
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Lattice normal modes and electronic properties of the
correlated metal LaNiO_{3}

Gaoyang Gou, Ilya Grinberg, Andrew M. Rappe, and James M. Rondinelli
Phys. Rev. B 84, 144101 — Published  3 October 2011

DOI: 10.1103/PhysRevB.84.144101

http://dx.doi.org/10.1103/PhysRevB.84.144101


Lattice normal modes and electronic properties of the correlated metal LaNiO3

Gaoyang Gou,1, ∗ Ilya Grinberg,1, † Andrew M. Rappe,1, ‡ and James M. Rondinelli2, 3, §

1The Makineni Theoretical Laboratories, Department of Chemistry,
University of Pennsylvania, Philadelphia, PA 19104-6323, USA

2Department of Materials Science & Engineering,
Drexel University, Philadelphia, Pennsylvania 19104, USA

3X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
(Dated: August 9, 2011)

We use density functional theory (DFT) calculations to study the lattice vibrations and electronic
properties of the correlated metal LaNiO3. To characterize the rhombohedral to cubic structural
phase transition of perovskite LaNiO3, we examine the evolution of the Raman-active phonon modes
with temperature. We find that the A1g Raman mode, whose frequency is sensitive to the electronic
band structure, is a useful signature to characterize the octahedral rotations in rhombohedral LaNiO3.
We also study the importance of electron–electron correlation effects on the electronic structure with
two approaches which go beyond the conventional band theory (local spin density approximation):
the local spin density+Hubbard U method (LSDA+U) and hybrid exchange-correlation density
functionals which include portions of exact Fock-exchange. We find the conventional LSDA accurately
reproduces the delocalized nature of the valence states in LaNiO3 and gives the best agreement to
the available experimental data on the electronic structure of LaNiO3. Based on our calculations, we
show that the electronic screening effect from the delocalized Ni 3d and O-2p states mitigate the
electronic correlations of the d7 Ni cations, making LaNiO3 a weakly correlated metal.

PACS numbers: 71.15.Dx,63.20.dk,78.30.Er,79.60.Bm

I. INTRODUCTION

Conducting electrode materials are critical elements in the design of ultra-thin ferroelectric devices,1–4 magnetoresis-
tive elements,5 and magnetoelectric multiferroic memories.6 The performance of perovskite-based heterostructures
is intimately related to the electronic and atomic coherency across the electrode–oxide interface.7 For this reason,
suitable metallic perovskite oxides that are structurally compatible with the active functional layers are highly desirable.
LaNiO3 (LNO) has found widespread use in this capacity,8–10 because it is a 3d transition metal oxide that shows
no metal-insulator or spin state transitions.11,12 At present, it is also actively being pursued as the functional oxide
component in devices that could harness an electric-field tunable Mott insulator transition (so called “Mottronic”
applications),13–15 because it is the end-member of the rare-earth nickelate series—compounds with small charge-transfer
gaps that are highly susceptible to temperature16 and pressure-induced17,18 electronic phase transitions.

Metallicity and magnetism in 3d transition metal (TM) oxides are strongly dependent on the valence bandwidth,
which originates from the hybridization between the TM 3d and O 2p orbitals.11 In perovskite oxides like LNO, the
hybridization derives from the structural connectivity of the NiO6 octahedral units throughout the crystal. Small
changes in the Ni–O–Ni bond angles and the Ni–O bond lengths, therefore, can dramatically alter the electronic
properties. For example, a tunable insulator-metal (IM) transition is obtained from the isovalent substitution19 of
La with rare-earth elements: The charge-transfer gap closes and the IM-transition becomes accessible above room
temperature as the rare-earth ionic radius increases and straightens the Ni–O–Ni bond angle.

In addition to changes in the structural degrees of freedom, the small spatial extent of the 3d orbitals also reduce the
valence bandwidth. This sufficiently enhances electron–electron correlation effects such that conventional band metals
are often rendered insulating.20 In LaNiO3, however, the strong Ni 3d – O 2p covalent interactions—formally it contains
Ni3+ cations in a low-spin 3d7 configuration (t62ge

1
g)—are anticipated to reduce the correlation effects.21 Nonetheless,

there are clear signatures indicative of important electron–electron interactions in the T 2 dependence of the resistivity
and heat capacity measurements.11,22 Magnetic susceptibility data also reveal enhanced Pauli paramagnetism and
effective carrier masses.16,23–26 Consistent with those studies, temperature dependent x-ray photoemission finds that
the spectral weight of the Ni eg band at the Fermi level increases upon cooling.27 A fundamental question regarding
the intrinsic properties of LaNiO3 therefore still remains: which factors of the interwoven (correlated) electronic and
atomic structure support its metallic state?

In this work, we perform first-principles density-functional theory (DFT) calculations to investigate how hybridization
between the Ni 3d and O 2p states and the structurally correlated NiO6 octahedral framework respond to electron-
electron interactions. We first examine the temperature-dependent rhombohedral to cubic structural phase transition
using a Landau formalism28 and ab initio-derived phenomenological coefficients obtained from the conventional band
theory [local spin density approximation, (LSDA)]. In the rhombohedral phase, we compute the evolution of the
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Raman-active phonon modes with temperature and find the LSDA results give good agreement with experiment. We
then show how the A1g Raman mode, which describes the rotation of adjacent NiO6 octahedra, can be used as a
structural indicator for the low-temperature rhombohedral phase.

To study the coupling between the lattice modes and the electronic structure, we compare conventional LSDA results
with three other approaches designed to improve accuracy: the local spin density+Hubbard U (LSDA+U) method, and
two hybrid exchange-correlation functionals, PBE029,30 and HSE,31,32 which contain mixtures of Fock-exchange added
to the generalized gradient corrected DFT-functional of Perdew, Burke and Ernzerhof (PBE).33 We then examine the
electronic structure of LaNiO3 by comparing the results obtained from the various functionals with the experimental
photoemission spectroscopy (PES) and x-ray photoelectron spectroscopy (XPS) data. We find that the screening
effects originating from the hybridized O 2p and Ni 3d electrons are sufficiently strong that they reduce the electronic
correlations in LaNiO3, making it a weakly correlated metal.

II. CRYSTAL STRUCTURE AND RAMAN MODES

The crystallographic tolerance factor34 for LaNiO3 is t=0.97 and indicates that the aristotype cubic phase is
susceptible to octahedral rotations because of an under-bonded La–O coordination.24 At ambient conditions, bulk
LaNiO3 crystallizes in a rhombohedral structure with space group R3̄c [Fig. 1(a)] and is related to the cubic perovskite
through a trigonal lattice distortion along the [111]-body diagonal that doubles the primitive unit cell.11 It also exhibits
octahedral rotations, which are equal in magnitude and alternate in “sense” about each Cartesian direction; this tilt
system is classified according to Glazer notation35,36 as a−a−a− [Fig. 1 (b)]. Similar to other rhombohedrally distorted
perovskites,37 LaNiO3 undergoes a temperature-induced rhombohedral-to-cubic phase transition38 upon heating: the
NiO6 octahedral rotation angle θ reduces continuously to zero in the cubic phase.

