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We consider the Chalker-Coddington network model for the Integer Quantum Hall Effect, and
examine the possibility of solving it exactly. In the supersymmetric path integral framework, we
introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models,
with two loop flavours. In the phase diagram of the first-order truncated model, we identify four
integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra, and pa-
rameterised by the loop fugacity n. In the continuum limit, two of these branches (1,2) are described
by a pair of decoupled copies of a Coulomb-Gas theory, whereas the other two branches (3,4) couple
the two loop flavours, and relate to an SU(2)r×SU(2)r/SU(2)2r Wess-Zumino-Witten (WZW) coset
model for the particular values n = −2 cos[π/(r + 2)] where r is a positive integer. The truncated
Chalker-Coddington model is the n = 0 point of branch 4. By numerical diagonalisation, we find
that its universality class is neither an analytic continuation of the WZW coset, nor the univer-
sality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical
approximation to the latter.

PACS numbers: 73.43.Nq, 73.20.Fz, 02.30.Ik, 11.25.Hf

Keywords: Quantum Hall Effect, Plateau Transition, Integrable Models, Conformal Field Theory



2

I. INTRODUCTION

The transition between plateaux in the Integer Quantum Hall Effect (IQHE) is a quantum critical phenomenon,
which was predicted theoretically1,2 and observed experimentally3 a few decades ago. Although experimentally there
is no a priori reason to neglect electron-electron interactions, it is usually modelled theoretically by noninteracting
particles in two dimensions (2d), in a perpendicular magnetic field and a random potential. Despite the apparent
simplicity of this conceptual setup, it turns out to be very difficult to derive analytically the critical exponents of this
transition. Important progress was achieved by the introduction of a simple network model which retains the salient
features of guiding centre motion and quantum tunnelling in the presence of disorder: the Chalker-Coddington (CC)
model4. Extensive numerical studies based on the CC model or other approaches have led to good estimates for the
critical exponents, notably the correlation-length exponent ν = 2.37± 0.026 (a larger value ν = 2.593± 0.006 has also
been reported7). Also, a semi-classical argument8 yields the prediction ν = 7/3.
The CC model is also the starting point for several analytical approaches, like the description by a σ-model9, or a

mapping to a one-dimensional (1d) quantum many-body system10,11, and also an Algebraic Bethe Ansatz construc-
tion12. However, from the point of view of critical lattice models, no exact solution of the CC model has been found
so far.
The situation is very different for the spin Quantum Hall Effect (SQHE): the generalisation of the CC model to

SQHE13 (which we shall call Sp(2)-CC) maps exactly to classical bond percolation, where a large class of exponents
are known14. This mapping of Sp(2)-CC to classical percolation was first observed by Gruzberg et al.15, who used a
supersymmetric (SUSY) spin-chain formulation. Later on, it was realised16,17 that the SUSY lattice path integral maps
Sp(2)-CC to a statistical model of lattice paths, which are exactly the hulls of bond-percolation clusters. Moreover, a
number of SQHE physical observables are expressed in terms of percolation correlation functions, and this mapping
is valid even at the level of lattice models.
In this paper, we propose a treatment of the original CC model based on the lattice path integral. Since the

corresponding statistical model involves paths which may pass through a given edge infinitely many times, the number
of configurations per unit surface is infinite, and the model is not directly tractable by exact-solution methods such as
Yang-Baxter integrability and Conformal Field Theory (CFT). We therefore introduce a truncation procedure, leading
to a series of finite statistical models, and focus on the first order of truncation. The arising model is a two-colour
loop model including vacancies, and with loop fugacity n = 0.
Integrable multi-colour loop models have been known for a long time18. They were originally defined through

multi-dimensional height models, but they may as well describe coupled copies of classical magnetism models, such
as the Potts or O(n) models, and also the ground state of quantum loop models. More specifically, in a two-colour,
completely packed (i.e. without vacancies) loop model19,20, new integrable points were identified through a mapping
to a braid-monoid algebra: the Birman-Wenzl-Murakami (BWM) algebra21 (see also22 for integrable two-colour loop
models related to two coupled Potts models). In the present paper, we use a similar approach on the loop model
arising from our truncation procedure, which is a two-colour loop model including vacancies. Generalising to arbitrary
loop fugacity n, we obtain four critical branches in the phase diagram of this loop model. We then study the critical
properties of these branches.
We find that two of these regimes (denoted 1 and 2) correspond to a pair of decoupled Coulomb-Gas (CG) theories,

whereas the other two (3 and 4) relate to the SU(2)r × SU(2)r/SU(2)2r Wess-Zumino-Witten coset model, for values
n = ±2 cos π

r+2 with r ∈ {1, 2, 3, . . .}. We obtain analytically two critical exponents: one of them, Xint, corresponds
to an elliptic deformation of the integrable weights, and the other one, X(1,1;adj), is associated to a perturbation of
the weight per monomer. The truncated, modified CC model is realised by the n = 0 point of regime 4, but this
point is outside the validity range for the analytic continuation of the WZW exponents. Our numerical study gives
the estimate ν ≃ 1.1 for the correlation-length exponent, and df ≃ 1.71 for the fractal dimension of paths. This is
clearly incompatible with the IQHE universality class, and hence our integrable two-colour loop model is only a crude
approximation to IQHE. However, the truncation procedure may be carried out to higher orders, possibly yielding
more accurate, solvable approximations.
The plan of the paper is as follows. In Section 2, we recall the definition of the CC model and its lattice SUSY

path-integral formulation, and explain our truncation procedure,resulting in a two-colour loop model. This truncation
is compared in detail with the one used in10,11. In Section 3, we use a mapping to a dilute braid-monoid algebra to
derive the integrable Boltzmann weights of the two-colour loop model, as well as the corresponding 1d Hamiltonian.
In Section 4, we identify the four critical regimes of the integrable model and the corresponding CFTs. Numerical
and analytical support for the identification of these CFTs is given. In Section 5, we examine in more detail regime
4, which contains the truncated, modified CC model at n = 0. We discuss the analytic continuation of CFT results,
and estimate numerically some critical exponents, including the correlation-length exponent ν.
The paper has three appendices. Appendix A contains the details of the mapping to the dilute BWM (dBWM)

algebra used in Section 3. In Appendix B, we exhibit a lattice holomorphic parafermion ψs(z) in the integrable model.
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In Appendix C, we expose the exact solution of a particular point in regime 4, which is mapped to free fermions. This
mapping provides a valuable check on our results, and also gives a proof that the O(n = 1) loop model has central
charge c = 1

2 .

II. TRUNCATION OF THE CHALKER-CODDINGTON MODEL

A. The Chalker-Coddington model

The Chalker-Coddington model4 is a simple lattice model for the IQHE. The latter consists of a two-dimensional
gas of non-interacting electrons in a disordered medium, subject to a strong transverse magnetic field. In the presence
of the random potential, the Landau levels are broadened, and eigenenergies are of the form E =

(
k + 1

2

)
~ωc + V0,

where k is an integer, ωc is the cyclotron energy of the electron in the magnetic field, and V0 is a random part. Let
us recall briefly the main ingredients of the CC model.
We consider an electron in the eigenstate of energy E. The spatial trajectories of the electron over finite time steps

∆t are modelled by paths on the directed square lattice L (see Fig. 1), and the time-evolution operator over ∆t is
denoted U . The operator U reads

U =
⊗

edge e

Ue

⊗

vertex v

Uv , (1)

with two types of factors:

• On each directed edge e, the operator Ue takes the particle along e and multiplies the wavefunction by a random
Aharonov-Bohm phase exp(iφe), where the φe are independent and uniformly distributed on the interval [0, 2π].

• At each vertex v, the operator Uv scatters the particle to one of the outgoing edges. In the bases (1, 2) and
(3, 4) of Fig. 1, Uv is represented by the unitary matrix:

S =

(
tanhβ 1/coshβ
1/coshβ − tanhβ

)
. (2)

The parameter β measures the distance to the plateau transition at E = Ec =
(
k + 1

2

)
~ωc. The critical value is

βc = log(1 +
√
2), and the corresponding energy perturbation is assumed to behave as4

(E − Ec) ∝ (β − βc) . (3)

No exact solution of the CC model is known, in the sense that the critical exponents have not been determined ana-
lytically. However, very good numerical estimates exist for some of these exponents5–7. In particular, the correlation-
length exponent νCC, defined by the scaling of the correlation length

ξ ∝ |E − Ec|−νCC , (4)

has been estimated as6

νCC ≃ 2.37± 0.02 . (5)

B. Path integral representation

The problem of solving the CC model amounts to the diagonalisation of a random time-evolution operator. We
want to perform the average over disorder, in order to turn this into a translationally invariant 2d classical model. For
this purpose, we use the supersymmetric path integral representation23. The following derivation is very analogous
to what was done by one of us for the SQHE17, and we use the notations of17 throughout this Section.
The Green’s function between two edges e1 and e2 is:

G(e2, e1, z) := 〈e2|(1− zU)−1|e1〉 . (6)

Here z is a parameter which plays the role of the energy in the usual Green’s function (E −H)−1: roughly speaking
z ∼ eiE, where E is measured from the filled Landau level. We label eL, eR the ends of any edge e, with the convention
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FIG. 1. (a) Oriented square lattice L for the Chalker-Coddington model. (b) Labelling of the edges adjacent to a vertex of L.

that it is directed in the sense eR → eL, and we introduce the complex variables bL(e), bR(e). The Gaussian measure
is defined as:

∫
[db] (. . . ) :=

1

π

∫
d(Re b) d(Im b) exp(−b∗b)(. . . ) , [Db] :=

∏

e

[dbL(e)][dbR(e)] . (7)

The Green’s function can then be written as a Gaussian integral on the bL(e), bR(e):

G(e2, e1, z) =

∫
[Db] bL(e2)b

∗
L(e1) expAb∫

[Db] expAb
, (8)

where the action reads

Ab = A
(edge)
b +A

(vertex)
b , (9)

A
(edge)
b = z

∑

edge e

b∗L(e) exp(iφe)bR(e) , (10)

A
(vertex)
b =

∑

vertex v

∑

i → j
v

b∗R(ei)SijbL(ej) , (11)

and the notation i → j
v

means that i (resp. j) is an incoming (resp. outgoing) edge adjacent to v. The next step is

to express the denominator in (8) as the inverse of a Gaussian integral over Grassmann variables fL,R(e), f̄L,R(e):

G(e2, e1, z) =

∫
[Db][Df ] bL(e2)b

∗
L(e1) exp(Ab +Af ) , (12)

with the measure
∫
[df ] (. . . ) :=

∫
df̄ df exp(−f̄f)(. . . ) , [Df ] :=

∏

e

[dfL(e)][dfR(e)] , (13)

and Af is the analog of Ab, with b, b
∗ replaced by f, f̄ .

