, d =
1, 2, . . . , ℓB, is also immediate to write as it involves only the
inter-pair Coulomb term:(2∆− Ed)ρd, whereEd ∼ Enn/d.
The entropic contribution to the free energy of a bound pair of
characteristic distanced can be computed from the numbers
of ways that such pair can appear on the lattice,

W =

(

Nt

Ntρd

)

vNtρd

d (3.7)

S

NtkB
= lnW

= −ρ1 ln (ρ1)− (1 − ρ1) ln(1− ρ1)

+ρ1 ln(vd), (3.8)

where vd is the number of configurations that the two
monopoles in the pair can take, given say that the centre of
mass of the pair is fixed. For a nearest-neighbour pair,v1 = 2.
For large values ofd, we expectvd to scale as2 × 4πd2. In
practice, we shall approximate

vd = v1
8πd2

8π(d = 1)2
= v1d

2 = 2d2. (3.9)

Combining these results, we obtain the free energies (per
tetrahedron) for free and bound pairs,

f0 =
Fel

NtkB
+∆ρ0

+ T [ρ0 ln (ρ0/2) + (1− ρ0) ln(1− ρ0)] (3.10)

fd = (2∆− Ed)ρd

+ T [ρd ln (ρd) + (1− ρd) ln(1− ρd)]

− Tρd ln(vd), (3.11)

as a function of the densitiesρ0 andρd, d = 1, . . . , ℓB. The
equilibrium free energy of the entire system is then obtained
minimizing the sum

ftot = f0 + f1 + . . .+ fℓB

with respect toρ0, ρ1, . . . ,ρℓB .
Unlike ρ0, already considered in Sec. II B, theρd are ob-

tained straigthforwardly as

ρd =
vd e

−(2∆−Ed)/T

1 + vd e−(2∆−Ed)/T
. (3.12)

Clearly, an intrinsic limit of validity of the theory is given by
the condition that

ρtot ≡ ρ0 + 2

ℓB
∑

d=1

ρd ≤ 1. (3.13)

In addition, we are of course in particular interested in
ρ0 ≫ ∑ℓB

d=1 ρd = ρb. We therefore plot
The behaviour ofρ0, ρ1, ρb andρtot as a function of tem-

perature in the regime of interest to spin ice is shown in Fig.5.
While atT = 1 K the bound pairs make up for approximately

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

10
-1

10
0

m
o
n
o
p
o
l
e
 
d
e
n
s
i
t
y
 
p
e
r
 
t
e
t
r
a
h
e
d
r
o
n

temperature (K)

FIG. 5. Behaviour ofρ0 (red), ρ1 (blue), ρb (green), andρtot
(open black circles). In the regime of interest to spin ice physics,
the total monopole density is dominated,at equilibrium, by the free
monopoles.

16% of the monopoles in the system, this quickly drops to7%
atT = 500 mK and to. 10−5% for T . 100 mK.

Of course, all the considerations in this section apply when
the system is in thermal equilibrium. This is known not to
be always the case in experimental settings involving spin ice
materials! For example, as discussed in Ref. 23, fast varia-
tions in the temperature of a sample can lead to a “population
inversion”, whereby a relatively high density of monopoles
survivesout of equilibriumdown to very low temperatures,
mostly forming nearest-neighbouring pairs (ρtot ≃ ρ1)23.

The arguments presented in this section are akin to the so-
called Bjerrum correction to DH. The latter typically leads,
at low temperatures, to the condensation of all monopoles
into bound pairs. This is an artifact due to the neglecting of
monopole-pair interactions, as discussed in Ref. 31.

Our results do not exhibit any such condensation. The rea-
son for this difference in behaviour are to be found in the large
monopole cost with respect to the Coulomb energy at nearest-
neighbour distance. The net energy gain in the formation a
bound pair is insufficient to compensate for the corresponding
entropy loss. The situation would be dramatically different if
the creation cost of the monopoles were lowered such that it
can be offset by the Coulomb attraction to another monopole.
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For completeness, we mention that for sufficiently large
Coulomb attraction the chemical potential of a bound pair
would have theopposite signwith respect to that of a free
monopole, leading to a collapse of the system into an ionic
crystal of monopoles. In spin language, this tranlates intoan
instability of spin ice to an ordered ground state.