In the R3̄c space group, the La cations occupy the 2a ( 1
4 ,

1
4 ,

1
4 ) Wyckoff positions while the Ni cations occupy the

2b (0, 0, 0) positions. The oxygen atoms are at the 6e (x, x̄ + 1
2 ,

1
4 ) site, where x is the only free internal structural

parameter that sets the rotation angle of the NiO6 octahedra. These 10 atoms in the primitive rhombohedral unit cell
give rise to 30 zone-center vibrational modes with the irreducible representations (irreps):

Γ = A1g + 3A2g + 4Eg + 2A1u + 4A2u + 6Eu .

where the Eg and Eu modes are two-dimensional irreps. The infrared-active and acoustic modes transform as the
4A2u+6Eu, while the Raman active modes are given as A1g+4Eg. The A1g and Eg Raman modes of the rhombohedral
structure are mainly related to collective modes of the oxygen octahedral network (Figure 2): The A1g mode describes
the rotations of the NiO6 about the trigonal [111]-axis, and the Eg modes describe anti-parallel La displacements,
Ni–O bond bending, stretching, and octahedral rotations about axes perpendicular to the [111]-direction.

(a) (b)

a

Ni

O

La

FIG. 1: (Color) (a) The crystal structure of rhombohedral R3̄c LaNiO3 possesses anti-phase rotations (a−a−a− tilt system) of
adjacent NiO6 octahedra with angle θ (b) about the [111]-trigonal axis. The relationship between the pseudo-cubic perovskite
cell (solid lines) and the rhombohedral lattice vectors (dashed lines) of length a is also illustrated.
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FIG. 2: (Color) Illustration of the displacement patterns for the Raman-active lattice normal modes in the R3̄c structure. The
corresponding symmetry labels and our calculated LSDA frequencies (in cm−1) are given for reference.

III. THEORETICAL METHODS

A. LSDA

We use two DFT implementations in this study, the quantum ESPRESSO code (QE)39 and the Vienna ab
initio Simulation Package (vasp).40,41 Our reference electronic structure model to which we compare our advanced
treatments of correlation effects is the frequently used local-spin density approximation (LSDA) exchange-correlation
(XC) functional.42 Both DFT codes use the Perdew-Zunger parametrization42 of the Ceperley-Alder data43 for the
XC-functional. In all calculations, we constrain a collinear spin configuration for the Ni ions. The atomic positions in
the rhombohedral structure are optimized by starting from the positions reported in Ref.11, and the ionic coordinates
are relaxed until the Hellmann-Feynman forces on the atoms are less than 0.1 meV Å−1.
vasp Details. We treat the core and valence electrons for all calculations in vasp using the projector augmented

wave (PAW) method44 with the following valence electron configurations: 5p65d16s2 (La), 3p63d94s1 (Ni), and 2s22p4

(O) and a 650 eV plane wave cutoff. We use a Gaussian smearing of 0.05 eV over a 7× 7× 7 Monkhorst-Pack k-point
mesh45 centered at Γ for the Brillouin zone (BZ) integrations (172 points are sampled in the irreducible BZ) in the
10-atom rhombohedral unit cell.

We obtain the phonon frequencies at the Γ-point by calculating total energies with respect to atomic displacements
from the reference R3̄c structure. In this frozen-phonon method a series of small (symmetry inequivalent) atomic
displacements are imposed along different Cartesian directions. We calculate the dynamical matrix from the Hellmann-
Feynman forces46 induced on the ions after making the small positive and negative displacements (to remove any
quadratic effects) about the reference structure positions from total energy DFT calculation. Diagonalization of the
dynamical matrix yields the atomic displacement patterns (eigenvectors) and phonon mode frequencies (eigenvalues).
QE Details. In our plane-wave calculations with the QE code, we use norm-conserving47 optimized designed

nonlocal48 pseudopotentials. The following valence electron configurations are used: 5s25p64f05d06s06p0(La), 3d94s14p0

(Ni) and 2s22p4 (O). Note, In both vasp and QE, partial core corrections (PCC) are included in the Ni pseudopotentials
following the prescription in Ref.49

We sample the BZ using an 8× 8× 8 Monkhorst-Pack k-point mesh. A plane-wave energy cutoff of 50 Ry was used
for calculation. Good convergence can be reached, as test calculations with higher energy cutoff (up to 75 Ry) yield
the same results. We obtain phonon modes and displacement vectors using density functional perturbation theory
(DFPT),50,51 by constructing the interatomic force constants from the dynamical matrices obtained on a uniform
4× 4× 4 q-point grid. The phonon frequencies and vibrational eigenvectors at arbitrary q vectors are then calculated
from diagonalization of the dynamical matrix.

We point out here that both implementations of DFT at the LSDA level give good structural agreement (Table
I). This fact is important for the comparison study we make later which uses various functionals available in the
different codes. Each code yields a small underestimation of the experimental lattice constant which is typical for the
LSDA. The QE code more closely reproduces the experimentally measured Ni–O–Ni rotation angles, whereas the
vasp code gives a better rhombohedral angle (αrho). For the electronic and magnetic structure of LNO, both codes
predict LNO as a non-magnetic metal, which is the reasonable representation of the experimentally observed Pauli
paramagnetic ground-state.24 Detailed electronic properties for LNO will be presented in Sec. IV. Here we note that
PCC for Ni is crucial to obtain the correct ground-state of paramagnetic LNO. Without PCC, LSDA calculations yield
a spin-polarized solution with a non-zero local magnetic moment on the Ni cations.
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B. LSDA+U

A complete description of correlated 3d transition metal oxides with narrow valence bandwidths is challenging within
a density functional approach due to the limitations of standard exchange-correlation potentials in describing localized
electronic states. To remedy this problem, we use “beyond-LSDA” techniques, starting with the LSDA+U approach.
This method is generally regarded to be the most computationally feasible means to reproduce the correct ground-states
in correlated systems.52 In this formalism, the LSDA energy functional is expanded to include an additional on-site
orbital-dependent energy term cast as a Hubbard repulsion U and an intratomic Hund’s exchange energy J .