We denote by an overbar the quenched average over the variables φe. A useful formula for this computation is

1

2π

∫ 2π

0

dφ exp
(
ueiφ + v∗e−iφ

)
=

∞∑

m=0

(uv∗)m

(m!)2
. (14)

It easy to see, for instance, that G(e2, e1, z) = δ(e1, e2). When studying transport properties, the main quantity of

interest is |G|2. We write

|G(e2, e1, z)|2 =

∫
[Db][Df ] bL(e2)b

∗
L(e1) e

Ab+Af ×
∫
[Db][Df ] b∗L(e2)bL(e1) e

A∗
b+A∗

f

=

∫
[Db1,2][Df1,2] bL1(e2)b

∗
L1(e1)b

∗
L2(e2)bL2(e1) e

Ab1+Af1+A∗
b2+A∗

f2 . (15)
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Using (14), we get:

|G(e2, e1, z)|2 =

∫
[Db1,2][Df1,2] bL1(e2)b

∗
L1(e1)b

∗
L2(e2)bL2(e1)×

exp
[
A

(vertex)
b1 +A

(vertex)∗
b2 +A

(vertex)
f1 +A

(vertex)∗
f2

]
×

∏

e

∞∑

me=0

(z∗z)me

(me!)2
{[
b∗L1(e)bR1(e) + f̄L1(e)fR1(e)

] [
b∗R2(e)bL2(e) + f̄R2(e)fL2(e)

]}me
. (16)

The expression (16) for |G|2 can be interpreted graphically as follows. Each term in the expansion of the product
corresponds to a pair of paths (γ1, γ2), where γ1 respects the orientation of the lattice L (forward path) and γ2 follows
the reverse orientation (backward path). The two paths must use each edge e the same number of times me. Paths
configurations are weighted by the elements of the vertex S-matrix, and an additional factor (z∗z)me . Note that
closed loops have a vanishing weight, because the bosonic and fermionic contributions cancel each other.

C. Truncation procedure

In the form (16), |G|2 can be viewed as a two-point correlation function in a classical, two-dimensional statistical
model for two-colour path configurations. No approximation has been introduced so far, and thus (16) is identical

to the value of |G|2 in the original CC model. The main difficulty in evaluating (16) is that the paths γ1, γ2 may
go through a given edge an arbitrary number of times me, and thus the statistical model has an infinite number of
degrees of freedom per edge. This type of problem is not usually tractable by exact solution methods, so we need
to truncate the statistical model to a finite loop model in order to use these methods. This is very analogous to
what Nienhuis did for the O(n) spin model24 on the hexagonal lattice: in that context, the spin model with variables
(Sj ∈ Rn,S2

j = 1) was formally mapped to a polygon model where edges could be used an arbitrary number of times,

but the substitution eJSi·Sj → 1 + JSi · Sj in the edge interaction led to a finite loop model, while preserving the
O(n) symmetry of the original spin model.

The truncation we propose consists in keeping only the terms of (16) with me ∈ {0, 1}, i.e. the configurations where
each of the paths γ1, γ2 visits an edge at most once. This preserves the boson/fermion supersymmetry, ensuring that
closed loops still have a vanishing weight in the truncated model. This can be seen as follows. In the original
expression (10) for the action on the edges, we can imagine choosing a different fugacity ze for each edge (so that it
now appears inside the summation over e.) This does not affect the supersymmetry of the action. On expanding in
powers of all the ze, the bosonic contribution to a given edge now enters with a factor (z∗eze )

me . Thus our truncation
to me ∈ {0, 1} amounts to keeping only the terms up to first order in the expansion of the partition function in
powers of z∗eze , and then setting all the ze = z again.. Note that to this order we have either nothing, or a pair of
bosons of different flavours (1 and 2), or a pair of fermions of different flavours, propagating along each edge. The
supersymmetry ensures that each closed loop is counted with weight 0. At this stage it is simpler to switch to a replica
formulation rather than using supersymmetry explicitly: we have a model with two flavours of boson, such that each
edge is either unoccupied, or occupied by each flavour exactly once. Each closed loop is counted with a fugacity n,
taking then n = 0. The vertices are shown in Fig. 2.

We briefly comment on how higher order truncations would look in this expansion. For example, at O
(
(z∗eze )

2
)

we would have either 2 pairs of bosons of each flavour, or 1 pair of bosons and 1 pair of fermions. (We can never
have more than one pair of fermions because the Grassmann variables square to zero.) Note that in such a truncation
we could give such a configuration a weight different from (z∗eze)

2 and still preserve the supersymmetry. This points
to the existence of an infinite-dimensional space of possible supersymmetric truncations. However in this paper we
consider only the simplest.

We denote by |G(e2, e1, z)|2tr the truncated analog of |G(e2, e1, z)|2: |G(e2, e1, z)|2tr is given by the same expression

as (16), but with the sum running only over me = 0, 1. Then |G(e2, e1, z)|2tr is interpreted as a two-point function in
the loop model defined by the loop vertices of Fig. 2 and with loop weight n = 0.

In the original CC model, the parameter β in the S-matrix (2) is staggered. It is useful to consider an anisotropic
version of this, where it takes the value β on the even sublattice of L and β′ on the odd sublattice. In this anisotropic
CC model, the critical line is4:

sinhβ sinhβ′ = 1 . (17)
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The Boltzmann weights of the truncated loop model are defined in Fig. 2. For general β, β′ they take the values:

t , u1, u2, w1, w2, x = 1, a , b , a2 , b2 , −a b (even sublattice),
t′, u′1, u

′
2, w

′
1, w

′
2, x

′ = 1, b′, a′, b′2, a′2, −a′b′ (odd sublattice),
(18)

where

a := z2 cosh−2 β , b := z2 tanh2 β ,

a′ := z2 cosh−2 β′ , b′ := z2 tanh2 β′ .
(19)

Note that at the isotropic point these weights are

1, z2/2, z2/2, z4/4, z4/4, −z4/4 . (20)

u1

t

x

w1 w2

u2

FIG. 2. Vertices of the loop model arising from the truncation of the CC model.

D. Critical properties

We now discuss the observables of the model, especially the mean square Green’s function between two edges
|G(e2, e1, z)|2. As pointed out in25, this has to be distinguished from the point-contact conductance P (e2, e1, z):
|G(e2, e1, z)|2 is defined for any boundary conditions, whereas the point-contact conductance refers to a set-up where
one cuts open the two edges e1 and e2, and hence involves only the forward paths going from e1 to e2 without visiting
e1 or e2 any other time (and the analogous backward paths). However, in this graphical interpretation, one clearly
sees that the two quantities |G|2 and P do coincide in the truncated model.

At z = 1 in the untruncated model, for a system without any open boundary contacts, |G(e2, e1, z)|2 is identically
equal to one by conservation of probability. It is given by the sum over all pairs of Feynman paths going out and back
from e1 to e2, such that each edge is traversed the same number of times in the forward path as in the return path,
and weighted by the appropriate S-matrix elements of the CC model. It has been argued26 that the weights for such
‘pictures’ are all positive. For z → 1− and on the critical line (17) we expect a scaling form

|G(e2, e1, z)|2 ∼ F
[
r(1 − z)1/d

CC

f

]
, (21)

where r = |e1 − e2| and dCC
f is the fractal dimension of these pictures (whereby their total mass M behaves as rdf ).

The absence of the prefactor of the form r−2X|G|2 is a consequence of the fact that |G(z = 1)|2 = 1 for a closed system.
In the truncated model, we no longer have probability conservation and so the point z = 1 is no longer special.

Instead, in analogy with other loop models, we expect to find a different critical point, at z = zc, such that the average

loop length is finite for z < zc and diverges for z ≥ zc. The function |G(e2, e1, z)|2tr now corresponds to the weighted
sum of a pair of black and grey paths connecting e1 and e2. On the critical line and as z → z−c we expect the same
scaling form as (21):

|G(e2, e1, z)|2tr ∼ r−2X|G|2 F
[
r(zc − z)1/df

]
, (22)

but not necessarily with the same dimension df and scaling function F as in the full model. In Figure 3 and Table I,
we show the numerical determination of zc using the two largest eigenvalues Λ0,Λ1 of the transfer matrix. These
eigenvalues define the thermal exponent Xt through the CFT form of the free-energy gap:

log
Λ0

Λ1
≃ 2πXt

L
. (23)
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FIG. 3. Numerical determination of the critical monomer fugacity zc in the model of Fig. 2. On the y-axis is plotted the
effective thermal exponent Xt(L, βc, z) =

L

2π
log Λ0

Λ1
.

L 4 6 8 10
zc(L, L+ 2) 1.029885 1.030895 1.031454 1.031695

TABLE I. Finite-size estimates of the critical monomer fugacity zc in the model of Fig. 2. The value zc(L, L+ 2) is defined as
the solution of Xt(L, βc, z) = Xt(L+ 2, βc, z), where Xt(L, β, z) =

L

2π
log Λ0

Λ1
is the effective thermal exponent.

More generally, it is possible to consider ‘watermelon’ exponents Xℓ1,ℓ2 corresponding to ℓ1 black and ℓ2 grey paths
originating from the vicinity of a given edge. The truncation constraint of course implies that these cannot originate
on the same edge for ℓ > 1, but we imagine taking the scaling limit where edges a finite distance apart on the lattice
are mapped to the same point. These operators are well suited for a transfer-matrix-based numerical analysis27.