IV. COMPARISON OF DH WITH MONTE CARLO

We compare the DH results above with Monte Carlo (MC)
simulations using the spin ice parameters in Ref. 29, reported
in the previous section. The Ewald summation technique
was used for the long range dipolar interactions between the
spins1. We used systems of size16L3 = 3456 spins (L = 6)
and single spin flip updates.

A. Monopole density

A first comparison between the non-interacting limit and
the DH approach can be done by looking at the resulting
monopole density as a function of temperature, Eq. (2.5) and
the numerical solution to (2.13), illustrated in Fig. 6 together
with the monopole density from Monte Carlo simulations of
dipolar spin ice.
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FIG. 6. Monopole density from numerical simulations (greentri-
angles), compared to the analytical result in the non-interacting ap-
proximation (dashed red line) and in the DH approximation (solid
blue line). Note that there are no fitting parameters. An improved
agreement between the simulations and the DH approximationob-
tains if we adjust the bare monopole cost to∆MC = 4.7 K (black
dotted curve).

The agreement between DH and MC results is already quite
reasonable yet it improves considerably if we tune the bare
monopole cost to∆MC = 4.7 K. As mentioned above, we be-
lieve the origin of this adjustment to be in the short-distance
physics beyond the dumbbell model of Ref. 12. In quantities

sensitive to such short range details, such as∆, this 8% dis-
crepancy is not unreasonable.

B. Heat capacity

Given the DH free energy (expressed in units of degree
Kelvin per Dy ion), one can obtain the heat capacity of the
system in units of J mol−1K−1 via the thermodynamic rela-
tion

cV = −NAkBT ∂2
T (F/NskB), (4.1)

whereNA is Avogadro’s number,β = 1/kBT , andkB is the
Boltzmann constant.

In MC simulations, cV can be obtained by the usual
fluctuation-dissipation route, measuring the average energy
〈ε〉 and its fluctuations,

cV =
RNs

T 2

[

〈ε2〉 − 〈ε〉2
]

. (4.2)

A comparison between the non-interacting calculations,
Eq. (2.5) and Eq. (2.4), the DH calculations, Eq. (2.13)
and Eq. (2.12), the single tetrahedron approximation in Ap-
pendix A, and Monte Carlo simulations is shown in Fig. 7.
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FIG. 7. Heat capacity from numerical simulations (green triangles),
compared to the analytical result in the non-interacting approxima-
tion (dashed red line) and in the DH approximation (solid blue line).
Note that there are no fitting parameters. Like for the density (cf.
Fig. 6), improved agreement between the simulations and theDH
solution is obtained for a bare monopole cost∆MC = 4.7 K (black
dotted curve). The single-tetrahedron approximation discussed in
Appendix A can only be made to agree with the experimental re-
sults on a very narrow temperature range, even if we useJeff as a
fitting parameter (dash-dotted yellow line).

Consistently with the monopole density results, a compari-
son of the heat capacity from DH theory and simulations also
shows improved agreement using∆MC = 4.7 K instead of
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∆ = 4.35 K. We shall see in Sec. VI that an 8% larger value
of ∆ with respect to Eq. (3.1) is also consistent with the com-
parison between DH theory and experimental results.

The results in Fig. 6 and in Fig. 7 clearly show that: (i) a
theory of point-like Coulomb-interacting charges (in particu-
lar with the improved value of the bare monopole cost) goes
a long way into capturing the physics of spin ice, much better
than conventional approaches based on truncated cluster ex-
pansions of the free energy of the system; (ii) the long-range
nature of the interactions is necessary for understanding the
low-temperature properties of spin ice materials.

V. ENTROPIC CHARGE: ROLE OF THE UNDERLYING
SPINS

In disregarding the underlying spins in the Debye-Hückel
approximation to the free energy of spin ice, we fail to ac-
count for quadrupolar corrections to the monopole descrip-
tion12 (of which we have seen an effect in the value of the
bare monopole cost∆). We also neglect additional spin en-
tropic contributions (other than the entropy of mixing of the
monopoles)4–8.