To reduce the ambiguity in the definition of the LSDA+U parameters, we use the spherically averaged form of
the rotationally invariant LSDA plus Hubbard U method52 introduced by Dudarev et al.,53 with only one effective
Hubbard term, Ueff = U − J . We treat the double-counting term within the fully localized limit.54

The change in total energy EU for including the Hubbard correction to the exchange-correlation potential is

EU (J = 0) =
Ueff

2

∑
i

∑
mσ

nimσ(1− nimσ) , (1)

where nimσ are the spin (σ) and orbital (m) occupation numbers at site i. In the limit where the occupation matrices
are integer and diagonal, the LSDA+U correction can be understood as a shift in the occupied orbitals (nm = 1) by
−U/2 to lower energy and by +U/2 higher in energy for unoccupied orbitals (nm = 0).

In this study we examine Ueff values of 0, 3 and 6 eV for the correlated Ni 3d orbitals states; the standard LSDA
corresponds to a Ueff = 0 eV. We note that throughout the remainder of the manuscript, U denotes the effective
Hubbard parameter. We will discuss the structural changes induced by varying U in the subsequent sections.

1. Self-consistent Hubbard U

We also calculate a self-consistent U parameter for LaNiO3 following the scheme developed by Cococcioni and de
Gironcoli.55 Their approach relies on the fact that the potential U restores the correct piece-wise linear behavior of
the system’s total energy as function of electron number, whereas the LSDA functional incorrectly predicts parabolic
dependence of energy on occupation number. The effective interaction parameter U is deduced from Janak’s theorem
and linear response theory as

U = (χ−1
0 − χ−1)ii ,withχij =

dni

dαj
. (2)

Here ni is the occupation number of the localized levels at site i and αj represents the potential shift applied on the
localized orbital at site j. The response matrix χ0 describes the noninteracting contribution to the band structure
after application of a potential shift α, while χ represents the fully self-consistent response to the same potential shift.
In practice, the first term χ0 is computed from the first iteration in the self-consistent (SCF) electronic minimization.

We compute the linear response of the occupation number ni using the LSDA functional and norm-conserving
pseudopotentials within the QE package. The full response matrices χ0 and χ are then computed by performing the
linear response calculation within a 2× 2× 2 pseudo-cubic supercell (40-atom cell, containing 8 Ni atoms), which is
large enough to give a converged U value and avoid spurious interactions from the local potential α on neighboring Ni
sites.

TABLE I: Structural parameters obtained for R3̄c LaNiO3 within the LSDA from the two codes used in this work and their
comparison with experimental data (cf. Ref.11). In the rhombohedral setting, the rotation angle of adjacent NiO6 octahedra
along the trigonal axis is given as θ = arctan(2

√
3u), where x = u+ 3

4
.

Theory
Experiment vasp QE

x 0.7968 0.787 0.801
a (Å) 5.3837 5.303 5.324
αrho (◦) 60.8596 60.72 61.39
d(Ni–O) (Å) 1.933 1.896 1.923
∠Ni–O–Ni (◦) 164.8 167.9 163.3
θ NiO6 rotation (◦) 9.2 7.35 10.08
Ω (Å3/f.u.) 56.2386 53.57 55.03
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FIG. 3: (Color) The occupation numbers ni for the total Ni 3d, eg and t2g orbitals in LaNiO3, with respect to potential shift α
for the initial (0) (filled circles) and self-consistent (SCF) (open squares) electronic configurations. The slopes of the linear
data fits are used to construct the χ0 and χ response matrices. The occupation numbers are normalized by substracting off the
occupation values ni(0) with a zero potential shift (α = 0).

The low-spin Ni 3d orbital occupation anisotropy—a fully filled t2g manifold and a quarter-filled eg shell—suggests
that the effective Coulomb repulsion experienced by an electron on different orbitals should also be substantially
different.56 For this reason, we further decompose the orbital occupancy ni → nim (m is the angular momentum
quantum number, and orbital occupation nim here refers to Löwdin atomic charge) into crystal-field split d-manifold
contributions by projecting the valence states |Ψσ

kν〉 onto atom-centered sites i with a Löwdin orthogonal atomic basis
set |φim〉 as

VU |Ψσ
kν〉 =

U

2

∑
i

∑
mσ

(1− 2nimσ)|φim〉〈φim|Ψσ
kν〉 . (3)

By replacing the orbital occupancy ni in Eq. (2) with nim, we can calculate the effective Hubbard term U for the two
independent Ni-d manifolds: U(eg) and U(t2g) respectively. Since the t2g manifold is fully occupied [n(t2g) ≈ 1], the
linear response calculation of U(t2g) requires that the contribution from these states to the total Coulomb interaction
be nearly zero. Within the numerical noise of our calculations we find this to be the case. Fig. 3 shows that difference
in the χ0 and χ response functions (slopes) of the t2g states is practically negligible. The Ni eg states, however, which
are partially filled have a substantial non-zero interaction, U(eg). These states lead to a self-consistent Hubbard U
value of 5.74 eV for LaNiO3.

Recently Nohara et al. studied LaNiO3 with LSDA+U and GW methods,57 and fitted their calculated energy
spectra to experimental XPS and x-ray adsorption spectroscopy (XAS) data58 to obtain a Coulomb interaction of
U = 7.0 eV and an exchange interaction J = 1.3 eV for the Ni d-manifold. These values correspond to an effective
Hubbard U term (Ueff = 5.7 eV) which is consistent with our linear-response calculation of U .

C. Hybrid Functionals

Recent studies31–33,59 have demonstrated that local or gradient-corrected density functionals for exchange do not
closely reproduce Hartree-Fock calculations, and that inclusion of some exact Fock (F) exchange improves electronic
structure properties including band gaps, orbital localization and electronic polarizations.60 Accordingly, in the present
work, we use the PBE0 and HSE hybrid functionals as implemented in the QE package and then contrast them to the
LSDA.

The exchange terms (Vx) in the PBE0 functional are constructed by mixing 25% of exact-exchange with 75%
GGA-PBE exchange,29 while the electron correlation (Vc) part is represented using only the correlation components
from the PBE functional33:

V PBE0
xc =

1

4
Vx +

3

4
V PBE
x + V PBE

c . (4)

The one-quarter mixing parameter of exact exchange in the PBE0 functional was obtained by fitting to the atomization
energies of a large database of molecules.29 For periodic bulk systems, however, it is argued that the best fraction of
exact exchange for modeling solid-state electronic structure is highly system-dependent.29,61

The HSE hybrid functional31,32 is less computationally demanding than PBE0 (unless the recent Wannier function
implementation described in Ref.30 is used), since it avoids the slowly decaying Fock-exchange interactions by
substituting part of the long-range Coulomb-kernel with a density functional analog. This approximation makes
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the HSE functional more efficient for plane-wave calculations of periodic systems. The expression for the exchange-
correlation potential is given as

V HSE
xc =

1

4
V sr,µ
x +

3

4
V PBE,sr,µ
x + V PBE,lr,µ

x + V PBE
c , (5)

where µ is the parameter that controls the decomposition of the Coulomb kernel into short-range (sr) and long-range
(lr) exchange contributions. This type of screened exact-exchange is absent in the PBE0 functional. In this work, we
follow the HSE03 parametrization31 which sets the cut-off distance to µ = 0.109 Å−1.