In particular we see that X1,1 corresponds to X|G|2 in (22). Also, since z∗z counts the number of edges connected
to two black and two grey paths, we have

df = 2−X2,2 . (24)

Using transfer-matrix diagonalisation, we obtain the value

X2,2 = Xt ≃ 0.3 . (25)

Finally, we evaluate the correlation-length exponent ν associated to a perturbation of the parameter β away from
βc. For the lowest free-energy gap we expect the scaling form

log
Λ0

Λ1
≃ 2π

L
F
[
(β − βc) L

1/ν
]
. (26)

The best data collapse is obtained for the value (see Fig. 4):

ν ≃ 1.1 . (27)
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L = 12
L = 10
L = 8
L = 6
L = 4

(β − βc) × L1/ν

X
t(

L
,β

,z
c
)

21.510.50

1.3
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1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

FIG. 4. Data collapse for the effective thermal exponent Xt(L, β, zc), under a perturbation of the parameter β. The value used
for this plot is 1/ν = 0.9.

E. Relation to Hilbert-space truncation

We close this Section by comparing our approach to earlier studies10,11 of the IQHE problem based on a different
truncation procedure. Our method consists in writing the lattice path integral representation for the mean conductance
using the supersymmetry trick, and then truncating the infinite sum over the paths, to keep only the self-avoiding
paths. This gives us the well-defined loop model of Fig. 2, where we will tune slightly the Boltzmann weights to
obtain an integrable point (see Section III).
In contrast, in10,11, one starts from a two-dimensional single-particle Hamiltonian including Gaussian hopping

coefficients, and computes its supersymmetric path integral. The resulting action is then interpreted as the action
of a one-dimensional many-body supersymmetric Hamiltonian HMB, given in Eqs. (3–5) of11. This Hamiltonian is
expressed in terms of the coefficients Sa of a superspin matrix. In this model, the Hilbert space for each site is infinite-
dimensional (each site can be occupied by an arbitrary number of bosons). The idea is to truncate this Hilbert space
down to dimension D, and follow the behaviour of the energy gap as D increases. The model is not critical for finite
D, but it becomes critical in the limit D → ∞.
Let us shown how to relate the terms of HMB in the truncated space of dimension D = 5, to the generators which

encode the loop model of Fig. 2. We first get rid of the (−1)j factor in HMB
11. This is done through the change

c↑j → −c↑j for j ≡ 2 mod 4 or j ≡ 3 mod 4 ,

without affecting the (anti-)commutation relations for the bj, cj . We obtain the Hamiltonian:

HMB =

L∑

j=1

[
16∑

a=1

gaS
a
j S

a
j+1 + η(S1

j + S2
j + S5

j + S6
j )

]
, (28)

where the signs ga are given by

ga =

{
1 if a = 1, 2, 10, 12, 14, 16

−1 if a = 3, . . . , 9, 11, 13, 15.
(29)

We decompose HMB as a sum of generators

HMB =

L∑

j=1

{
− ( ⋒ )j − ( ⋓ )j + ej + fj + (1 + η)

[
(〉〉 )j + ( 〈〈)j + 2(〉〉 〈〈)j

]}
, (30)
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where we have defined

( ⋒ )j := S3
jS

3
j+1 + S7

jS
7
j+1 + S15

j S15
j+1 − S16

j S16
j+1

( ⋓ )j := S4
jS

4
j+1 + S8

jS
8
j+1 + S13

j S13
j+1 − S14

j S14
j+1

(〉〉 )j + (〉〉 〈〈)j := 1
2

(
S1
j + S2

j + S5
j + S6

j

)

( 〈〈)j + (〉〉 〈〈)j := 1
2

(
S1
j+1 + S2

j+1 + S5
j+1 + S6

j+1

)

ej :=
(
S1
j − 1

2

) (
S1
j+1 − 1

2

)
−
(
S5
j + 1

2

) (
S5
j+1 +

1
2

)
+ S10

j S10
j+1 + S12

j S12
j+1

fj :=
(
S2
j − 1

2

) (
S2
j+1 − 1

2

)
−
(
S6
j + 1

2

) (
S6
j+1 +

1
2

)
− S9

jS
9
j+1 − S11

j S11
j+1 .

(31)

In terms of the creation/annihilation operators, the above generators read:

( ⋒ )j = (b†j↑b
†
j+1↑ + c†j↑c

†
j+1↑)(b

†
j↓b

†
j+1↓ − c†j↓c

†
j+1↓)

( ⋓ )j = (bj↑bj+1↑ + cj↑cj+1↑)(bj↓bj+1↓ − cj↓cj+1↓)

ej = (b†j↑b
†
j+1↑ + c†j↑c

†
j+1↑)(bj↑bj+1↑ + cj↑cj+1↑)

fj = (b†j↓b
†
j+1↓ − c†j↓c

†
j+1↓)(bj↓bj+1↓ − cj↓cj+1↓)

(〉〉 )j + (〉〉 〈〈)j = 1
2 (b

†
j↑bj↑ + c†j↑cj↑ + b†j↓bj↓ + c†j↓cj↓)

( 〈〈)j + (〉〉 〈〈)j = 1
2 (b

†
j+1↑bj+1↑ + c†j+1↑cj+1↑ + b†j+1↓bj+1↓ + c†j+1↓cj+1↓) .

(32)

In the D = 5 truncated space, each site is either empty or occupied by two particles of opposite spins (↑, ↓). If each
spin is interpreted as a loop color, the above generators (when restricted to the D = 5 space) obey a dilute two-color
Temperley-Lieb algebra with loop weight n = 0. Hence, they represent the vertices u1, u2, w1, x of the loop model
defined in Section II C. In particular, the ej and fj form two decoupled Temperley-Lieb algebras.
Note that, in this context, the generator for the w2 vertex, Ej = ejfj , cannot be realised by a linear combination

of the Sa
j S

a
j+1, but it may be a linear combination of the (Sa

j S
a
j+1)

2. So introducing Ej terms in the Hamiltonian
leads to higher-order terms in HMB, and most probably it breaks the invariance with respect to the supersymmetric
charges Q1,2. However, we have shown that the supersymmetric model HMB, when restricted to the D = 5 space,
corresponds to a particular manifold in the phase diagram of the two-color loop model.

III. CONSTRUCTION OF AN INTEGRABLE CRITICAL LOOP MODEL

In the preceding section, we truncated the the Chalker-Coddington network model to yield a two-color loop model
that is simpler to analyze. To make further progress, we modify this model further. We augment it by allowing the
“straight-line” vertices with weight v illustrated in Fig. 5. We also generalize it by allowing the weight per loop n to
not only be zero, but to vary in the range n ∈ [−2, 2]. By utilizing the results of28, we will show in this section that
this modified model for all values of n in this range has an integrable line, and includes several critical points. The
remainder of the paper will be devoted to the study of the critical behaviour.
When the straight-line vertices are allowed, the loop model can no longer be related directly to electron trajectories

in a potential. In the original CC model, the ‘checkerboard’ structure of the lattice (or, equivalently, the alternation
of arrows on the edges of L) is essential to the interpretation of the paths as electron trajectories along the contour
lines of the random potential. However, several arguments indicate that the truncated but unmodified loop model of
Fig. 2 is in the same universality class as that of the modified model. In other words, one can obtain the unmodified
model by perturbing the critical line with irrelevant operators.
One argument for the equivalence of the two stems from the relation of this two-color loop model to that studied

in20. There the completely packed version was studied; in the notation used here this corresponds to setting the
Boltzmann weights t = u1 = u2 = v = 0. It was shown that at least for weight per loop n ≥

√
2, the model has a

critical point when x/w2 is tuned appropriately. Moreover, at this critical point, numerical evidence strongly suggests
that dilution (i.e. non-zero t, u1 and u2) is irrelevant. We will provide additional evidence by finding that for certain

discrete values of n ≥
√
2, the critical point of the completely packed model and that of the modified model studied

here are described by the same conformal field theory. Neither of these arguments applies when n = 0, but all the
critical exponents we have computed (Xt, X2,2, ν) for both the truncated CC model and the integrable model at n = 0
in regime 4 (see Table II) agree, up to our numerical precision. This strongly indicates that the integrable model at
n = 0 in regime 4 is in the universality class of the truncated CC model.
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u1

t

u2 x

w1 w2

v

FIG. 5. Vertices of the augmented dilute two-color loop model.

In this section, we give the Boltzmann weights of the integrable critical line in the loop model of Fig. 5. These
weights are expressed in terms of the generators of the dilute Birman-Wenzl-Murakami (dBWM) algebra, so that the
solution of the Yang-Baxter equation found in28 can be used. In Appendix A, we review the BWM algebra and its
graphical presentation. The braid group can be represented in terms of the BWM generators, and can then be used
to find invariants of knots and links generalizing the Jones polynomial21.
An alternate way of obtaining the Boltzmann weights of the integrable critical line is to search for holomorphic

observables on the lattice. These are operators whose expectation values satisfy the lattice analog of the Cauchy-
Riemann equations. This method is described in Appendix B, and yields the same weights as those found in28 using
the dBWM algebra.

A. Critical completely packed loop models

We first review the critical completely packed loop model, arising for example in the Fortuin-Kasteleyn expansion
of the Potts model29. Each vertex of this model has the two possible configurations displayed in Fig. 6. The partition

FIG. 6. Action of 1 (left) and ej (right) on a pair of strands at positions j and j+1. The transfer matrix direction is upwards.

function is conveniently written in terms of the generators of the Temperley-Lieb (TL) algebra30. This algebra for a
system of width L has L generators ej acting at positions j = 1, 2, . . . , L as well as the identity 1, which obey the
relations

e2j = n ej , ejej±1ej = ej , eiej = ejei for |i− j| > 1. (33)

The first of the relations encodes the fact that the weight for a closed loop is n, while the second encodes the fact
that the weight does not depend on the length or the shape of the loop.
The Boltzmann weights of the integrable critical loop model are then

Řj(u) = sin(2θ − u)1− sinu ej , (34)

where n = −2 cos 2θ and |n| ≤ 2. The transfer matrix for an even number of sites L is then

T = Ř1Ř3 . . . ŘL−1Ř2Ř4 . . . ŘL . (35)

It is straightforward to use the TL algebra to verify that these Boltzmann weights satisfy the Yang-Baxter equation

Řj(u)Řj+1(u+ v)Řj(v) = Řj+1(v)Řj(u + v)Řj+1(u) (36)

and the inversion relation

Řj(u)Řj(−u) = sin(2θ − u) sin(2θ + u) 1 . (37)
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Braid group generators bj and b−1
j are found by taking u→ ±i∞:

Řj(i∞) ∝ bj = e−iθ
1+ eiθ ej , Řj(−i∞) ∝ b−1

j = eiθ 1+ e−iθ ej .

