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We calculate the dc conductivity σ in a pseudogapped high Tc s perconductor within a precursor
superconductivity theory which is consistent with gauge invariance. Our results contain physical
effects beyond those identified previously. Rather than presuming that lifetime effects dominate the
T dependence of transport, here we show (consistent with growing experimental support) that the
temperature dependence of the effective carrier number is a natural consequence of the pseudogap,
and demonstrate reasonable agreement with dc transport in the underdoped cuprates.
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Understanding the T dependence of the dc resistiv-
ity, particularly near optimal doping, was one of the
first puzzles posed by the high temperature supercon-
ductors. A number of different models based on spin-
charge separation to marginal Fermi liquid phenomenol-
ogy were invoked to explain the unusual power laws ob-
served. With our increased understanding of the pseu-
dogap phase (which extends over most of the phase di-
agram, including optimal doping), it has become clear
that earlier theories must be modified to accomodate the
pseudogap1 and related Fermi arc effects. Moreover, the
nature of this pseudogap is currently under heated debate
as to whether it derives from precursor and/or fluctuation
superconductivity2 or an alternative order parameter3. It
is therefore essential to build a systematic and properly
conserving transport theory within each of these schools
and their variants.

In this paper we use a pre-formed pair, sum rule- com-
patible approach to address the dc conductivity σ(T ) in
the cuprates. Our goals are to determine (i) the ef-
fects of a pseudogap on σ(T ), (ii) the experimentally
deduced temperature dependence of the lifetime, (iii)
how to understand superconducting coherence effects in
σ(ω ≈ 0, T )4 from above to below Tc, (iv) the role of the
Fermi arcs as well as (v) what is the source of the “bad
metallicity”5 in the cuprates. Our approach is based on
the notion that the attraction is stronger than in BCS
theory; this leads to finite center of mass pair excita-
tions of the normal and the condensed state. The for-
mal machinery used here for addressing transport is well
established6–8. These pair fluctuations are a natural con-
sequence of the short coherence length, as well as gener-
ally high Tc. They are to be distinguished from phase
fluctuations; as a mean field approach we do not include
superconducting fluctuations which dominate in the crit-
ical region.

For illustrative purposes, it is helpful, first, to present
our expression for the dc conductivity for s-wave jellium,
and thereby illustrate what is the role of pre-formed or

non-condensed pairs. We find
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Here Ek is the usual BCS dispersion, Ek ≡

√

ξ2k +∆2
k

where the excitation gap consists of two contributions
from non-condensed (pg) and condensed (sc) pairs: via
∆2

k ≡ ∆2
pg,k +∆2

sc,k, f(Ep) is the Fermi function and τσ
is the effective lifetime. The gap ∆k remains relatively
T-independent, even below Tc, as observed, because of
the conversion of non-condensed (∆pg,k) to condensed
(∆sc,k) pairs as the temperature is lowered. This trans-
port equation is for the weak scattering limit and when
∆pg = 0 it reduces to strict BCS theory, where below Tc,
we consider ω → 0+.
Importantly, this scheme is associated with the

standard9–11 pseudogap self energy, which we derived
even earlier within our microscopic formalism12

Σpg(K) = −iγ +
∆2

pg,k

iωn + ξk + iγ
(2)

Here γ represents a damping related to the inter-
conversion of pairs and fermions. (Rather than intro-
ducing two different γ’s in the first and second term,
we minimize the number of parameters and take them
equal.)
Physically, Eq. (1) implies that the dc conductivity is

affected by the pseudogap or pre-formed pairs, via a re-
duction as well as a temperature dependence of effective
carrier number (n/m(T ))eff . The first of these arises
from the Fermi function derivative, which reduces the
number of carriers through a gap effect. The second of
these appears via the pre-factor −∆2

pg which reflects the
fact that when fermions are tied up into pairs the car-
rier number is decreased. Indeed, there is an increasing
experimental awareness13,14, that “the dc resistivity of
cuprates ρdc(T ) is governed not only by the relaxation
processes but also by temperature-dependent numbers of
carriers”.
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Formalism A central question here is how to incorpo-
rate the widely used Eq.(2) into a consistent treatment
of transport. Based on Eq.(2), one can write for the full
Green’s function including condensed pair (sc) effects