Similar to PBE0, the Fock-mixing parameter in HSE varies approximately in proportion to the inverse static
dielectric constant (ε−1

∞ ), and therefore also becomes highly system dependent. For metals with excellent screening,
ε−1
∞ approaches zero. Therefore PBE0 or HSE calculations which incorporate some Fock-exchange may lead to severe

overestimation in orbital bandwidths and spin-exchange splitting parameters for such materials.62

In our hybrid functional calculations on metallic LaNiO3, we use a dense Brillouin zone sampling (8× 8× 8 k-point
grid) for accurate evaluation of the Fock-exchange operator in reciprocal space.62 Due to the heavy computational
cost, we are unable to perform the structural optimization for LNO using the hybrid functionals in the present work.
According to our test calculations using the LSDA, PBE and LSDA+U functionals, the subtle differences between the
ground-state atomic positions produce negligible changes to the computed electronic band structure. We therefore
choose the LSDA optimized atomic structure as the ground-state structure for use in the hybrid functional calculations.

IV. RESULTS AND DISCUSSION

In this section, we present our first-principles results on the structural, vibrational and electronic properties of
bulk LaNiO3 obtained using the various XC-functionals. This section is organized as follows: we first investigate
the structural phase transition and temperature-dependent Raman phonon modes of LaNiO3 using the conventional
LSDA approximation. We then examine how the atomic structure, Raman phonon modes and electronic properties
of LaNiO3 are modified with various treatments of electron-electron correlation effects. Finally, by comparing the
densities-of-states results obtained from the different functionals to the experimental spectroscopic data, we identify
which XC-functional best reproduces the intrinsic electronic properties of LaNiO3.

A. Structural Phase Transition

The temperature-induced rhombohedral-to-cubic phase transition in LaNiO3 manifests as a cooperative rotation
of NiO6 octahedra along the trigonal lattice axis.63 In this section, we show how the structural transition to the
rhombohedrally distorted perovskite phase is characterized by a specific soft mode which has a frequency that collapses
to zero as the system approaches the cubic phase.37 We note that all results in this section are obtained with the
LSDA XC-functional and NC-pseudopotentials as implemented in QE.

1. Minimal Landau Model

In the Landau theory framework for phase transitions, the free energy of the system is expanded in powers of an
order parameter that characterizes the transition. From our previous discussion of the low-temperature R3̄c crystal
structure of LaNiO3, the only free internal parameter is the oxygen position x at the 6e Wyckoff site. Therefore, the
natural order parameter to characterize the rhombohedral-to-cubic phase transition is a structure-adapted form of the
free Wyckoff position: the NiO6 octahedra rotation angle θ (Fig. 1).

We expand the free energy G in even powers (up to fourth order) of this rotation angle order parameter θ as:

G(θ, T ) = G0(T ) + κ(T − TC)θ2 + λθ4 (6)

where κ and λ are temperature-independent coefficients and θ is the angle of rotation about the [111]-direction. We
next “freeze-in” the NiO6 rotation pattern [inset of Fig. 5 (b)] which corresponds to the A1g Raman-mode of the R3̄c
phase. In Fig. 4, we show our calculated values of the total energy versus NiO6 rotation angle θ computed at the
LSDA equilibrium volume. Our fit of the data to Eq. 6 yields excellent agreement and approximately corresponds to
the free energy at zero temperature G(θ, T = 0 K). From the minimum of the free energy (∂G/∂θ)T = 0, we obtain
the T dependence of θ:

θ2 =
κ

2λ
(TC − T ) , for T < TC , (7)
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FIG. 4: (Color) (a) Landau free energy G(θ, T = 0 K) of LaNiO3 as a function of the order parameter θ. Solid lines are
calculated using Landau theory and the filled symbols correspond to the LSDA total energy results. (b) Equilibrium order
parameter θ as a function of temperature; the second order phase transition occurs at T = TC .

and a critical rotation angle at T = 0 K of θC = 10.08◦ (the optimized θ from the LSDA calculation).
We next calculate the energy stabilization obtained from freezing-in the NiO6 rotation at 0 K as the difference

between cubic and rhombohedral phases, ∆E = 177 meV/10-atom unit cell given by the well depth from the total
energy calculations [Fig. 4(a)]. With increasing temperature, the energy stabilization from the structural distortion
decreases until at T = TC , the thermal excitation energy is equivalent to ∆E and the double-well potential becomes a
single well with one minimum at θ = 0◦. With these conditions, we write

∆E = (T ·∆S)T=TC
, (8)

where ∆S refers to the entropy difference between the cubic and rhombohedral phases. Since LaNiO3 has a Debye
temperature ΘD of 420 K,22 at the structural transition T = TC , TC � ΘD, we are able to confidently treat each
lattice mode as an independent harmonic oscillators which subsequently contributes NkBT to the free energy.

For the 10-atom rhombohedral LaNiO3 unit cell, a single soft mode (N = 1) describes the transition into the
high-temperature cubic phase; therefore, ∆S ' kB . From these conditions, we calculate the LSDA critical temperature
for the structural phase transition TC to be 2057 K, which is close to experimental63 result (TC=1780 K). The
overestimation of TC likely originates from the calculated enhancement of θC , which increases the energy difference
between cubic and rhombohedral phases.

Using this calculated TC value, and combining with our earlier calculated DFT total energy results, we obtain
the coefficients in Eq. (6): κ=1.696 µeV/K·(◦)2 and λ = 17.1 µeV/(◦)4. These values combined with Eq. 7 give the
second-order temperature dependence of the NiO6 octahedral rotational angle θ(T ) shown in Fig. 4(b).

2. Correlation of volume expansion with phase-transition

With increasing temperature, the LaNiO3 lattice undergoes a thermal volumetric expansion process. To precisely
simulate the temperature induced rhombohedral-to-cubic phase transition process, it is necessary to evaluate the effect
of volume expansion on the NiO6 octahedral rotations across the structural phase transition.