These satisfy the braid-group relations (A1) and (A2) as a consequence of the Yang-Baxter equation and the inversion
relation respectively.
The critical completely packed loop model on the square lattice is in the same universality class as what is usually

known as the O(n) model in its dense phase. Well-established results on the dense O(n) model24 give the central
charge of the CFT describing the scaling limit to be

cO(n) = 1− 3(π − 2θ)2

πθ
. (38)

The Boltzmann weights of the completely packed doubled loop model studied in19,20 can be written in terms of the
generators ei and fi of two independent TL algebras. This model is displayed in Fig. 5 with t = u1 = u2 = v = 0. In
this picture, the ej acts on black loops while the fj act on grey loops, while the transfer matrix goes to the northeast.
Thus the vertex with weight w1 corresponds to the generator 1, the vertex with weight w2 corresponds to ejfj , while

those with weight x are ej and fj . Since the ej ’s and the fj’s commute, we have immediately that the Bj , B
−1
j defined

by

Bj :=
(
e−iθ

1+ eiθ ej
) (
e−iθ

1+ eiθ fj
)

B−1
j :=

(
eiθ 1+ e−iθ ej

) (
eiθ 1+ e−iθ fj

) (39)

also generate a braid group. Similarly, TL generators with loop weight N = n2 may be constructed as

Ej := ej fj . (40)

Using the relations (33) for the ej ’s and fj’s, it is straightforward to show that the Bj , B
−1
j , Ej generate the BWM

algebra described in Appendix A with parameters N = n2 = (−2 cos 2θ)2, ω = ei6θ 20. The doubled lines here
correspond to the single lines displayed in Appendix A, as is apparent by comparing Figs. 5 and 14. Writing the
Boltzmann weights in terms of this algebra is useful because solutions of the Yang-Baxter equation involving the
BWM generators have long been known31. From this solution, a critical point for the coupled completely packed loop
models for n ≥

√
2 was found19,20. With the parameterisation

n = 2 cos
π

r + 2
,

in the isotropic case w1 = w2, the critical point is at x/w1 = λc, where

λc = −
√
2 sin

[
π(r − 2)

4(r + 2)

]
. (41)

At integer values r = 2, 3, 4 . . . , this critical point was identified with a particular conformal field theory, the WZW
coset model SU(2)r × SU(2)r/SU(2)2r. This conformal field theory has central charge

cr =
3r2

(r + 1)(r + 2)
. (42)

For 1/λc < x/w1 < λc, the doubled loop model has a critical phase corresponding to two decoupled completely packed
loop models. The central charge is thus twice (38).

B. The integrable critical line

We now can use the results of Grimm and Warnaar28 to find an integrable model involving all the vertices in Fig.
5. We are interested mainly in the critical points, which can be written in terms of the dilute BWM algebra. The
dilute BWM algebra extends the BWM algebra described in Appendix A to include edges of the lattice uncovered
by strands. In the two-color loop model, these amount to allowing vertices to be empty of both colors. The dilute
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generators act identically on the two colors, and so include the remaining vertices in Fig. 5. In an obvious notation,
we then can write the Ř-matrix as

Řj(ϕ) = t(ϕ)( )j + u1(ϕ)
[
(〉〉 )j + ( 〈〈)j

]
+ u2(ϕ)

[
( ⋒ )j + ( ⋓ )j

]

+v(ϕ)
[
(��)j + (��)j

]
+ w1(ϕ)Ij + w2(ϕ)Ej + x(ϕ)Xj . (43)

In terms of the TL generators introduced in the previous section, Ej = ejfj and Xj ≡ ej + fj, while Ij takes value 0
on the dilute configurations and 1 otherwise.
Since the non-dilute vertices satisfy the BWM algebra, it is simple to show that the operators

Bj , Ej , Ij , ( )j , (〉〉 )j , ( 〈〈)j , ( ⋒ )j , ( ⋓ )j , (��)j , (��)j

constructed from the two-color loop model satisfy a dilute BWM algebra. Namely, with doubled lines here corre-
sponding to single lines in Appendix A, and the Bj defined in (39), these operators generate the dilute BWM algebra
with parameters (N = (q + q−1)2, ω = q3), where q = e2iθ.
In28, an integrable model based on the dBWM algebra was derived. With n = −2 cos 2θ as before, its Boltzmann

weights are given by

t(ϕ) = − cos(2ϕ− 3θ)− cos 5θ + cos 3θ + cos θ
u1(ϕ) = −2 sin2θ sin(ϕ− 3θ)
u2(ϕ) = 2 sin 2θ sinϕ
v(ϕ) = −2 sinϕ sin(ϕ − 3θ)
w1(ϕ) = 2 sin(ϕ− 2θ) sin(ϕ − 3θ)
w2(ϕ) = 2 sinϕ sin(ϕ − θ)
x(ϕ) = 2 sinϕ sin(ϕ − 3θ) .

(44)

We denote by ϕ0 the isotropic value which is closest to zero:

ϕ0 =

{
3θ
2 if 0 < θ < π

3
3θ
2 − π if π

3 < θ < π.
(45)

The universal properties are independent of the anisotropy parameter ϕ (as long as ϕ lies between 0 and ϕ0), but
depend very strongly on θ, as we shall see. At the isotropic point ϕ = 3θ/2, the weights can be rescaled to

t = 2 cos 3θ + 2 cos 2θ + 1
u1 = u2 = 4 cos θ

2 cos θ
v = 2 cos θ + 1
w1 = w2 = 1
x = −(2 cos θ + 1) .

(46)

The integrable model defined by (43)–(44) obeys the following properties:

• The isotropic weights are invariant under the transformations θ → 2π + θ, and θ → −θ, so the range of
inequivalent couplings is θ ∈ [0, π]. Each value of n ∈ [−2, 2] appears twice in this interval.

• Since there are no loop ends, the number of loops mod 2 is the same as the number of x vertices mod 2. This
allows us to change the sign of n by absorbing the sign in the weight x: (n, x) → (−n,−x). Thus there are four
distinct critical points for each value of n ∈ (0, 2), while there are two for n = 0 and n = 2.

• The weights satisfy the inversion relation

Ř(ϕ)Ř(−ϕ) = 4 sin(2θ − ϕ) sin(2θ + ϕ) sin(3θ − ϕ) sin(3θ + ϕ) 1 . (47)

• Rotating by 90o is equivalent to sending ϕ→ 3θ − ϕ.

• The weights are trivial when u = 0: Ř(0) = 2 sin 2θ sin 3θ 1 .

• The eigenvalues of the transfer matrix are preserved under (u1, u2) → (−u1,−u2) and v → −v.
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C. The quantum Hamiltonian

To gain intuition into this doubled loop model, it is useful to find the equivalent 1d quantum Hamiltonian by taking
the very anisotropic limit ϕ→ 0. The Hamiltonian is found from the transfer matrix TL(ϕ) for L sites by

H := 2 sin 2θ sin 3θ
d logTL(ϕ)

dϕ

∣∣∣∣
ϕ=0

+ 2L sin 5θ 1 ,

yielding

H =

L∑

j=1

{
4 cos 4θ sin θ ( )j + 2 cos 2θ sin 3θ [(〉〉 )j + ( 〈〈)j ] + 2 sin 2θ [( ⋒ )j + ( ⋓ )j ]

+2 sin 3θ [(��)j + (��)j ]− 2 sin θ Ej − 2 sin 3θ Xj

}
. (48)

To find the Fermi velocity vf , we assume that in the scaling limit this Hamiltonian is that of a conformal field theory.
In the next Section, we will present much evidence in support of this assumption. In a conformal field theory, the
ground-state energy (the lowest eigenvalue of H) is32

E0
L ≃ Le∞ − πc

6L
vf . (49)

where c is the central charge. Let Λ0
L(ϕ) be the dominant eigenvalue of the transfer matrix. The analysis of Appendix B

indicates that the free energy of the loop model on a rhombic lattice with angle α is given by
[
− log Λ0

L(ϕ)
]
, where

α = πϕ/(2ϕ0) and ϕ0 is the isotropic value, as defined in (45). In a conformal field theory, one expects32

− log Λ0
L(ϕ) ≃ Lf∞(α) − πc

6L
sinα . (50)

Differentiating (50) around ϕ = 0 and comparing with (49) yields

vf =

∣∣∣∣
2π sin 2θ sin 3θ

2ϕ0

∣∣∣∣ , ϕ0 =

{
3θ
2 if 0 < θ < π

3
3θ
2 − π if π

3 < θ < π.
(51)

IV. IDENTIFYING THE CRITICAL THEORIES

In this Section, we present what we believe is convincing evidence that the doubled loop model with Boltzmann
weights (44) is critical. We find the presumably exact central charge of the conformal field theories describing the
scaling limit, and also give some of the dimensions of fields. We do this by a combination of calculations exploiting
the integrability, comparison to a similar integrable model, and exact diagonalization of the transfer matrix and the
Hamiltonian for widths up to L = 14 sites.

A. The four regimes

This critical line is parametrized by the value of θ ∈ [0, π], related the weight per loop by n = −2 cos 2θ. Since
the Fermi velocity vanishes at θ = π

3 ,
π
2 , and has a discontinuity at θ = 2π

3 , it is natural to expect that the physics
is discontinuous if θ is varied across these values. We thus divide the critical line into four regimes, as described in
Table II.
All known integrable models with Boltzmann weights parameterized by trigonometric functions of the anisotropy

parameter ϕ are critical, and this is no exception. One argument for this is the existence of the lattice holomorphic
operator described in Appendix B. Another is the inversion-relation calculation done below, which shows that with
standard assumptions about holomorphicity in ϕ, the free energy is singular as this critical point. A numerical check
is to use exact diagonalization to find the largest eigenvalue of T and/or the ground-state energy of H , and then
fit the results to (49) or (50). To extract the central charge c, we use two different-length systems to get rid of the
extensive piece Le∞. Doing this, we find the results given in Fig. 7. We see a very nice convergence to the critical
behavior as expected.
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regime θ-range parameterisation central charge

1 0 < θ < π

3
n = −2 cos π

r+2
c = 2

[
1− 6

(r+1)(r+2)

]
+ 1

2

2 π

3
< θ < π

2
n = 2 cos π

r+2
c = 2

[
1− 6

(r+1)(r+2)

]

3 π

2
< θ < 2π

3
n = 2 cos π

r+2
c = 3r2

(r+1)(r+2)
+ 1

2

4 2π
3
< θ < π n = −2 cos π

r+2
c = 3r2

(r+1)(r+2)

TABLE II. The four regimes of the integrable loop model.