The latter take the form of an entropic charge that adds
onto the real magnetic charge (or, rather, magnetic and en-
tropic coupling constants add) for the monopole Coulomb in-
teractions. In Appendix B we derive an analytical expression
for the entropic interaction strength and confirm the resultby
comparing it to Monte Carlo simulations. One can then repeat
the DH calculations including the entropic correction. There-
sults are shown in Fig. 8 (dashed cyan lines), in comparison
to the previous results (solid blue lines), for the parameters in
Sec. IV with∆MC = 4.7 K. The behaviour of the monopole

10
0

10
1

10
−2

10
−1

10
0

temperature (K)

x 6

monopole density per tetrahedron

specific heat (J mol −1 K −1)

FIG. 8. Effects of the entropic charge (dashed cyan lines) onthe
Debye-Hückel estimate of the heat capacity and monopole density
(solid blue lines).

density and of the heat capacity clearly show that the entropic
contribution can be safely neglected in the low temperature
regime where the DH approximation is valid. It is worth not-
ing that the relative strength of magnetic and entropic charges

can in principle be tuned straightforwardly, e.g. by decreasing
D at fixedJeff , as the magnetic monopole charge is propor-
tional toD, whereas the scale determining the applicability of
the monopole picture is set byJeff .

Indeed, for the nearest-neighbour model withD = 0, where
there is no magnetic monopole charge, one would be consid-
ering a Coulomb gas with entropic interactions only. Debye
screening in such a setting has already been considered in two
dimensions, for the entropic Coulomb gas encountered in the
square lattice monomer-dimer model.28

VI. EXPERIMENT

We now proceed to compare the DH results with experi-
mental data on Dy2Ti2O7. We find good agreement, which is
further improved if we use the latest material parameters from
Ref. 26 instead of those in Ref. 29. Namely, the magnetic mo-
ment of the rare earth ions is9.87 µB instead of10 µB; the
diamond lattice constant is4.38 Å instead of4.34 Å; and the
nearest-neighbour exchange coupling varies between−3.53
and−3.26, instead ofJ = −3.72 K.

These values result in a new magnetic monopole charge
of 4.5 µB/Å; a nearest-neighbour interaction strength be-
tween monopolesEnn = 2.88 K instead of3.06 K; a dipo-
lar coupling constantD = 1.32 K instead of1.41 K; and
a bare monopole cost in the range(4.05, 4.23) K instead of
∆ = 4.35 K. We reiterate that there are also small correc-
tions due to further–range superexchange and the quadrupo-
lar interactions, which are not easily incorporate into theDH
framework.

A. Heat capacity

A comparison between the experimentally measured heat
capacity and the one obtained from DH theory, shows again
that the bare monopole cost∆ ∈ (4.05, 4.23)K from Eq. (3.1)
is somewhat too small. Better agreement can be obtained if, as
in the comparison with MC simulations, we allow for an 8%
increase in the value of∆ ∈ (4.37, 4.57) K (see Fig. 9). This
is in agreement with the results presented in Ref. 10 (Fig. 1),
where a value of∆ = 4.35 K12 was used.

B. ‘Dressed’ monopole energy and AC susceptibility

The bare monopole cost∆ is half the energy required for
creating and separating to infinity a pair of monopoles against
their long-range Coulomb attraction. When other monopoles
are present, screening effectively truncates the range of the
interactions and there is no further energy cost to separating
a pair beyond the screening length. In this case it is more
appropriate to consider the ‘dressed’ monopole energy∆d as
the energy per monopole that it takes to create a pair and sep-
arate it beyond the screening length. It is indeed the energy
∆d – rather than∆ – that controls for instance the equilib-
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FIG. 9. Experimental results for the heat capacity of Dy2Ti2O7(black
squares) from Ref. 10, in units of J/molK, compared to the analytical
result from Debye-Hückel theory with∆ = 4.37 K (solid blue line)
and∆ = 4.57 K (dashed cyan line).

rium density of the monopolesρ ∼ e−∆d/T at intermediate
temperatures.

Given the creation energy for a nearest neighbour pair
∆s = 2∆ − Enn and the expression for the DH screening
length, Eq. (3.5), one obtains

2∆d(T ) = 2∆− Enn +

(

Enn −
µ0

4πkB

q2

ξDebye(T )

)

= 2∆− Enn
ad

ξDebye(T )
, (6.1)

whose behaviour is illustrated in the inset of Fig. 10.
A place where this screening effect of the magnetic

monopoles becomes particularly evident is in susceptibility
measurements of magnetic relaxation time scales19,21. Given
that the monopoles are responsible for any changes in mag-
netisation in a spin ice configuration, the ability of the sys-
tem to respond to an applied magnetic field is affected by the
monopole density. For non-interacting monopoles, Ryzhkin
showed that in the low temperature, hydrodynamic regime the
characteristic susceptibility time scaleτ is inversely propor-
tional to the monopole density20,

τ−1 ∝ ν Tρ(T ), (6.2)

whereν is the mobility of the monopoles. This result is likely
to be asymptotically correct asT → 0 at zero wavevector even
in presence of Coulomb interactions, although it is modified
at finite wavevectors.