By including the coupling between the order parameter θ and the equilibrium atomic volume V , we extend the
minimal 1D Landau model discussed in the previous subsection into a 2D case, with the free energy G given as:

G(θ, V, T ) = G0(V, T ) + κ(V )(T − TC)θ2 + λ(V )θ4 , (9)

where V is the equilibrium LaNiO3 volume at a given temperature, and the coefficients κ and λ are expressed as a function
of V . From 0 K to room temperature, we assume a linear volumetric thermal expansion: V (T ) = V0× (1+αV T ), where
V0 is the volume at 0 K and the thermal volumetric expansion coefficient αV = 1.624× 10−5/K is from experiment.63

To correlate the DFT total energy results with the Landau free energy at 0 K, we rewrite Eq. 9 as

G(θ, V, T = 0 K) = G0(V ) +A(V )θ2 +B(V )θ4 . (10)

This form indicates a practical route to calculate the optimal NiO6 rotation angle θC with respect to V . We apply the
procedure described in the previous subsection, but now obtain volume-dependent coefficients A and B by fitting each
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FIG. 5: (Color) (a) Temperature-dependent Raman frequencies for the rhombohedral LaNiO3 structures. Solid lines indicate
experimental results which are taken from Ref.63. Results from our LSDA calculations are given as the filled circles. (b) We
observe linear scaling behavior between A1g Raman frequency and the NiO6 octahedral rotation order parameter θ. The fitted
solid line is a guide to the eye. The inset (upper left) shows the vibrational pattern of A1g mode (both side and top view), while
the other inset (lower right) shows a linear change in the squared A1g soft-mode frequency with temperature.

coefficient through a Taylor expansion about the equilibrium volume:

A(V ) = A0 +A1(
∆V

V0
) +A2(

∆V

V0
)2 + . . . , (11)

B(V ) = B0 +B1(
∆V

V0
) +B2(

∆V

V0
)2 + . . .

where ∆V = V − V0. With this method, we obtain the following coefficients: A0 = −3.6, A1 = −16.6, A2 =
1600.1 meV/(◦)2, and B0 = 17.9, B1 = −15.5, B2 = −1664.0 µeV/(◦)4.

This treatment of changes in the lattice volume at the rhombohedral-to-cubic transition reveals that the magnitude
of our phenomenological coefficients A (B) increase (decrease) with increasing cell volume. Thus, the curvature of the
double-well potential [Fig. 4] becomes steeper and its depth deeper as the cell volume increases; this fact indicates
that the thermal expansion effect will hinder the rhombohedral-to-cubic phase transition in LaNiO3. Nonetheless, the
extent of the thermal volumetric expansion effect is very limited, i.e. from 0 K to room temperature, ∆V/V0 ' 0.5%,
which leads to changes in the coefficients A and B by less than 1% and a deviation in our simulated rotation angle
θ at 300 K by 0.2 ◦ compared to the volume-independent model previously described. We conclude that, for the
temperature range we investigated (0 K to room temperature), treating the phenomenological coefficient in our Landau
theory as volume-independent suffices to produce an accurate description of the temperature-induced octahedral phase
transition in LaNiO3 .
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3. Temperature-dependent Raman Frequencies

We next study the structural and vibrational properties of LaNiO3 at finite temperatures. As the temperature
increases the NiO6 rotation angle θ decreases [Fig. 4(b)] and the Ni–O bond length increases. To capture this effect in
our simulation, we choose to combine the cell parameters a and α for LaNiO3 at a given temperature with a specific
NiO6 rotation angle θ and Ni–O bond length [d(Ni–O)]. The rotation angle θ for a given temperature is obtained from
Eq. 7. While for d(Ni–O), we refer to the experimental temperature-dependent neutron scattering results.11 To sample
the d(Ni–O)–temperature space at experimental values not available, we assume linear thermal expansion. We then
relax only the internal coordinates and use the structures that yield the best experimental agreement to represent a
snapshot of the experimental LNO structure.

We use these structures to perform phonon calculations and obtain the temperature-dependent Raman frequencies
[Fig. 5(a)]. A comparison of the experimental63 data to our DFT calculated temperature-dependent Raman frequencies
reveals good agreement: both data sets show red-shifts in the Raman frequencies with increasing temperature. The
calculated high-frequency Eg mode, which corresponds to stretching of the Ni–O bonds, however is systematically
underestimated by around 10%. The LSDA also predicts that the frequencies of the bending and stretching Eg modes
decrease nearly twice as fast as that experimentally observed.

We now connect the frequency of the A1g Raman mode (ωA1g
) and the order parameter θ described in the previous

subsections. Here, we assign the lattice mode to the stiffness κ, or the curvature (second-order derivative) of the
potential well, as

ω2
A1g
∝ ∂2G

∂θ2
= 4κ(TC − T ) , for T < TC . (12)

By comparing Eq. 7 with Eq. 12, we find that ωA1g
∝ |θ| and in the temperature limit T → TC both θ and ωA1g

approach zero. Using our fitted value of κ, we show in Figure 5(b) that ωA1g
varies linearly with θ. We also predict from

the slope of Fig. 5(b) that the Raman-mode shift due to changes in the NiO6 rotation angle is ωA1g/θ = 23.0 cm−1/(◦).

Finally, we plot the temperature-dependence of the squared A1g frequency [Fig. 5(inset)] and find that ω2
A1g

decreases

linearly with temperature, confirming the ω2
A1g

(T ) relation in Eq. (12). On the basis of these findings, we conclude

that the A1g soft mode is an excellent signature for the magnitude of the octahedral rotations in rhombohedral LaNiO3

and its deviation from cubic phase.

B. Correlation effects on the atomic structure and Raman phonon modes

We focus in this section on how the Raman active mode frequencies are modified through changes in electron-electron
correlations. We first decompose the effect of correlation through the Hubbard U term on the structural degrees of
freedom by fixing the lattice parameter to that of the experimental R3̄c structure and allowing the internal atomic
positions to fully relax. The results of our atomic relaxations for LSDA+U values of 0, 3, and 6 eV are summarized in
Table II. In all cases, the LSDA+U functional accurately reproduces the known experimental ground-state structure
with the minor caveats we discuss next.

With increasing correlation, we find that the NiO6 rotation angle increases beginning from the LSDA structural
ground-state (U = 0 eV), which slightly underestimates the rotation angle, to U = 3 eV which overestimates it by
approximately 1◦. By further increasing the Hubbard U value to 6 eV, we find the rotation angle decreases. The
consequence of keeping the unit cell volume and rhombohedral angle fixed is that the change in the NiO6 rotation
angle must be accommodated by bond stretching (or compression) rather than through rigid rotations (constant Ni–O
bond lengths). Because the Ni atoms also occupy the 2b Wyckoff position with 3̄ site symmetry, all Ni–O bond lengths
are required to be equivalent. We thus observe that our calculated Ni–O bond lengths respond proportional to the
NiO6 rotation angle θ (Table II).

We next examine the change in the electronic structure with increasing correlation to evaluate how the electronic
states around the Fermi level are modified. We show in Fig. 6 the electronic densities-of-states (DOS) as a function of
the Hubbard U value obtained by LSDA+U calculations with the vasp code. Consistent with earlier band structures
calculations on bulk LaNiO3 with the LSDA (U = 0 eV) functional,64–66 we find a non-magnetic ground-state with
localized Ni 3d states peaked centered 1.0 eV below the Fermi level (EF ). A set of delocalized Ni 3d states cross EF ,
while the O 2p states are distributed throughout the entire valence band.