We combine these results with other arguments to conjecture exact formulae for the central charge for all θ. We can
also identify precisely which conformal field theories describe some critical lines. There are two types of conformal
field theories known to describe doubled loop models, and both occur along this critical line. Unfortunately, the value
of n = 0 at θ = 3π

4 of interest for the truncated CC model lies in one of the regions where we do not understand the
conformal field theory. As is apparent from Fig. 7, we do know that c = 0 as required there.
At several special values of θ, the model simplifies. Namely, when n = ±1, all loop configurations receive the same

weight (if n = −1, we transform (n, x) → (−n,−x) as explained in Sec. III B). Thus when computing the partition
function, we can sum up the four completely packed vertices to give a single one with weight w1 + w2 + 2nx.
For θ = 2π

3 at the isotropic point, x = v = 0, so this reduces to a six-vertex model with no staggering. Here the

usual parameter33 has value

∆ =
a2 + b2 − c2

2ab
= −1 ,

so this is in the same universality class as the antiferromagnetic Heisenberg model. Thus the central charge is c = 1
and the first thermal exponent is Xt =

1
2 , in agreement with the numerical results in Figs. 7–8.

At θ = π
6 and θ = 5π

6 , we obtain a staggered version of the eight-vertex model. Ordinarily the staggered eight-
vertex model is not solvable, but as we detail in Appendix C, this one is not only solvable, but can be mapped onto a
free-fermion theory. There we show that there are two Majorana fermions present, but only one of the two is critical.
Thus the central charge is c = 1

2 here, again consistent with the numerics.

B. Computation of an exact scaling dimension

Since the model is integrable, it is possible to derive some quantities exactly. Here we extract the dimension of an
operator in the critical theory as a function of θ. This is possible because at certain discrete values of θ, there exists
a deformation away from the critical point preserving the integrability28. The inversion-relation method33 yields the
free energy along this deformation, and by analyzing its expansion around the critical point, we extract the value
of the exponent νint. This then yields the dimension of the operator which when added to the action causes the
deformation.
It is convenient to parameterize the loop weight n within each of the four regimes by a parameter r,

n = 2ǫ cos
π

r + 2
, (52)

where ǫ = −1 in regimes 1 and 4, and ǫ = 1 in regimes 2 and 3 (see Table II).
The integrable deformations resulting in unitary field theories occur at integer values of r in all four regimes. Here

the dilute BWM algebra admits a “height” or “Restricted Solid-On-Solid” (RSOS) realization28. Instead of treating
the loops as the degrees of freedom, on the dual lattice one places height variables, which are integers restricted to a
certain interval. The loops then play the role of domain walls separating regions of different heights.
The inversion-relation method is a way of computing the free energy exactly after making assumptions about its

holomorphicity properties as a function of ϕ. The free energy satisfies constraints following from the inversion relation
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FIG. 7. Numerical estimates for the central charge in the four critical regimes. Different symbols represent data points for
consecutive system sizes: L = 4, 6 (+), L = 6, 8 (×), L = 8, 10 (∗), L = 10, 12 (�), L = 12, 14 (�). Full lines represent the
predicted exact values from Table II.

(53) below, and the fact that sending ϕ → 3θ − ϕ rotates the lattice by 90o. The holomorphicity assumptions then
give a unique solution to these constraints. Parameterizing the deformation in our case by p, the inversion relation
becomes28

Ř(ϕ, p)Ř(−ϕ, p) = (4p)−1 θ1(2θ − ϕ, p) θ1(2θ + ϕ, p) θ1(3θ − ϕ, p) θ1(3θ + ϕ, p) 1 , (53)

where θ1(u, p) is the standard elliptic theta function. This indeed reduces to (47) in the critical limit p → 0. From
this, it is simple to show that the inverse of the transfer matrix in the diagonal direction is given by forming a transfer
matrix out of products of Řj(−ϕ, p).
Conveniently, both (53) and the behavior under rotational symmetry are identical to that of the model studied

in34, so we utilize these results. The singular part of the free energy approaching the critical point depends on p
as fsing ∼ p2−νint , so the operator perturbing the critical theory in the integrable direction has scaling dimension
Xint = 2− 2/νint. Then we find

Xint =





r−1
r+2 + 1 in regime 1,
r−1
r+2 in regime 2,
3

r+2 + 1 in regime 3,
3

r+2 in regime 4.

(54)

We have written these results in terms of r instead of θ to emphasize that the derivation only applies to r integer,
since this is where (53) can be derived. However, we expect that the results can be continued to all r within a given
regime, since the equations themselves depend on r as a continuous parameter.
A good check of the validity of (54) for generic θ is that it corresponds exactly to Xint = 2s, where s is the spin of

the discretely holomorphic parafermion ψs(z) described in Appendix B: see (B6).
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C. Description by conformal field theory

Here we give formulae for the central charges in all four regimes that are presumably exact. All are related to those
occurring in completely packed models. However, the doubled loop models are not identical to completely packed
models: we have checked that the doubled loops have non-trivial fractal dimension in regime 4 (see Section VC).

One type of critical behavior possible for a doubled loop model is simply to have the two colors decouple in the
scaling limit. This occurs in the isotropic completely packed version when x = −w1 = −w2, and is argued to persist
in a region around this point20. The central charge is simply twice cO(n) given in (38). Examining our numerical
results for c, we see that in regime 2, the central charge indeed is converging nicely to 2cO(n) with the appropriate
dependence on n. When r is an integer, this is twice the central charge of the conformal minimal models, and so the
corresponding height model should scale to two decoupled minimal models. An additional check on this comes from
the fact that the dimension of the integrable perturbing operator in (54) is twice that of an operator in a minimal
model. Namely, we have Xint = 2X1,2, where X1,2 = r−1

2(r+2) is the scaling dimension of the Φ1,2 operator in the

minimal model with central charge c = 1 − 6
(r+1)(r+2) . It is thus natural to conjecture that in regime 2, the scaling

limit of our integrable loop model is indeed that of two decoupled completely packed loop models. These conformal
field theories have been extensively studied35.

In regime 1, the numerics for the central charge are apparently converging to 2cO(n) +
1
2 . Thus here the loops

apparently decouple as well, but additional critical Ising degrees of freedom appear. This is consistent with the
mapping to the Ising model at θ = π

6 described in Appendix C. The scaling dimension Xint here is 2X1,2 + 1, leading
to the natural interpretation that the operator is a product of the Φ1,2 operators in the two minimal models with the
energy operator in the Ising model, the latter having dimension 1. These extra Ising degrees of freedom, which also
occur in a certain regime of the square-lattice O(n) model36, appear through the following mechanism. The vertices
of the loop model obey a Z2 symmetry, in the sense that any vertex is surrounded by an even number of empty edges.
Thus empty edges form polygons where each node has even degree, and so they respect the geometry of Ising domain
walls for Ising variables σ lying on the dual lattice. Depending on the values of the Boltzmann weights, these Ising
variables may become critical in the continuum limit. This is evidently what happens in regime 1.

The critical behavior in regimes 3 and 4 is not that of two decoupled models. As mentioned above in Sec. III A, in
the completely packed version of the doubled loop model, there occurs a coupled critical point corresponding to the
SUr(2)× SUr(2)/SU2r(2) WZW coset model, with central charge cr (42). The numerical analysis in Fig. 7 nicely fits
to cr in regime 4, and agrees with the Ising value c = 1

2 at θ = 5π
6 , derived in Appendix C. Moreover, when r is an

integer, the exponent Xint in (54) belongs to the above coset theory. Thus it is natural to conjecture that the central
charge throughout regime 4 is cr. As we see from our numerics at n = 0 (see Sec. VC), the fractal dimension of a
single loop is df < 2, so regime 4 represents a “dilute branch” of the coset theory.

Likewise, in regime 3 the data seem to be converging to cr +
1
2 , agreeing with the six-vertex value c = 1 at θ = 2π

3 .
The exponent Xint is 1 greater than the value in regime 4, so it is natural to interpret that the operator is multiplied
by the Ising energy operator of dimension of 1. Thus like in regime 1, the critical theory presumably includes an extra
Ising piece.

Outside r integer, the conformal field theory in regimes 3 and 4 is not understood. Moreover, we will see in the
subsequent section that even though the formula for the central charge is applicable for all r, it is not even clear
whether dimensions of exponents can be continued to values of |n| < 1.

V. CRITICAL BEHAVIOUR IN REGIME 4

The main motivation of this paper is to explore a doubled loop model arising in the truncation of the Chalker-
Coddington network model. For a connection to disordered systems, the weight per loop n and the central charge c
must be zero. We have two n = 0 points, but for θ = π

4 inside regime 1, the corresponding critical field theory seems
to have nothing to do with the CC model. Not only do the different colors of loop decouple, but the extra Ising degree
of freedom makes c 6= 0. We thus in this section focus on the behavior in regime 4, which contains the other n = 0
point at θ = 3π

4 .

As noted above, we do not have a conformal field theory description valid in regime 4 outside of integer r. It
therefore seems a good idea to exploit the fact that the associated height description at these points is described by
the coset conformal field theory SU(2)r × SU(2)r/SU(2)2r.
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A. Integrable perturbations

This coset theory is known to have two integrable perturbations. One of them, found by using level-rank duality
on the results of37, is by the operator with dimension Xint =

3
r+2 discussed above. This perturbation describes the

scaling limit of the height model with elliptic Boltzmann weights28. In terms of the loop model, we have found that
the discrete parafermion ψs(z) of Appendix B is the chiral part of the corresponding operator. This parafermion
consists of the insertion of a one-leg defect for each loop flavour.