In App. C, we show thatν ∼ 1/T under the assumption
that Metropolis dynamics are a good approximation to the mi-
croscopic spin flip processes in spin ice. Therefore,

τ ∝ 1/ρ(T ). (6.3)

As we argued above, at intermediate temperaturesρ(T ) is
controlled by the dressed monopole energy∆d(T ) rather than
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FIG. 10. Experimental magnetic relaxation time scaleτ as a function
of temperature from susceptibility data, Ref. 19 (black open squares).
The rapid increase inτ at low temperatures is due to the paucity
of defects responsible for the magnetic rearrangement of a spin ice
configuration (namely, the monopoles). This increase cannot be de-
scribed by a single exponential (activated behaviour), as it is evi-
dent for instance by comparison with the curveτ = τ0 exp(∆/T )
(dashed magenta line), say with∆ = 4.5 K. On the contrary, a
much better agreement is obtained if we replace the bare monopole
energy∆ with the ‘dressed’ energy∆d(T ) (solid blue curve for
∆ = 4.37 K and solid cyan curve for∆ = 4.57 K). This is
compared toτ ∝ 1/ρ, whereρ is obtained from the DH approx-
imation (blue open circles for∆ = 4.37 K and cyan open circles
for ∆ = 4.57 K), showing that indeed the dressing of∆ accounts
for the leading non-exponential correction in the temperature depen-
dence in the monopole density. The microscopic time scale was set
by imposing that the analytical results pass through the experimen-
tal data point at4 K (see Ref. 21). The inset shows the ‘dressed’
monopole energy∆d as a function of temperature (solid blue curve
for ∆ = 4.37 K and solid cyan curve for∆ = 4.57 K).

the bare energy∆. Indeed,τ is poorly fitted by a single ex-
ponential19,21such asτ = τ0 exp(∆/T ). On the contrary, the
curveτ = τ0 exp[∆d(T )/T ], captures correctly the faster-
than-exponential grows ofτ at low temperatures, despite the
fact that it still significantly underestimates the experimental
value ofτ (see Fig. 10).30

Given the good agreement between DH theory and experi-
ments regarding the heat capacity of the system (Fig. 9) and
given that a similarly good agreement in the heat capacity
from Monte Carlo simulations implied a good agreement also
for the monopole density (Fig. 6 and Fig. 7), one would ex-
pect thatρ(T ) from Debye-Hückel used in Fig. 10 is in fact a
good estimate of the experimental monopole density. There-
fore, the fact that Eq. (6.3) underestimates the experimental
results even when usingρ(T ) from DH theory is likely due
to corrections to the dependenceτ ∝ 1/ρ(T ) arising from
Coulomb interactions at intermediate monopole densities.

At the lowest temperatures (provided of course no ordering
or freezing intervenes, as it likely would), when monopole
separation and screening length both diverge, the effective
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∆d → ∆, and hence we expect the superexponential be-
haviour to go away and the curve to follow the standard Ar-
rhenius behaviourτ ∼ exp(∆/T ).

From a purely phenomenological perspective, it is interest-
ing to notice that a very good agreement beween DH theory
and experiments on the susceptibility time scaleτ (at interme-
diate temperatures) can be obtained by substituting Eq. (6.3)
with τ ∝ 1/ρη(T ), with η = 3/2 for ∆ = 4.37 K and
η = 4/3 for ∆ = 4.57 K (see Fig. 11). Further work is
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FIG. 11. Experimental magnetic relaxation time scaleτ as a func-
tion of temperature from susceptibility data, Ref. 19 (black open
squares). The temperature dependence is captures very accurately
by a phenomenological equation of the typeτ ∝ 1/ρη, whereρ
is obtained from the DH approximation (blue upward triangles for
∆ = 4.37 K andη = 3/2; cyan downward triangles for∆ = 4.57 K
and η = 4/3). The dashed magenta line illustrates the curve
τ = τ0 exp(∆/T ) with ∆ = 4.5 K, for comparison.

needed to understand the reasons behind such a good overlap.