Here, we apply a Hubbard U term on the Ni-d states and anticipate the on-site Coulomb interaction to localize the
itinerant Ni-d electrons at EF and stabilize a ferromagnetic (FM) spin configuration. Indeed, we find a half-metallic
FM ground-state (1 µB/f.u.). Note, this configuration, however, has not been experimentally reported. For U = 3 eV,
we find that the DOS at the Fermi level is substantially suppressed compared to the LSDA, with the Ni d states
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FIG. 6: (Color) Spin- and atom-resolved densities of states (DOS) for the LaNiO3 structures reported in Table II with the
LSDA+U exchange-correlation functional.

shifting to lower energy. Due to the increased rotational angle of the NiO6, we find a pseudo-gap opens in the majority
spin DOS around -3.5 eV with reduced hybridization between the Ni 3d – O 2p states. With a further increase of the
U value [Fig. 6(c)], we find that most of the majority spin Ni 3d electrons are shifted completely to the bottom of the
valence band around -5.5 eV. The states at EF are now mainly O 2p character with a small contribution from the Ni
3d electrons.

We now compute the Raman active lattice modes for the structures listed in Table II to explore the change of
Raman frequencies with an increasing Hubbard U value. We begin by comparing the experimentally measured values
to our calculated ones (Table III). The best agreement with the experimental data is for the LSDA (U = 0 eV)
exchange-correlation functional. A Hubbard U value of 3 eV overestimates the low frequency Raman mode with Eg
symmetry (La anti-parallel displacements), while it underestimates the two high frequency Eg modes (Ni–O bond
bending and stretching).

Interestingly, with the LSDA+U=6 eV functional we find an unstable (imaginary) zone-center phonon (246i cm−1)
with A2g symmetry indicating that the rhombohedral structure with the simple a−a−a− tilt pattern is unstable. The
atomic displacement pattern of the imaginary mode corresponds to a three-dimensional checkerboard arrangement
of dilated and contracted octahedra—the so called octahedral “breathing” mode that often accompanies charge
disproportionation reactions.67 This mode, however, has not been observed in any temperature-dependent x-ray studies
on LaNiO3. We therefore suggest that this correlation-induced octahedral distortion is a spurious artifact of using
too large of an on-site Coulomb repulsion interaction in the LSDA+U calculation. We conclude that a Hubbard U
value less than 6 eV should be used when simulating LaNiO3, because of the overall poor accuracy in the calculated
Raman modes (Table III) despite such large Hubbard values closely reproducing the experimental lattice parameters
of LaNiO3 phase (Table II).

We now explore how changes in the electron correlations modify the lattice volume by fully relaxing both the internal
atom positions and the rhombohedral structure (Table IV). For the LSDA+U exchange-correlation potential, we
qualitatively find the same structural trends as in Table II. While the LSDA underestimates the atomic volume, when
we increase the value of U , the cell volume increases; this can be understood as a result from enhanced electrostatic
repulsion.

We also compute the LNO ground-state structures with the LSDA, PBE and PBEsol functionals and norm-conserving

TABLE II: Optimized internal structural parameters of R3̄c LaNiO3 at the experimental11 cell parameter a and rhombohedral
angle α, calculated with the LSDA+U functional and PAW pseudopotentials as implemented in vasp.

LSDA+U (U in eV)
Exp. 0 3 6

x 0.797 0.796 0.800 0.797
d(Ni–O) (Å) 1.933 1.932 1.935 1.933
∠Ni–O–Ni (◦) 164.8 165.2 163.9 164.6
θ NiO6 rotation (◦) 9.20 8.97 9.77 9.33
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TABLE III: Raman-active vibrational modes computed using the LSDA+U formalism at the experimental cell volume are
compared to the measured values. All mode frequencies are given in wavenumbers (cm−1). The experimental values are taken
from Ref.63.

Eg Eg A1g Eg Eg

Exp. — 156 209 399 451
U = 0 eV 61.8 155.0 215.4 372.6 451.7
U = 3 eV 94.3 164.8 245.5 387.3 413.5
U = 6 eV 54.6 156.7 219.4 316.0 381.8

TABLE IV: Fully optimized structural parameters of R3̄c LaNiO3 (rhombohedral setting), calculated from the various exchange-
correlation functionals.

VASP: LSDA+U (U in eV) QE
Exp. 0 3 6 LSDA GGA-PBE PBEsol

x 0.7968 0.787 0.795 0.792 0.801 0.813 0.807
a (Å) 5.3837 5.303 5.308 5.319 5.324 5.407 5.367
αrho (◦) 60.8596 60.72 60.92 60.83 61.39 61.43 61.66
d(Ni–O) (Å) 1.933 1.896 1.905 1.906 1.923 1.964 1.952
∠Ni–O–Ni (◦) 164.8 167.9 165.6 165.5 163.3 159.6 159.6
θ NiO6 rotation (◦) 9.2 7.35 8.76 8.19 10.08 12.31 11.17
Ω (Å3/f.u.) 56.2386 53.57 53.97 54.20 55.03 57.71 56.69

pseudopotentials as implemented in QE. Typically, the LSDA underestimates the lattice constant a, cell volume and
Ni–O bond length, but it closely reproduces the experimentally measured Ni-O6 octahedral rotation angel θ. For the
PBE functional, we find that both the bond length and octahedral rotation angles are overestimated. On the other
hand, the PBEsol gradient-corrected functional corrects some of above-mentioned overestimation from PBE, although
still slightly overestimating the rotation angle, it does provide the best agreement with the experimental lattice constant
a, Ni–O bond length and equilibrium atomic volume, among all the functionals we used for the structural optimization.

We now use these ground-state structures listed in Table IV and calculate their Raman-active mode frequencies
to examine the effect of lattice volume on the mode frequencies. Comparing these LSDA+U results (Table V) to
our previously calculated lattice modes obtained using the same functionals but at the experimental volume (Table
III), we find that the LSDA (U = 0 eV) functional provides the best agreement with experimental data. As before,
we find an unstable zone-centered NiO6 octahedral breathing mode in our calculations with U=6 eV. Interestingly,
the LDSA+Hubbard U method accurately predicts the ground-state structural properties; however, it also leads to
poor predictions for the lattice normal modes. We note that in this case, simply reproducing the correct ground-state
atomic structure is not a sufficient criterion to evaluate the performance of a functional. This caveat is important to
consider especially in the first-principles search for perovskite materials with large electron–phonon interactions.