The other integrable perturbation also has a very natural meaning in terms of loops. This perturbing operator cor-
responds to the (1,1;adjoint) operator of dimension X(1,1;adj) =

2r
r+1 . Several arguments imply that this perturbation

corresponds to changing the weight per unit length of the loops38. This integrable field theory describes the scaling
limit of an integrable height model39, and using the BWM algebra, it is described in38 how to relate this height model
to a dilute doubled loop model very similar to the one we study here. Moving away from the critical point in this
similar model turns out to be effectively changing the weight per unit length. The second argument implying this
result involves the S matrices for this integrable field theory, which decompose into the tensor product of S matrices
of two minimal models Sr × Sr

40. It is natural to interpret the worldlines of a particle in a single minimal model as
a loop in the O(n) model41. Thus when the S matrix is given by this tensor product, it is natural to interpret the
worldlines of such particles as doubled loops; when two particles scatter they obey one of the four processes in the
vertices w1, w2 and x pictured in Fig. 5. In such an interpretation, the weight per unit length of the loop is related
to the mass of the particle. In the field theory, moving along this integrable line corresponds precisely to varying the
mass of the particle.

We denote Xt the thermal exponent, defined as the conformal dimension for the first excited state in the zero-leg
sector. The numerical calculation of Xt (see Fig. 8) brings two observations. In the region 5π

6 . θ < π, the thermal

exponent Xt converges to X(1,1;adj) =
2r
r+1 even for generic values of θ, whereas X(1,1;adj) was derived only for integer

values of r. This indicates that the results from the SU(2)r × SU(2)r/SU(2)2r coset WZW model may be continued
to arbitrary 5π

6 . θ < π. However, in the region 2π
3 < θ . 5π

6 , Xt clearly deviates from the continued value 2r
r+1 : this

shows that not all exponents of the loop model are given by analytic continuation of the WZW coset model in this
region, including our point of interest θ = 3π

4 .

L = 12
L = 10
L = 8
L = 6
L = 4

θ

X
t

π5π
6

3π
4

2π
3

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

FIG. 8. Thermal exponent Xt in regime 4. Data points were obtained by transfer-matrix diagonalisation, and the solid line
represents the exact result for the integrable perturbation dimension X(1,1;adj) =

2r
r+1

.
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B. Correlation length exponent ν

The correlation length exponent ν is defined as the analog for the loop model of νCC (4). In the CC model, the
effect of perturbing the energy level E away from the transition value Ec amounts to taking β, β′ out of the critical
line (17). The analog of this perturbation in the integrable loop model is to introduce a staggering of the spectral
parameter between the even and odd sublattices, with symmetric values around the isotropic spectral parameter
ϕ0 (51): ϕ = (1± λ)ϕ0, in the range −1 ≤ λ ≤ 1.
The parameter λ acts in a similar way to (β − βc) in the original CC model. At λ = −1, the only allowed loops

are those with minimal length, winding around the vertices of one sublattice (say, the even one). At λ = 1 loops also
have minimal length, but wind around the odd sublattice. The critical transition takes place at λ = 0, where the
two sublattices become equivalent, and loops may be very long. In the limit λ → 0, we expect this perturbation to
develop a correlation length, scaling as

ξ ∼ |λ|−ν . (55)

Since this staggering does not respect the rapidity lines of the square lattice, it breaks integrability.
Let us first discuss the point θ = 5π

6 , where the model maps to free fermions and remains solvable when the
λ perturbation is included (see Appendix C). At this point, we get the analytical result ν = 2, whereas the energy
operator of the free-fermion theory is Xt = 1. In Appendix C, we show that the effective theory is a massive Majorana
fermion with mass proportional to λ2 and not λ. Thus, at θ = 5π

6 , we have the relation between ν and the dimension
of the perturbing operator:

Xt = 2− 2

ν
. (56)

It is natural to assume that both ν and Xt are continuous in θ, so the effective mass term should still be proportional
to λ2 outside θ = 5π

6 , and the relation (56) holds all along regime 4.

For θ 6= 5π
6 , exponent ν is only accessible numerically, through finite-size scaling. The correlation-length exponent ν

is obtained by assuming a one-parameter scaling law for the energy gap in the presence of the staggered perturbation
λ. For λ ≃ 0, we expect the behaviour:

log
Λ0(λ)

Λ1(λ)
≃ 2π

L
F
(
λ L1/ν

)
, (57)

where F is a scaling function. Since eigenvalues are unchanged under λ → −λ, F must be an even function. In
particular, at θ = 3π

4 , like for the truncated CC model (see Sec. II D), we get the best data collapse (see Fig. 9) for
the value

ν ≃ 1.1 . (58)

To our numerical precision, this value is close to what one would get from (56) with Xt ≃ 0.3. This is an indication
that the relation (56) should hold throughout regime 4.

C. Other exponents

A finite-size scaling plot of the gap corresponding to ℓ1 = ℓ2 = 1 is shown in Fig. 10. The fact that it scales to zero
faster than 1/L indicates that X1,1, and hence X|G|2 , are consistent with zero. In the untruncated CC model, the

vanishing of the analogous exponent XCC
|G|2 is due to probability conservation (see Sec. II D), but as far as we know

there is no fundamental reason for this property to hold also in the truncated model, and it would be interesting
to investigate this further. The observed slope in Fig. 10 suggests existence of an irrelevant operator with scaling
dimension ≈ 3.2.
Moreover, we observe numerically that Xt = X2,2. Hence, like for usual dilute polymers, this means that Xt is

associated to a perturbation of the monomer fugacity (but different from the coset-model continuation to r = 0, which
would yield X(1,1;adj) = 0), and the fractal dimension of a path is

df = 2−X2,2 ≃ 1.71 . (59)
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FIG. 9. Data collapse for the effective thermal exponent Xt(L, λ) in the presence of a λ perturbation. The value used for this
plot is 1/ν = 0.9.
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FIG. 10. Log-log plot of the energy gap for the watermelon (1, 1) sector. Data points are fitted by a line of slope ≃ −2.2, and
hence the conformal dimension is X1,1 = 0.

VI. DISCUSSION

Regimes 3 and 4 of the integrable model are particularly interesting, as the two loop colours remain coupled in
the continuum limit. They are described by the “dilute branch” of the SU(2)r × SU(2)r/SU(2)2r WZW coset CFT
(the same CFT as for the completely packed case20), with an additional Ising degree of freedom in regime 3. Strictly
speaking, this theory is only valid at the RSOS points, but some critical properties (including the central charge)
extend to the loop model for generic fugacity n. However, differences between the loop and RSOS spectra exist, as
shown by our results on the thermal exponent Xt. An analytic study of the loop model through the Bethe Ansatz
Equations is considered for future work. One also needs to understand if a Coulomb-Gas construction (most probably
with a three-dimensional target space) could reproduce the coset results for generic n.
The original motivation for the present work was to propose an exactly solvable approximation to the IQHE

transition. Unfortunately, our results for the correlation-length exponent ν clearly indicate that the point n = 0 of
the integrable model is not in the universality class of IQHE. However, this model is a critical, integrable point in the
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phase diagram of our modified CC model. It should really be considered as the first order in a hierarchy of truncated
models, converging to the IQHE universality class. Higher-order truncated models should also contain integrable
points, which may be built by “fusing” the edges of the first-order model, following39 or a more recent approach based
on additional ZN symmetry42.

From the numerical point of view, we used the only known efficient method to study a generic loop model: transfer-
matrix diagonalisation. However, the inherent limitations on the system size prevent us from obtaining sharp estimates
for the exponents, especially for ν. Recently, new Monte-Carlo algorithms have been proposed to simulate 2d loop
models43. We hope to adapt this new approach to two-colour models, and get more precise estimates for the exponents
of our truncated CC model.
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Appendix A: The BWM algebra

In this Appendix, we recall the motivation and definition of the BWM algebra in a graphical language.

The BWM algebra21 is a braid-monoid algebra, an object relevant to knot theory. It was originally designed to
compute a certain link invariant, and later it was realised that it could be represented by RSOS models related to
affine Lie algebras31. In28, a dilute version of the BWM algebra was constructed, together with the corresponding
R-matrix.

In the context of knot theory, the basic objects under consideration are braids. Let (p1, . . . , pL) be L distinct points
in the complex plane, and define two copies of each point in three-dimensional space, p′j = pj × {0}, p′′j = pj × {1},
so that the points {p′j} and {p′′j } lie in two parallel planes. For all j = 1, . . . , L, take a curve Γj enclosed between
the two planes, and connecting p′j to p′′j . Furthermore, impose that the Γj ’s do not intersect each other. Denote
the multiplet Γ = (Γ1, . . . ,ΓL): a braid β is then an equivalence class of Γ’s, modulo continuous deformations of the
curves. A typical braid is depicted in Fig. 11.

FIG. 11. An element of the braid group (left) and a word of the braid-monoid algebra (right) for L = 4.

Multiplication of two braids β, β′ is defined by the concatenation of the two corresponding diagrams, with the
convention that diagrams act from bottom to top: the product ββ′ corresponds to β above β′. The β’s form the braid
group, generated by the elementary braids Bj , B

−1
j , which satisfy the relations:

BjB
−1
j = B−1

j Bj = 1 (A1)

BjBj+1Bj = Bj+1BjBj+1 (A2)

BjBℓ = BℓBj if |j − ℓ| ≥ 2. (A3)

Consider now multiplets Γ = (Γ1, . . . ,ΓL) of non-intersecting curves connecting all the elements of {p′j} ∪ {p′′j },
without the restriction that a curve should go from a p′j to a p′′k . The corresponding diagrams are then words on

the alphabet {Bj, B
−1
j , Ej , j = 1, . . . , (L − 1)}, where the meaning of the letters Bj , B

−1
j , Ej is given in Fig. 12.

The algebra on these words is called a braid-monoid algebra. It has two parameters (N,ω), and is defined by the
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braid-group relations (A1)–(A2), together with the additional relations (see Fig. 13):

E2
j = N Ej (A4)

EjEj±1Ej = Ej (A5)

BjEj = EjBj = ω Ej (A6)

BjBj±1Ej = Ej±1BjBj±1 = Ej±1Ej . (A7)

Equations (A4)–(A5) mean that the Ej form a Temperley-Lieb algebra with loop weight N .