VII. BEYOND DEBYE-H ÜCKEL

Debye-Hückel theory is probably the simplest approxima-
tion to obtain the free energy of a gas of Coulomb interacting
particles short of ignoring interactions altogether. A number
of improvements are available in the vast literature on the sub-
ject31, which one can use to obtain a more accurate description
of the magnetic monopole behaviour in spin ice.

Without actually implementing them, we briefly recall
hereafter two common extensions of the DH model. Firstly,
Debye-Hückel theory neglects the association of monopoles
into neutral dipolar pairs, which we have already briefly dis-
cussed above (see Ref. 31 and references therein). Following
Bjerrum32 (Bj) one can account for such bound pairs, thus
compensating in good part for the uncontrolled linearisation
of the Poisson-Boltzmann equation that is at the basis of the
DH self-consistent solution. However, whilst being an overall
refinement of DH, DHBj theory leads to unrealistic features

in the phase diagram of the system31, with an exponential in-
crease in the low-temperature fraction of neutral pairs drain-
ing the free monopole density to zero. This can (and ought to)
be compensated by a further extension to include interactions
between dipolar bound pairs and free monopoles, leading to
the so called dipole-ionic (DI) contribution31. The full DHB-
jDI theory indeed cures the unphysical features identified for
DHBj, while remaining of course only an approximation to
the exact free energy of the system.

Further improvements on the DHBjDI theory include ac-
counting for hard-core (HC) effects31. It is certainly worth-
while developing the theory further in this direction, espe-
cially in settings or for quantitites where new phenomena
(e.g., a dominant population of bound pairs), rather than only
quantitative corrections, ensue.

VIII. CONCLUSIONS

In summary, we have presented a theory for the low-
temperature physics of spin ice within the Debye-Hückel
framework familiar from the study of (electric) Coulomb liq-
uids. The success of this simple approach in treating the low-
energy physics of spin ice is a testament to the power of the
‘variable transformation’ from magnetic dipoles to magnetic
monopoles appropriate to the Coulomb phase with its emer-
gent gauge field.

With this first step accomplished, next on the wishlist are
a number of items some of which should push our atten-
tion beyond the framework provdided by the DH paradigm.
Firstly, a more detailed understanding of spin ice (hydro-
)dynamics; secondly, an extension of this theory to a broader
class of parent Hamiltonians, perhaps even including coher-
ent quantum dynamics; and thirdly, contact with all the non-
equilibrium experiments suggesting that not only the sparse-
ness of monopoles but also phononic physics plays a role in
the freezing of spin ice aroundTf .33
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Appendix A: Single tetrahedron approximation

An alternative approximation that can be used to obtain the
spin ice free energy and related thermodynamic quantities is to
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use a truncated cluster expansion. Most simply, this amounts
to computing explicitly the free energy of an isolated tetrahe-
dron by direct summation over all24 states.

At this level, all interactions are nearest-neighbour ones. In
terms of this effective short range couplingJeff , the partition
function of a tetrahedron is

Z =
[

6 + 8e−2Jeff/T + 2e−8Jeff/T
]Nt

. (A1)

From this, one can estimate the partition function of the entire
system,

Z = 2Ns

[

6 + 8e−2Jeff/T + 2e−8Jeff/T

16

]Ns/2

, (A2)

and thus the free energy per spin in degrees Kelvin,
F/NskB = −(T/Ns) lnZ.

Substituting into Eq. (4.1), we obtain the heat capacity of
the system (in units of J/K per Dy ion),

cV =
24kBJ

2
eff

T 2

e6Jeff/T
(

3− 2e2Jeff/T + e4Jeff/T
)

(

1− e2Jeff/T + e4Jeff/T + 3e6Jeff/T
)2 .

(A3)
The choice ofJeff = 5D/3 + J/3 = 1.11 K, which corre-

sponds to the nearest-neighbour interaction strength fromthe
exchange plus dipolar coupling constants, yields a very poor
agreement with the experimental data (not shown). The sit-
uation improves slightly if we take advantage of the projec-
tive equivalence between dipolar and nearest-neighbour in-
teractions on the pyrochlore lattice34. Instead of truncating
the dipolar contribution to5D/3, one can therefore use the
effective value ofJnn that yields the same low-energy spec-
trum as from the long range dipolar interactions. This value
can be derived using the dumbell decomposition in Ref. 12,
Jeff = 1.45 K. The result is shown in Fig. 1 of Ref. 10 and
it is indeed in quantitative agreement with the experimental
data at high temperaturesT & 2 K, as expected of a cluster
expansion of the free energy.