GK =
(

iωn − ξk + iγ −
∆2

pg,k

iωn + ξk + iγ
−

∆2
sc,k

iωn + ξk

)

−1

(3)

Note that there can be no finite lifetime effects associated
with the condensed pairs.
Within a BCS-like formulation, transport properties

will involve terms of the form Fsc,K which represent the
usual Gor’kov functions as a product of one dressed (G)
and one bare (G0) Green’s function (GG0),

Fsc,K ≡ −
∆sc,k

iωn + ξk
(iωn − ξk −

∆2
k

iωn + ξk
)−1 (4)

To address transport we consider the EM kernel J =

−

←→

KA, with
↔

K(Q) = e2
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)
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(Q), where the

paramagnetic contribution, given by P
↔

(Q), is associated
with the normal current from fermionic and bosonic ex-
citations.
The diamagnetic current (with electronic dispersion

ξk), is (n
↔/m)dia = 2

∑

K(∂2ξk/∂k∂k)GK . We integrate
this expression by parts and use the generalized Ward
identity to obtain7 an alternate form (above Tc)
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In applying the Ward identity to arrive at Eq. (5), we
are considering a t-matrix approach in which the self en-
ergy can be written as Σpg(K) =

∑

Q tpg(Q)G0(Q−K),

with tpg(Q) = (U−1 + χpg(Q))−1 where χpg(Q) =
∑

K GKG0,Q−K . Here U is the strength of an attractive
interaction which is unspecified. The presence of GG0

in the non-condensed pair t-matrix, tpg follows from the
GG0 form of the Gor’kov function (Eq. (4)). We de-
fine K = (k, iωn) (Q = (q, iΩm)) where iωn (iΩm) is a
fermionic (bosonic) Matsubara frequency.
Eq.(5) is important because it has cast the diamag-

netic response in the form of a two particle correlation
function. That there is no Meissner effect in the nor-
mal state is related to a precise cancellation between the

diamagnetic and paramagnetic terms. Noting P
↔

(0) =

−e2(n↔/m)dia, we may extend P
↔

(0) to finite Q and infer
that in the normal state
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One can alternatively7,8 introduce the Aslamazov-Larkin
and Maki-Thompson diagrams to arrive at the above
equation9. The condensate contribution is similarly as-
sociated with a t-matrix. Σ(K) ≡ Σsc(K) +Σpg(K) and

Σ(K) =
∑

Q t(Q)G0(Q − K). where t(Q) ≡ tsc(Q) +

tpg(Q). Since tsc(Q) = −δ(Q)∆2
sc,k/T , this yields the

superconducting contribution in Eq. (3)

Σsc(K) =
∆2

sc,k

iωn + ξk
(7)

Then, in the same spirit as our previous12 derivation
of Eq.(2) we take note of the fact that up to T ≈ T ∗/2,
where T ∗ is the pairing onset temperature (ie, where
the pair chemical potential is small), tpg(Q) is strongly
peaked at small P . This leads us to identify ∆2

pg =
−

∑

tpg(Q) and clarifies the parameters of Eq. (2). We
rewrite Eq. (6), now including the usual condensate con-
tribution as
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with Fpg,K ≡ −
∆pg,k

iωn + ξk + iγ
GK (9)

From Eq.(8) and Re σpara(Ω) ≡
(

−Im Pxx(Ω)
Ω

)

, the para-
magnetic contribution to the dc conductivity is

Reσpara(0) ≈−lim
q→0

Im
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In previous work in the literature11,15 only the first term
involving GG was included, which was recognized as
inadequate11. Note also that Eq (1) follows directly from
Eq. (10) in the limit of small γ ≈ τ−1

σ . For consistency we
rewrite Eq. (5), also adding in the usual BCS condensate
terms

(nxx

m

)
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≈−2

∑

K

(∂ξk
∂kx

)2[

GKGK+Q − Fsc,KFsc,K+Q
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]