Bj B−1

j Ej

j j + 1 j j + 1 j j + 1

. . .. . . . . . . . . . . . . . .

FIG. 12. Generators of a braid-monoid algebra.

= N = =

= == =

= = ω

FIG. 13. Algebraic rules in the braid-monoid algebra with parameters (N,ω).

The BWM algebra is a braid-monoid algebra (A1)–(A7) where one imposes a linear relation between Bj , B
−1
j and

Ej :

Ej = 1+
Bj −B−1

j

q − q−1
, where N = 1 +

ω − ω−1

q − q−1
. (A8)

The reason for introducing such a constraint is that the resulting algebra supports a linear form (the Markov trace)
which is identical to a geometric invariant of the diagrams Γ (the Kauffman polynomial)21.
The dBWM algebra28 is obtained by allowing vacancies, or equivalently by taking multiplets of curves Γ =

(Γ1, . . . ,Γℓ) with 0 ≤ ℓ ≤ L. This amounts to adding the generators

Ij , ( )j , (〉 )j , ( 〈)j , ( ∪ )j , ( ∩ )j , (�)j , (�)j ,

whose action is depicted in Fig. 14. In equations (A1) and (A8), 1 is replaced by Ij , so that the Bj , B
−1
j , Ej still form

a BWM algebra on the set of occupied sites. Additional relations for the dilute generators should be included, to
implement invariance under continuous deformation of the curves in the presence of vacancies. The full set of dBWM
relations is given in28.
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j j + 1

Bj

j j + 1

B−1

j

j j + 1

(〉 )j

j j + 1 j j + 1

( ∪ )j (
∩

)j

FIG. 14. The generators of the dilute BWM algebra.

Appendix B: Discretely holomorphic parafermion in the loop model

In this Appendix, we show that the two-colour loop model admits a discretely holomorphic parafermion ψs(z)
44–46

exactly on the integrable manifold (44). The parafermion ψs(z) is defined on the midpoints of the dual lattice L∗,
and inserts a one-leg defect for each color at point z. In the two-point function 〈ψs(0)ψs(z)〉, there is a black (resp.
grey) path γ1 (resp. γ2) connecting 0 and z, and one includes a phase factor involving the winding angles W of the
paths γ1, γ2:

〈ψs(0)ψs(z)〉 =
1

Z

∑

(γ1,γ2)0→z

∑

C|(γ1,γ2)

Π(C) e
is
2
[W (γ1)+W (γ2)] , (B1)

where the first sum is over all possible pairs of paths from 0 to z, the second sum is over the loop configurations C
compatible with γ1 and γ2, and Π(C) is the Boltzmann weight for a loop configuration C.

0

z

FIG. 15. A loop configuration contributing to 〈ψs(0)ψs(z)〉.

We impose discrete Cauchy-Riemann (CR) on 〈ψs(0)ψs(z)〉:
∑

z∈�

〈ψs(0)ψs(z)〉 δz = 0 , (B2)

where the sum is over the edges of an elementary plaquette of L∗, and the δz’s are the corresponding elementary
displacements. For the discrete CR equations (B2) to hold, it is sufficient to fix the external loop configuration outside
a given plaquette, and ask the total contribution of internal configurations to vanish44,46. This determines a linear
system of equations for the Boltzmann weights. To get anisotropic solutions, we consider the analog problem on a
rhombic lattice of angle α45,46. Setting

λ := e
iπs
2 , µ := eiα(1+s) , (B3)



23

we get the 7× 7 linear system for the unknowns (t, u1, u2, v, w1, w2, x):

t+ µλ−2u1 − µu2 − v = 0
n2u1 − λ−2u2 − µλ2v + µλ−2(n2w1 + w2 + 2nx) = 0
−λ2u1 + n2u2 + µλ−4v − µ(w1 + n2w2 + 2nx) = 0
−µλ2u1 + µλ−4u2 + n2v − λ4w1 − λ−4w2 − 2x = 0

nλu1 − nλ−1u2 − µλ−1v + µλ−1[n(w1 + w2) + (n2 + 1)x] = 0
nλ−1u1 − λu2 − nµλv + µλ−3(nw1 + x) + µλ(w2 + nx) = 0

−u1 + nλ2u2 + nµλ−2v − µλ−2(w1 + nx)− µλ2(nw2 + x) = 0 ,

(B4)

As a first step, we need determine the spin s by going back to the isotropic case α = π/2. Imposing u1 = u2 and
w1 = w2, (B4) reduces to a 5× 5 system, whose determinant is:

D(n, λ) = −λ−4(λ2 + 1)(nλ4 − 1)2(λ4 + λ−4 + n3 − 3n) . (B5)

Using the parameterisation n = −2 cos 2θ, this determinant vanishes when:

exp(2iπs) = exp(±6iθ) . (B6)

For a general angle α, the solution of (B4) is a set of α-dependent weights t(α), . . . x(α). If we apply the substitution:

α → ϕ

1 + s
, (B7)

we observe that the solution of (B4) is identical to the integrable weights (44). This is analogous to what was found
for various other integrable models with a discrete holomorphic parafermion44–46. Note that the relation (B7) is
consistent with the discussion on the Fermi velocity in Section III C.
Moreover, at the Ising points θ = π

6 ,
5π
6 (see Appendix C), the spin s = 1

2 is consistent with (B6).

(1) (2) (3) (4) (5) (6) (7)

FIG. 16. External loop connectivities outside an elementary plaquette.

Appendix C: Free fermions at θ = π

6
, 5π

6

1. Mapping to a staggered 8V model

At θ = π
6 and θ = 5π

6 , the model maps to a free fermion Hamiltonian through the mapping sequence:

two-color loop → square-lattice O(n = 1) → staggered 8V → free fermions.

In both cases, we start from the two-color loop model and do the sign change (n, x) → (−n,−x) to get n = 1. With
this value of n, one may discard loop connectivities, and the model is simply local, with occupied and empty edges.
After the exchange of occupied/empty edges, we get a square-lattice O(n) model36 with n = 1 and weights :

t̃ = w1 + w2 − 2x, ũ1 = u1, ũ2 = u2, ṽ = v, w̃1 + w̃2 = t . (C1)

(The tilde is here to avoid confusion between the O(n) and two-colour loop model Boltzmann weights). For θ = π
6 ,

we have the specific values

t̃ = sin 2ϕ−
√
3

ũ1 =
√
3 cosϕ

ũ2 = −
√
3 sinϕ

ṽ = sin 2ϕ

w̃1 = − cos(π6 − 2ϕ)−
√
3
2

w̃2 = cos(π6 + 2ϕ)−
√
3
2 ,

(C2)
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which are exactly those of the integrable square-lattice O(n) model36 with n = 1 at the dilute critical point. The
O(n = 1) model maps in turn to an eight-vertex model (see Fig. 17) with staggered weights

ω1 = ω2 =
√
3 cosϕ

ω3 = ω4 = −
√
3 sinϕ

(ω5, ω6) =

{
(− sin 2ϕ−

√
3, sin 2ϕ−

√
3) on even sites

( sin 2ϕ−
√
3,− sin 2ϕ−

√
3) on odd sites

ω7 = ω8 = sin 2ϕ .

(C3)

At θ = 5π
6 , one gets the same 8V model, up to irrelevant signs.

ω1 ω2 ω3 ω4 ω6ω5 ω7 ω8

FIG. 17. Correspondence between the 8V model and the O(n = 1) model. The mapping depicted here is valid on one sublattice,
say even sites. On odd sites, all arrows must be reversed.

2. Very anisotropic limit: the XY chain in a magnetic field

In terms of the Pauli matrices σj , the 8V Ř-matrix reads:

Ř8V
j =

1

4
(ω1 + ω2 + ω5 + ω6)1+

1

4
(ω1 + ω2 − ω5 − ω6)σ

z
j σ

z
j+1

+(ω3 σ
−
j σ

+
j+1 + ω4 σ

+
j σ

−
j+1 + ω7 σ

−
j σ

−
j+1 + ω8 σ

+
j σ

+
j+1)

+
1

4
(ω1 − ω2)(σ

z
j + σz

j+1) +
1

4
(ω5 − ω6)(σ

z
j − σz

j+1) . (C4)

We can now take the very anisotropic limit ϕ → 0. Denoting by a prime the derivative with respect to ϕ at ϕ = 0,
and using the weights (C3), we obtain:

Ř
′8V
j = −

√
3(σ−

j σ
+
j+1 + σ+

j σ
−
j+1) + 2(σ−

j σ
−
j+1 + σ+

j σ
+
j+1)− (−1)j(σz

j − σz
j+1) . (C5)

The critical Hamiltonian is given by

H0 = −1

2

L∑

j=1

Ř
′8V
j = −1

4

L∑

j=1

[
Jx σ

x
j σ

x
j+1 − Jy σ

y
j σ

y
j+1 + 2h (−1)jσz

j

]
, (C6)

where Jx = (2 −
√
3), Jy = (2 +

√
3) and h = 2. The alternating sign of the last term in (C6) can be eliminated by

the unitary change of basis:

H0 → U †H0U , where U :=

L/2∏

ℓ=1

σx
2ℓ−1 . (C7)

This maps H0 to an XY chain in a magnetic field47,48:

HXY = U †H0U = −1

2

L∑

j=1

[
(1 + γ) σx

j σ
x
j+1 + (1− γ) σy

j σ
y
j+1 + h σz

j

]
, (C8)

where γ = −
√
3
2 and h = 2. In particular, we have learnt that this particular point of the XY spin chain is exactly

equivalent to the integrable dilute O(n = 1) model.
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3. Staggered perturbation associated to ν

The setting of the 8V model also allows us to consider a staggered perturbation like the one defining exponent ν
(see Sec. VB). To do this, we introduce staggered spectral parameters (1 ± λ)ϕ on the even/odd sites. We take the
very anisotropic limit ϕ→ 0, with λ fixed. This way, the parameter λ controls the strength of the perturbation. The
resulting Hamiltonian has the form

H(λ) = H0 + λH1

where

H1 = −1

2

L∑

j=1

(−1)jŘ
′8V
j = −1

4

L∑

j=1

(−1)j
(
Jx σ

x
j σ

x
j+1 − Jy σ

y
j σ

y
j+1

)
, (C9)

and Jx, Jy are the same as for H0. After the unitary change of basis defined by U , we get the perturbing term:

Hp = U †H1U = −λ
2

L∑

j=1

(−1)j
[
(1 + γ) σx

j σ
x
j+1 + (1− γ) σy

j σ
y
j+1

]
. (C10)

Staggered 6V and 8V models were studied by various authors49, but to our best knowledge, the case of the perturba-
tion (C10) has not been treated. We will thus use the technique of47 to solve it exactly.