Note that even if we allowJeff to vary as a fitting parameter
in the theory, the shape ofcV (T ) does not change significantly
and it can be brought to agree with the experimental data only
over a very narrow temperature interval. By comparison, this
highlights even more how effective the Debye-Hückel free en-
ergy is at capturing the low energy fluctuations in dipolar spin
ice.

Appendix B: Entropic monopole charge

The effective description of spin-ice in the absence of
monopoles is given by the probability distribution of a
magnetostatic-like (divergenceless) field22

P ∝ exp

[

−K
2
v−1
cell

∫

∣

∣

∣

~Bent(r)
∣

∣

∣

2

d3r

]

(B1)

× exp

[

− µ0

2kBT

∫

∣

∣

∣

~Hmag(r)
∣

∣

∣

2

d3r

]

. (B2)

The first term Eq. (B1) is purely entropic in origin. The ge-
ometric field ~Bent(r) is obtained from coarse graining fixed-
length vectors that identify the local direction of the spins in
the system. Herevcell is the volume of the primitive unit cell.
Introducing the coarse grained (dimensionless) field~B(r) de-
fined at the centre of each tetrahedron (belonging to one of the
two sublattices) as
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(B3)

the stiffness coefficient can be determined to beK = 3/8.
(Note that we used a different field normalisation with respect
to Ref. 35, so as to preserve the underlying spins length equal
to 1.)
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l = 4/Sqrt[3] ad

a

S
S2

B

S1

3

0S

FIG. 12. Lattice conventions. The highlighted portion of the blue
cube (i.e., the 16-spin cubic unit cell in spin ice) corresponds to a
possible choice of the primitive unit cell in the fcc latticeformed by
the centres of one sublattice of tetrahedra in the pyrochlore lattice
(circled in green in the figure).

The second term Eq. (B2) accounts for the magnetic energy
stored in a spin ice configuration (devoid of monopoles). In
this case,~Hmag(r) is the magnetic field generated by the spin
magnetic momentsµ ponting in the local spin direction (µ0 is
the permeability of the vacuum,kB is the Boltzmann constant
andT is the temperature of the system).

Given that the total field~B = µ0(H + M) is always di-
vergenceless, the field~Hmag(r) can be equivalently replaced
by the magnetisation per unit volumeM , which in turn can
be obtained by coarse graining the spin magnetic moments.
Using the scheme (B3) already adopted for~Bent(r) over a
primitive unit cell, we have that

∣

∣

∣

~Hmag(r)
∣

∣

∣
=

∣

∣

∣

~M(r)
∣

∣

∣
=

µ

vcell

∣

∣

∣

~Bent(r)
∣

∣

∣
. (B4)

Therefore, the difference between the two terms Eq. (B1) and
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Eq. (B2) can be reduced to different coefficients

K
vcell

vs
µ0µ

2

kBTv2cell
(B5)

to the same integral
∫

| ~Bent(r)|2 d3r.
It is convenient to re-express the magnetic coefficient in

terms of the magnetic Coulomb energy of two monopoles
placed in adjacent tetrahedra (expressed in degrees Kelvin),

Enn =
µ0

4πkB

q2

ad
=

µ0

πkB

µ2

a3d
(B6)

⇒ µ0µ
2

kBTv2cell
=

Enn

T

πa3d
v2cell

, (B7)

where we used the fact thatq = 2µ/ad, ad being the diamond
lattice constant. By comparison with the entropic coefficient,
we can then identify the entropic counterpart to the neareast-
neighbour Coulomb energy,

Eent
nn

T

πa3d
v2cell

=
K
vcell

(B8)

⇒ Eent
nn

T
=

K
π

vcell
a3d

. (B9)

If we finally use the fact thatvcell is 1/4 of the volume of
the 16-spin cubic unit cell in spin ice,v = (4ad/

√
3)3, and

that with the coarse graining (B3)K = 3/8, we arrive at the
result

Eent
nn

T
=

K
π

16

3
√
3
=

2√
3π

≃ 0.36755. (B10)

It is interesting to convert this value into an entropic
monopole charge :

qent =

√

4πadkBEent
nn

µ0
= 1.48 10−13

√
T

= 1.6
√
T µB/Å. (B11)

The entropic charge of a monopole becomes larger than the
real magnetic charge only forT & 8 K, well beyond the limit
of validity of the monopole description of spin ice. In the ex-
perimentally relevant temperature range0.1−1K, the entropic
contribution ranges from1% to10% of the real magnetic con-
tribution to the energy of the monopoles.