(11)

We are now in a position to demonstrate compat-
ibility with the important conductivity sum rule
∫

∞

0 dΩReσ(Ω) = (1/2)e2(nxx/m)dia. Note that
Reσ(Ω) = −ImPxx(Ω)/Ω + πδ(Ω)[RePxx(Ω) +
e2
(

nxx/m
)

dia
]. Integrating the first term over fre-

quency we find = −πPxx(0), while the second (delta
function) term yields a term +πPxx(0), which leaves
only the diamagnetic contribution and yields the desired
sum rule. Note that this sum rule is intimately connected
to the absence (above Tc) and the presence (below Tc)
of a Meissner effect. Importantly, since

(

nxx

m

)

dia
can be

viewed as essentially independent of temperature, when
there are approximations in evaluating the transport
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Figure 1: (Color online)Conductivity in an overdoped sample
(a) The effective carrier number. The inset shows the effective
carrier number for γ/∆(Tc) = 0. (b) σ(T/Tc). (c) Different
contributions to Reσ(T/Tc): the contributions due to ∆sc

and ∆pg are labeled and the total value of σ(T/Tc) is the
unlabeled region. Panels (b) and (d) compare favorably with
experiment4,16.

Figure 2: (Color online)Transport in an underdoped sample.
(a) The effective carrier number. The inset shows the effective
carrier number for γ/∆(Tc) = 0.(b) σ(T/Tc). (c) Various
contributions to Reσ(T/Tc). Corresponding (d) resistivity.
Panels (b) and (d) compare favorably with experiment4,16.

diagrams, it is appropriate to evaluate the chemical
potential µ based on the T -independence in Eq(11).
Numerical Results For our numerical calculations

we have essentially two fitted parameters T ∗ and Tc, rep-
resenting hole doping, and these in turn constrain the
attraction U . We obtain µ and ∆k(T ) from the mean
field equations where the mean field transition temper-
ature is T ∗. Rather than using a more numerically in-
tensive approach9 we simplify the decomposition of pg
and sc contributions so that ∆pg,k(T ) = (T/Tc)

3/4∆k(T )
for T < Tc and for T > Tc, ∆pg,k(T ) = ∆k. This
parametrization of the gaps is very close to the full nu-

Figure 3: (Color online) Doping dependence of resistivity (be-
low T ∗) and (inset) ARPES gaps showing Fermi arcs. The
normalization ρ0 is defined as ρ(Tc) for the highest doping
case (γ/∆(Tc) = 0.67). The change in doping is associated
with different ratios of γ/∆(Tc) = 0.07, 0.20, 0.35, 0.67 for in-
creased doping.

merical solution9. The values for γ were chosen to give
rough agreement with the observed Fermi arc lengths.
Although it is not particularly critical, we take the
form γ ∝ (T/Tc)

3 for T < Tc. This is based on fit-
ting the temperature dependence of the spectral func-
tion peak width to the measured quasi-particle scat-
tering rate17. We define the effective carrier number
(n/m(T ))eff ≡ γ(T )σ(T ). It should not be surprising
that the effective carrier number increases with temper-
ature because of the presence of an excitation gap and
related non-condensed pairs. This T -dependent carrier
number is precisely what is found in a strict BCS super-
conductor below Tc. This contribution leads to a non-
metallic tendency with σ increasing with T above Tc.
Experimentally1, one finds an increasing resistivity

with T and a quasi-linear T dependence. Convention-
ally this is explained by assuming that (n/m(T ))eff is
T -independent, but that the inverse lifetime is linear in
temperature. We have just shown that due to the pseu-
dogap, the carrier number necessarily increases with T .
This suggests that γ(T ) must be a higher power than
linear. It is not implausible to assume that the gapless
Fermi arcs lead to a more conventional, Fermi liquid be-
havior; thus we choose γ ∝ (T/Tc)