We also find a close relation between the predicted Raman phonon frequencies and structural parameters of the bulk
rhombohedral LNO, especially for the A1g and the two high-frequency Eg modes. Typically, the A1g mode frequency
is sensitive to the octahedral rotation angle θ, whereas the bond bending and breathing Eg modes are substantially
more sensitive to the predicted Ni–O bond length and cell volume Ω, respectively. The LSDA underestimates both
the lattice constant a and the cell volume Ω, but it also overestimates the rhombohedral angle αrho. This leads to a
cancellation in errors and an overall good prediction of both θ and d(Ni–O) and therefore calculated rotation (A1g) and
bending (Eg) phonon frequencies that agree very well with the experiment. The LSDA functional only overestimates
the stretching Eg-mode frequency (by 10%) due to the underestimation of cell volume.

Compared to the LSDA, the PBEsol functional improves prediction of the structural parameters, such as a and

TABLE V: Raman-active vibrational modes computed using the various exchange-correlation functionals at the relaxed cell
parameters (Table IV) compared to the experimental values.

Eg Eg A1g Eg Eg

Exp. — 156 209 399 451
U = 0 eV 72.5 166.4 196.8 374.1 519.4
U = 3 eV 73.4 164.0 221.4 388.0 399.4
U = 6 eV 66.0 159.6 201.2 330.3 387.3
LSDA-PZ 81.6 171.0 231.5 398.5 509.3
GGA-PBE 84.3 168.9 278.9 351.1 407.1
PBEsol 81.6 169.3 256.3 399.7 458.3
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FIG. 7: (Color) The experimental PES spectrum for a 20 nm crystalline LNO film (filled circles) from Ref.69 is compared
to the density of states calculated with the LSDA+U (U=5.74 eV), gradient-corrected (PBE) and hybrid (PBE0 and HSE)
exchange-correlation functionals. The calculated data are smeared with Lorentzian and Gaussian functions and truncated with
a Fermi-Dirac distribution to facilitate the comparison. See the main text for peak position assignments.

Ω (Table IV). Except for the overestimation of θ, PBEsol also predicts a d(Ni–O) bond lengths close to experiment.
Therefore, as shown in Table V, the two high-frequency Eg modes are in good agreement with experiment, but the A1g

mode is overestimated by more than 20%. The PBE functional, in contrast, overestimates all of the major bulk LNO
structural parameters, thus providing the poorest description of the Raman frequencies among the three functionals
explored in the QE code. To summarize, both the LSDA and PBEsol functionals predict overall adequate Raman
frequencies for LNO that are close to experiment; however, each functional still has deficiencies for specific vibrational
modes, and in fact the LSDA values are closest to experiment overall.

We emphasize here that the NiO6 rotation angle θ, the order parameter to characterize the structural phase transition
in LaNiO3, is highly sensitive to the exchange-correlation functional. Even calculations with same functional, but
different pseudopotentials (for example the LSDA calculations performed with the vasp and QE codes) yield θ values
with obvious differences. Therefore we suggests that an accurate and comprehensive study of various theoretical
approximations on the descriptions of the octahedra rotation angles in rhombohedral perovskite oxides is needed.

C. Electronic structure and experimental energy spectra

In this section we compare our first-principles results with recent photoemission spectroscopy (PES) data to identify
the degree of electronic correlations in rhombohedral LaNiO3. In a single electron picture, PES measures the excitation
energies for non-interacting electrons from the valence band into the continuum and therefore can be used as a
first-order reference to single-particle DFT studies. We show in Figure 7 experimental PES data27 from a crystalline
20 nm LaNiO3 film, and compare it with our first-principles calculated valence band DOS to evaluate the accuracy of
our calculations in reproducing the known electronic structure. In order to make a more accurate comparison, we first
smear our calculated DOS with a Gaussian function (FWHM=0.20 eV) to account for the experimental resolution and
multiply by a 20 K Fermi-Dirac distribution; then we convolute an energy-dependent Lorentzian function [full width
at half-max (FWHM)= 0.1|E −EF | eV,68 where EF is the Fermi level] with our calculated DOS to include lifetime
broadening effects of the photon-excited electrons.

The experimental PES consists of four main features: peaks a and b are assigned to the Ni eg and t2g states, and
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FIG. 8: Spin- and orbital-resolved density of states for rhombohedral LaNiO3, obtained from LSDA, LSDA+U (U=5.74 eV),
PBE, PBE0 and HSE calculations. The Fermi energy is the energy zero. In each case the structure is fully relaxed according to
the specific functional with the exception that the DOS for the hybrid XC-functionals are calculated with the LSDA ground-state
atomic structure.

the deeper c and d spectra to the O 2p dominant states.27 The eg states (a) are clearly resolved as a sharp peak at the
Fermi level and the strong t2g peak is located at 1.0 eV below the Fermi edge. The O 2p states (c), located below the
t2g states, correspond to non-bonding O 2p states, as their hybridization with the Ni 3d states is restricted by symmetry.
The O 2p bonding states (d) are much broader and located between -8 and -4 eV. Compared to experimental PES
results, none of the exchange correlation functionals are able to reproduce the sharp spectral intensity of the eg peak
at the Fermi level. Each method leads to an over delocalization of the itinerant eg electrons (Fig. 7).

Despite the inability to reproduce peak a, the LSDA functional does exceedingly well in reproducing the experimental
valence band features—both the correct valence bandwidth and energy peak positions. As shown in Fig. 8(a), the
LSDA predicts a pronounced hybridization between the Ni t2g and O 2p states almost throughout the full valence
band. The eg states, located at the Fermi level, are separated in energy from the Ni t2g orbitals.

The LSDA+U functional is also able to reproduce the correct bandwidth; however, it fails to predict the correct
energy peak positions. It shifts the t2g states (peak b) toward the bonding O 2p states (peak d) as observed in the
orbital resolved DOS [Fig. 8(b)]. There is an additional shift of bonding O 2p spectral weight from the bottom of the
valence band to around feature b which gives the impression that the localized t2g states below the Fermi level are only
broadened and not shifted. These two effects combine to give a reduced intensity in the non-bonding 2p states (peak
c), where as experimentally they contribute greater intensity to the PES data. The PBE functional also predicts the
correct delocalized electronic characters for LaNiO3, but underestimates the valence bandwidth [Fig. 8(c)]. Moreover,
it predicts a ferromagnetic ground-state (0.56 µB local magnetic moment per Ni), in contrast to the paramagnetic
LSDA results. Therefore, the PBE functional predicts an electronic structure that is intermediate between the LSDA
and LSDA+U methods.