In order to confirm this analytical estimate of the entropic
Coulomb interaction strength in spin ice, we have run Monte
Carlo simulations of the nearest-neighbour spin ice model,
sampling only configurations with two monopoles (one pos-
itive, one negative). Such configurations are all isoenergetic
and the monopole positions can be updated at every Monte
Carlo step without rejection. Ergodicity was tested by com-
puting spin-spin autocorrelation functions. The distribution
of separation distances between the two monopoles was then
sampled both in Monte Carlo time and across different initial
configurations and random number seeds.

From Eq. B1, it follows that the entropic interaction be-
tween the two monopoles leads to a probability distribution
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FIG. 13. Top Panel: Distribution of distances per lattice site be-
tween two monopoles in a spin ice configuration of16 × L3 spins,
L = 64. (top panel, red curve). The expected form due to
the entropic Coulombic interaction isP ∼ exp(Eent

nn /TR) and
the solid yellow line is the linear fit oflnP (R) as a function of
1/R. Bottom Panel: Finite size scaling of the nearest neighbour
entropic interactionEent

nn /T vs. the inverse system size1/L, L =
16, 32, 48, 64, 80, 100. The dashed black line and shaded cyan re-
gion are a guide to the eye for a reasonableL → ∞ extrapolation
and confidence interval, leading toEent

nn /T ≃ 0.375 ± 0.015.

of the formP(R) ∼ R2 exp(Eent
nn /TR), whereR is the sep-

aration distance in units of the diamond lattice spacing. In
particular, if we sample the distributionper lattice siteat dis-
tanceR, it has a purely exponential form∼ exp(Eent

nn /TR),
and one can obtain the value ofEent

nn /T from linear fits in
semi-logarithmic scale (Fig. 13, top panel).

We repeated these fits for different system sizes in order
to account for finite size scaling (illustrated in Fig. 13, bot-
tom panel). Even though the accuracy of our simulations
does not allow for a reliable extrapolation in theL → ∞
limit, the nearest-neighbour entropic interaction strength ap-
pears to lie in the intervalEent

nn /T ≃ 0.375 ± 0.015, in rea-
sonable agreement with the analytical value in Eq. (B10),
2/

√
3π ≃ 0.36755.
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Appendix C: Monopole mobility

The mobility of the monopoles in spin ice (and thus its tem-
perature dependence) can be estimated from microscopic con-
siderations, under the assumption that Metropolis-like equa-
tions govern the dynamics of the system23,36.

The mobility of a particle is given by the ratio of its drift
velocityvd over the driving force strengthqE, ν = vd/(qE).

Under Metropolis dynamics for a particle with chargeq in
a fieldE, the average displacement in a single step is

∆x = ℓ
1− e−βqV

1 + e−βqV
, (C1)

whereℓ is the characteristic microscopic length scale,V is the
potential difference for a single hopping process,1 is the prob-
ability to hop in the direction of the field, andexp(−βqV ) is
the probability to hop in the opposite direction.

Note that, on a lattice, there can be several inequivalent for-
ward and backward hoppings, depending on the direction of
the field. For example, while a45◦ field applied to charged
particles living on a square lattice is described straightfor-
wardly by the above equation (withℓ = a/

√
2, a being the

lattice spacing), a90◦ field on the same lattice allows for a for-
ward, a backward, and two perpendicular hopping processes
(see Fig. 14). One therefore needs to average over all of them

FIG. 14. Two examples of how the available hopping processesde-
pend on the direction of the applied field on a square lattice:a 45◦

field (left) and a90◦ field (right).

to obtain the correct value of∆x.

For convenience, we choose to define the mobilityν as

∆x/a

τ0
=

ℓ

aτ0

1− e−βqV

1 + e−βqV
(C2)

≡ ν qEa, (C3)

for small values of the applied fieldE. Herea is the (dimen-
sionful) lattice constant andτ0 is the microscopic time scale
for a single MC step. At large temperatures with respect to
the field strength, one can expand the exponentials and arrive
at the expression

ν =
1

τ0

1

qEa

ℓ

a

1− e−βqV

1 + e−βqV
(C4)

=
1

τ0

ℓ

a

V/(Ea)

2kBT
+O

[

(βV )2

qEa

]

. (C5)