2.
In Fig. 1 we plot results for a prototypical overdoped

system with T ∗/Tc = 1.4 and γ/∆(Tc) = 0.67. In the up-
per left inset we also plot (n/m(T ))eff in the limit that
γ → 0, so that there is no distinction between condensed
and non-condensed pairs and Fermi arcs are not present.
The lowest T considered is T/Tc = 0.4 where the numer-
ics are well controlled and impurity effects are less impor-
tant. The highest temperatures considered correspond to
T ∗, above which the simple form for the fermionic self en-
ergy of Eq. (2) is no longer valid. It should be noted that
both σ and (n/m(T ))eff vanish at strictly zero temper-
ature, as we do not include a self consistent treatment
of d-wave localization18. Plotted in Fig.1(a) is the corre-
sponding effective carrier number (n/m(T ))eff . From this
figure one can see that the carrier number begins to rise
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once T exceeds Tc. Because the difference between the in-
set and main figure are not dramatic, we see that the arcs
are not crucial for this aspect of transport. In Fig.1(b)
we plot Reσ(T/Tc), which exhibits a maximum below Tc,
as has been been observed experimentally4. This is asso-
ciated with the onset of order via ∆sc, which increases σ
(Eq. (10)). Above Tc, we see that the conductivity of the
normal state is appropriately metallic, but suppressed by
the excitation gap. In Fig.1(c) we plot and label the ∆sc

and ∆pg components of Reσ arising from the three differ-
ent contributions on the right in Eq. (10) as well as the
total dc conductivity. The (pg) contribution from the
non-condensed pairs lowers the conductivity because the
presence of non-condensed pairs means fewer fermions
are available for dc transport. The resistivity ρ, shown
in Fig.1(d) has a nearly linear temperature dependence,
but rises faster than T near T ∗ because the effective car-
rier number is nearing its normal state value.

The counterpart results for an underdoped sample with
a much larger gap and γ/∆(Tc) = 0.07 and T ∗/Tc = 4,
are shown in Fig.2. The effective carrier number is plot-
ted in Fig.2(a), and the inset shows the results for γ = 0.
Above Tc, the curvature of (n/m(T ))eff changes to con-
vex bowing, whereas it is concave in the overdoped case.
This is to be expected as this larger value for ∆(Tc) sup-
presses the carrier number. The conductivity plotted in
Fig.2(b) is similar to its experimental counterpart and
the difference between this and the overdoped case is
made apparent in Fig.2(c). One sees that the contri-
bution from non-condensed pairs is much larger at lower
doping due to the larger pseudogap. The larger depres-
sion in (n/m(T ))eff in turn leads to a concave bowing in
the resistivity, seen in Fig.2(d).

Figure 3 presents a plot of normal state resistivities
and (inset) spectral gaps associated with the fermionic
spectral function for dopings that interpolate between
the underdoped and overdoped cases. The resistivities
are normalized by the value ρo = ρ(Tc) for the case
of highest doping. We may characterize each curve,
in order of increasing doping, by the ratio γ/∆(Tc) =
0.07, 0.20, 0.35, 0.67, which lead to progressively larger
arcs. The size of the resistivities decreases as one in-
creases the hole concentration and this reflects the change
in gap size and effective carrier number. One can see
from the figure that there is a change in the nearly linear
slope with increased doping from concave to convex bow-
ing, which may have been seen experimentally16. The
spectral gaps at Tc, displayed in the inset of Fig.3 show
the general experimental trend1,11 where the arc length
increases with doping.

Conclusions Our main observation of T -dependence
in the carrier number (and its implications for dc trans-
port) seems quite natural and general, although the
community focus has been on the T dependence of
the scattering time. The present pre-formed pair ap-
proach is importantly demonstrably consistent with con-
servation laws and extendable below Tc (merging into
a BCS ground state). By contrast, other papers in the

literature2,11,15 are restricted to T > Tc and, unlike Ref. 3
do not establish sum rule consistency. The collapse of the
Fermi arcs and the so-called two-gap physics (through
Eq. (3)) are also evident19 here, as is the anomalously
low conductivity, or “bad-metal” behavior5. The (gap-
less) Fermi arcs appear to be more important for the
relaxation time than for the carrier number.
This work is supported by NSF-MRSEC Grant
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