Both hybrid functionals give poor agreement between the calculated DOS and the experimental PES data. In each
case the bandwidth is overestimated, with the PBE0 (HSE) functional ≈ 1.5 eV (1 eV) larger than the experimental
results. This is in contrast to the PBE functional which produces a narrow (∼6 eV wide) valence band [Fig. 8(c)]. As
mentioned earlier, similar errors are also found in other itinerant magnetic metals when using the PBE0 and HSE
functionals.62 The major peaks are also red-shifted by approximately 2 eV, i.e. PBE0 and HSE functionals shift the
major Ni t2g states to between -7.5 and -5 eV below EF . Similar to the LSDA+U approach, the hybrid functionals
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FIG. 9: Orbital-resolved density of states in the core energy region obtained from LSDA, LSDA+U (U =5.74 eV), PBE, PBE0
and HSE calculations. The Fermi energy level is shifted to the energy zero. Note, the binding energies predicted by PBE0 and
HSE are not obtained by a simple rigid shift of the PBE results.

suppress the contribution of Ni states at EF . This results in the removal of the Ni eg states from the Fermi level and
shifts them to the bottom of the valence band. This shift of electronic states produces the unusual shoulder at -8 eV
in the DOS calculated with the hybrid functionals [Fig. 7(d) and (e)].

The above comparison to the experimental data clearly indicates that the beyond-LSDA methods (the LSDA+U and
hybrid density functionals) incorrectly describe the electronic structure of LaNiO3. The origin for these discrepancies
lies in the fact that the valence band is primarily composed of strongly delocalized Ni t2g and O 2p states. Therefore,
metallic LaNiO3 is able to strongly screen the electron–electron interactions. This screened electron-electron interaction
can lead to renormalization of the electronic states near the Fermi level, which are responsible for the sharp eg
peak observed experimentally.70 The accurate treatment of this phenomenon in LaNiO3 requires a calculation using
many-body DFT methods, i.e. quasi-particle GW, which includes the dynamically screened Coulomb interaction and
therefore treats the electron screening effect in a dynamic (energy-dependent) way.70 Our beyond-LSDA methods, such
as LSDA+U and hybrid functionals,57,62 however, are only included in the exchange-correlation functional, which is
independent of the quasi-particle frequency. As such, neither the on-site Coulomb repulsion interaction from LDA+U ,
nor the exact-exchange energy from hybrid density functionals, is able to reproduce the screening effects (and the
above-mentioned discrepancies) present in LaNiO3.

The inability of these beyond-LSDA methods to capture the dynamic screening effects manifests as shifts in core-level
binding energies. To explore this effect, we show in Fig. 9 the calculated orbital-resolved DOS in the core energy region
(-35 through -10 eV) for LaNiO3. The discrete core level states are primarily La 5s, 5p and O 2s. They are weakly
overlapped and easily distinguishable by spectroscopic measurements. In Table VI, we compare our calculated core-level
binding energies to recent XPS data.71 Although the LSDA method accurately reproduces the delocalized states in
the valence region, it largely underestimates the binding energies of the core level states. In contrast, both hybrid
XC-functionals significantly improve the description of the peak positions in the core region. Unlike the delocalized
valence electrons, the core level states are weakly modulated by the screening effect from the valence region, and
therefore exhibit strongly localized electronic character. In this case, the hybrid functionals, through the addition
of Fock-exchange, greatly reduce the self-interaction errors present in the LSDA and GGA functionals and therefore
substantially improve the calculated energy spectra. We also note that within the LSDA+U framework, the Hubbard
U does not affect the core level states since it is applied only to the valence Ni 3d orbitals, and therefore the core level
states are only rigidly shifted in energy respect to those calculated with the LSDA functional.

Based on our first-principles calculations, we find that strong hybridization between the Ni 3d and O 2p states
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TABLE VI: Calculated binding energies (in eV) for the major energy peaks in the core region from this study are compared
to those calculated with the PBE0 (designated by the *) functional and experimental (Exp.) values, taken from Ref.71. The
assignment of the peak positions follows that of Ref.71.

Peak Exp. LSDA PBE LSDA+U HSE PBE0 PBE0∗

b/c 16.7 14.2 14.4 13.6 15.3 16.0 17.1
d 21.0 17.6 17.6 17.0 19.3 19.8 20.7
e 23.6 18.7 18.6 18.0 20.4 21.1 21.8
f 33.5 30.5 30.7 30.0 32.7 33.5 34.8

reduce the on-site d-orbital Coulomb interaction in LaNiO3 through enhanced screening. The conventional LSDA
method accurately reproduces the valence band structure and also provides the decent experimental agreement to the
structural properties. In contrast, the hybrid exchange-correlation functionals work best for the core level states. We
do find one subtle caveat: the Ni eg states experimentally exhibit dynamical correlation effects, which we are unable to
capture in either the LSDA, LSDA+U , or hybrid functionals. This enhanced spectral weight at the Fermi level has
recently been reproduced experimentally and through LDA+dynamical mean-field theory (DMFT) calculations,72–74

where a dynamic (frequency-dependent) treatment of the Ni 3d electron–electron interactions leads to an enhanced
effective mass and optical conductivity.

To answer the principal question posed earlier regarding the metallic behavior in LaNiO3: We find that the
three-dimensional topology of the perovskite structure with corner-connected NiO6 octahedra supports strong pd-
hybridization and stabilizes the metallic state. Moreover, the relatively small octahedral rotations with rhombohedral
symmetry and the weak electron-electron correlation effects are insufficient to disrupt the metallic state.

V. SUMMARY AND CONCLUSIONS

In summary, we have studied the lattice normal modes and electronic properties of the correlated metal LaNiO3

with first-principles calculations using a variety of exchange-correlation functionals. We examined the rhombohedral-
to-cubic structural transition in LaNiO3 within second-order Landau phase transition theory. We found that the
A1g Raman-active mode acts as a clear descriptor for the magnitude of the octahedral rotations in rhombohedral
perovskites with the a−a−a− tilt pattern. We therefore suggest Raman spectroscopy is a plausible route for quantifying
the magnitude of octahedral rotations in rhombohedral perovskite oxides.

Using a linear response method we showed that the correlation effects in LaNiO3 originate from the Ni-eg orbitals.
We then proposed an orbital-dependent effective Hubbard U value of 5.74 eV for LaNiO3 to be used in the LSDA+U
formalism. By comparing the results obtained from the various functionals with experimental spectroscopic data,
we found an accurate treatment of the correlation effects in LaNiO3 cannot be simply obtained by the LSDA+U or
hybrid functional methods. We identified that there are strong hybridization effects between the Ni t2g and O 2p
within LaNiO3 that result in enhanced screening capabilities and act to reduce the electronic correlations in the eg
orbitals. Among the various DFT exchange-correlation functionals examined, we find that only the LSDA is capable of
reproducing both the delocalized valence states and the experimentally measured lattice dynamics.
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