For example, the case of a generic field direction on the
anisotropic square lattice, with lattice constantsa andb, gives

ν =
1

τ0

1

qEa2
a cos θ + b sin θ − a cos θe−βqEa cos θ − b sin θe−βqEb sin θ

1 + 1 + e−βqEa cos θ + e−βqEb sin θ

≃ 1

τ0

1

4kBT

a2 cos2 θ + b2 sin2 θ

a2
+O

(

β2E
)

. (C6)

If the lattice is isotropic (a = b) the mobility is independent
of the direction of the applied field,

ν ≃ 1

τ0

1

4kBT
+O

(

β2E
)

. (C7)

The mobility of monopoles on an isotropic diamond lattice,

of lattice constantad, with respect to a generic field direction
ê can be computed in a similar way, with the additional care
that there are now two inequivalent sublattices. With respect
to one sublatice, we obtain
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ν =
1

τ0

1

qEad

1√
3

(ê1 + ê2 + ê3) min
[

1, eβqEad(ê1+ê2+ê3)/
√
3
]

+ (ê1 − ê2 − ê3) min
[

1, eβqEad(ê1−ê2−ê3)/
√
3
]

min
[

1, eβqEad(ê1+ê2+ê3)/
√
3
]

+min
[

1, eβqEad(ê1−ê2−ê3)/
√
3
]

+(−ê1 + ê2 − ê3) min
[

1, eβqEad(−ê1+ê2−ê3)/
√
3
]

+ (−ê1 − ê2 + ê3) min
[

1, eβqEad(−ê1−ê2+ê3)/
√
3
]

+min
[

1, eβqEad(−ê1+ê2−ê3)/
√
3
]

+min
[

1, eβqEad(−ê1−ê2+ê3)/
√
3
]

≃ 1

τ0

1

12kBT

[

(ê1 + ê2 + ê3)
2 Θ<(ê1 + ê2 + ê3) + (ê1 − ê2 − ê3)

2 Θ<(ê1 − ê2 − ê3)

+(−ê1 + ê2 − ê3)
2 Θ<(−ê1 + ê2 − ê3) + (−ê1 − ê2 + ê3)

2 Θ<(−ê1 − ê2 + ê3)
]

+O
(

β2E
)

, (C8)

whereΘ<(x) = Θ(−x) is the Heaviside theta function. With respect to the other sublatice, we obtain

ν ≃ 1

τ0

1

12kBT

[

(ê1 + ê2 + ê3)
2 [1−Θ<(ê1 + ê2 + ê3)] + (ê1 − ê2 − ê3)

2 [1−Θ<(ê1 − ê2 − ê3)]

+(−ê1 + ê2 − ê3)
2 [1−Θ<(−ê1 + ê2 − ê3)] + (−ê1 − ê2 + ê3)

2 [1−Θ<(−ê1 − ê2 + ê3)]
]

+O
(

β2E
)

.

(C9)

If we finally take the average of both sublattices, we arrive at

ν ≃ 1

2τ0

1

12kBT

[

(ê1 + ê2 + ê3)
2 + (ê1 − ê2 − ê3)

2

+(−ê1 + ê2 − ê3)
2 + (−ê1 − ê2 + ê3)

2
]

+ O
(

β2E
)

≃ 1

6

1

τ0

1

kBT
+O

(

β2E
)

, (C10)

independently of the direction of the fieldE.
If the magnetic monopoles on the diamond lattice are in

fact the collective excitations in a spin ice system, one needs
to take into account the constraint that one of the three pos-
sible hopping directions is essentially forbidden, as it would
create doubly charged excitations. Taking the average overthe
possible forbidden directions does not introduce a dependence

on the field direction and we can therefore choose to compute
the mobility in a[100] magnetic field for convenience:

ν =
1

2τ0

1

qEad

1√
3

2− e−βqE(ad/
√
3)

2 + e−βqE(ad/
√
3)

+
1

2τ0

1

qEad

1√
3

1− 2e−βqE(ad/
√
3)

1 + 2e−βqE(ad/
√
3)

≃ 4

27

1

τ0

1

kBT
, (C11)

Notice that these results are independent of whether the po-
tential and field had an entropic or magnetic origin, provided
that the assumption of the field being smooth over distances
of the order of the lattice spacingad holds. This definition of
the mobility shows in fact that it depends only on some mi-
croscopic time scaleτ0 and on the thermal energy per particle
in the system.
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