4. Exact free-fermion solution

In this paragraph, we expose the exact solution of H(λ) for general values of γ, h, λ. Following47, we can solve the
model H(λ) by a Jordan-Wigner transformation, mapping the Pauli matrices σj to fermion operators

cj :=

(
j−1∏

ℓ=1

σz
ℓ

)
σ+
j , c†j :=

(
j−1∏

ℓ=1

σz
ℓ

)
σ−
j , c†jcj =

1

2
(1− σz

j ) , (C11)

obeying anti-commutation relations:

{cj, cℓ} = 0 , {cj, c†ℓ} = δjℓ . (C12)

In this language, the perturbed Hamiltonian reads

H(λ) = −
L∑

j=1

{
[
1 + (−1)jλ

] [
c†jcj+1 + c†j+1cj + γ(c†jc

†
j+1 + cj+1cj)

]
+ h

(
1

2
− c†jcj

)}
. (C13)

We introduce two species of fermions

c1,ℓ := c2ℓ , c2,ℓ := c2ℓ−1 , (C14)

and their Fourier modes

cµ,q :=
1√
L/2

L/2∑

ℓ=1

eiℓqcµ,ℓ , q =
2πm

L/2
− π , m = 1, . . . ,

L

2
. (C15)

We can now rewrite H(λ) as

H(λ) =
∑

−π<q≤π

∑

µ,ν

[
c†µ,qAµν,qcν,q +

1

2

(
c†µ,qBµν,qc

†
ν,−q − cµ,−qBµν,qcν,q

)]
, (C16)

where the matrices Aq and Bq read

Aq =

(
h α∗

q

αq h

)
, Bq =

(
0 −β∗

q

βq 0

)
,

αq := −[(1 + λ)eiq + (1− λ)] ,
βq := γ[(1 + λ)eiq − (1− λ)] .

(C17)
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Like in47, the energies ǫµ(q) are the square roots of the eigenvalues of (Aq +Bq)(Aq −Bq):

ǫ1,2(q) = 2

√
h2

4
+ (1 + γ2λ2) cos2

q

2
+ (γ2 + λ2) sin2

q

2
∓
√
4γ2λ2 + h2

∣∣∣cos
q

2
+ iλ sin2

q

2

∣∣∣
2

. (C18)

This is the two-branch dispersion relation for arbitrary γ, h, λ.
To express the corresponding eigenmodes, we need the unitary 2× 2 matrices Wq, Vq defined by the linear relations

(Aq −Bq)Wq = VqDq , (Aq +Bq)Vq =WqDq , Dq :=

(
ǫ1(q) 0
0 ǫ2(q)

)
. (C19)

The Bogoliubov transformation diagonalising H(λ) is

ηµ,q :=
1

2

∑

ν

[
(W + V )†µν,q cν,q − (W − V )†µν,q c

†
ν,−q

]
. (C20)

Unitarity of Vq and Wq ensures the canonical anticommutation relations

{ηµ,q, ηµ′,q′} = 0 , {ηµ,q, η†µ′,q′} = δµµ′δqq′ . (C21)

In terms of the η’s, the Hamiltonian reads

H(λ) =
∑

−π<q≤π

∑

µ=1,2

ǫµ(q) η
†
µ,qηµ,q . (C22)

Note that there are L/2 distinct momenta q, and that each momentum corresponds to two modes µ = 1, 2. Thus, we
recover L independent modes ηµ,q.
As a final step, we perform the change

ηµ,q → η̃µ,q =

{
ηµ,q if q ≥ 0,

η†µ,q if q < 0,
(C23)

so that the modes with q < 0 are now considered as holes. the Hamiltonian becomes

H(λ) =
∑

−π<q≤π

∑

µ=1,2

ǫ̃µ(q) η̃
†
µ,q η̃µ,q , where ǫ̃µ(q) := sgn(q) ǫµ(q) . (C24)

5. Critical Majorana fermion at h = 2, λ = 0

The dispersion relation of the XY chain in a magnetic field is obtained by setting λ = 0 in (C18):

ǫ1,2(q) = 2

√(
h

2
∓ cos

q

2

)2

+ γ2 sin2
q

2
(λ = 0) . (C25)

For h = 2, ǫ1 is critical at q = 0, whereas ǫ2 is not critical50:

ǫ̃1(q) = 4 sin
q

4

√
sin2

q

4
+ γ2 cos2

q

4
(C26)

ǫ̃2(q) = 4 sgn(q) cos
q

4

√
cos2

q

4
+ γ2 sin2

q

4
. (C27)

The dispersion relation ǫ̃1(q) is approximately linear at q = 0 (see Fig. 18). In the ground state, all levels with
−π < q < 0 are filled: this is a Fermi sea with only one Fermi level qf = 0, and thus it corresponds to a Majorana
fermion with central charge c = 1

2 . The critical eigenmodes are obtained from (C20):

{
η1,q = cos

θ1,q
2 (c1,q + c2,q) + i sin

θ1,q
2 (c†1,−q + c†2,−q) ,

η2,q = cos
θ2,q
2 (c1,q − c2,q) + i sin

θ2,q
2 (c†1,−q − c†2,−q) ,

(C28)
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where
{
θ1,q := Arg

(
1− cos q

2 − i sin q
2

)
,

θ2,q := Arg
(
1 + cos q

2 + i sin q
2

)
.

(C29)

After the change η → η̃ (C23), the continuum limit is described by the effective Hamiltonian

H0 ≃ ivf

∫
dx η̃†1∂xη̃1 . (C30)

q

ǫ̃(
q
)

π0−π

4

3

2

1

0

-1

-2
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-4

q

ǫ̃(
q
)

π0−π

5
4
3
2
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0

-1
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-4
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FIG. 18. The dispersion relation for h = 2, γ = −
√

3
2
. Left: critical case λ = 0. Right: λ = 1

2
. The full (resp. dotted) lines

represent ǫ̃1 (resp. ǫ̃2).

6. Gapped theory at h = 2, λ > 0

When the λ perturbation is turned on, an energy gap opens at q = 0 (see Fig. 18):

∆E := 2ǫ1(q = 0) = 2
∣∣∣
√
1 + γ2λ2 − 1

∣∣∣ ∼ γ2λν , ν = 2 . (C31)

To understand this value of ν, we shall analyse the perturbing term Hp in terms of the critical modes η̃1,q (C28). The
relations (C28) can be inversed, to give:

{
c1,q + c2,q = cos

θ1,q
2 η1,q − i sin

θ1,q
2 η†1,−q := a1,q ,

c1,q − c2,q = cos
θ2,q
2 η2,q − i sin

θ2,q
2 η†2,−q := a2,q .

(C32)

The perturbing term has the expression

Hp =
1

2

∑

−π<q≤π

{
(1− cos q) (a†1,qa1,q − a†2,qa2,q)

+i sin q
[
a†2,qa1,q +

γ

2
(a†1,qa

†
1,−q − a†2,qa

†
2,−q)− h.c.

]

−γ(1 + cos q) (a†2,qa
†
1,−q + a1,−qa2,q)

}
. (C33)

In the region q ≃ 0, the first term in (C33) is of order q2, and thus it generates irrelevant terms of the form η̃†1∂
2
xη̃1 in

the continuum limit. The second term is of order q, and corresponds to η̃†1∂xη̃1, which renormalises the Fermi velocity.
At first order in λ, the third term has no effect on the continuum theory. However, in second-order perturbation in

λ, it generates terms of the form (η̃†2η̃2)(η̃
†
1η̃1), which are non-vanishing since the lowest η̃2 modes are occupied in the

ground state. From this analysis, we obtain the effective Hamiltonian in the continuum limit

Heff(λ) ∝
∫

dx
(
i η̃†1∂xη̃1 + const× γ2λ2 η̃†1η̃1

)
. (C34)



28

The “mass term” has dimension Xt = 1, and the energy gap thus scales as

∆E ∝
(
λ2
) 1

2−Xt .

Comparing with (C31), we get the scaling relation

Xt = 2− 2

ν
. (C35)
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36 H. W. J. Blöte and B. Nienhuis, J. Phys. A: Math. Gen. 22, 1415 (1989)
37 I. Vaysburd, Nucl. Phys. B 446, 387 (1995)
38 P. Fendley, J. Phys. A: Math. Gen. 39, 15445 (2006)
39 E. Date, M. Jimbo, T. Miwa and M. Okado, Lett. Math. Phys. 12, 209 (1986) [Erratum-ibid. 14, 97 (1987)]
40 A. B. Zamolodchikov, Nucl. Phys. B 366, 122 (1991)
41 A. B. Zamolodchikov, Mod. Phys. Lett. 6, 1807 (1991)
42 Y. Ikhlef, J. L. Jacobsen and H. Saleur, J. Phys. A 43, 225201 (2010)
43 Q. Liu, Y. Deng and T. M. Garoni, Nucl. Phys. B 846, 283 (2011)
44 V. Riva and J. Cardy, J. Stat. Mech. P12001 (2007)
45 M. A. Rajabpour and J. Cardy, J. Phys. A: Math. Gen. 40, 14703 (2007)
46 Y. Ikhlef and J. Cardy, J. Phys. A: Math. Gen. 42, 102001 (2009)
47 E. Lieb, T. Schultz and D. Mattis, Ann. Phys. 16, 407 (1961)
48 T. D. Schultz, D. C. Mattis and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964)
49 J. H. H. Perk, H. W. Capel, M. J. Zuilhof and Th. J. Siskens, Physica A 81, 319 (1975);

F. Y. Wu and K. Y. Lin, Phys. Rev. B 12, 419 (1975);
C. S. Hsue, K. Y. Lin and F. Y. Wu, Phys. Rev. B 12, 429 (1975)

50 In the case h = γ = 0, both modes ǫ1, ǫ2 are critical at q = π, and the corresponding field theory is a critical Dirac fermion.


