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Many experiments reveal that in iron-based superconductors the jump of the specific heat ∆C
at the superconducting Tc is not proportional to Tc, as expected in BCS theory. Rather, ∆C/Tc

varies with Tc and has a peak near optimal doping and decreases at smaller and larger dopings.
We show that this behavior can be naturally explained by the interplay between superconductivity
and antiferromagnetism. We demonstrate on general grounds that ∆C/Tc is peaked at the doping
where the coexistence phase with antiferromagnetism develops, and decreases at deviations from
this doping in both directions. Our results are in quantitative agreement with the experiments.

Introduction. The magnitude and the doping depen-
dence of the specific heat jump at the superconducting
transition temperature Tc is one of unexplained phenom-
ena in novel iron-based superconductors (FeSCs)1. In
BCS theory ∆C/Tc ≃ 1.43γ, where γ = π2NF /3 is
the Sommerfeld coefficient, and NF is the total quasi-
particle density of states (DoS) at the Fermi surface
(FS). Although the behavior of FeSCs is in many re-
spects consistent with BCS theory, the experimental
values of ∆C/Tc vary widely between different com-
pounds, ranging between 1 mJ/(mol · K2) in under-
doped Ba(Fe1−xNix)2As2

2 and 100 mJ/(mol ·K2) in op-
timally hole-doped Ba1−xKxFe2As2

3. Such huge varia-
tions may be partly due to differences in γ, which were
indeed reported to be larger in hole-doped FeSCs3,4. Yet,
even for a given material, e.g., Ba(Fe1−xNix)2As2 or
Ba(Fe1−xCox)2As2 the magnitude of ∆C/Tc is peaked
near optimal doping xopt and rapidly decreases, approxi-
mately as ∆C/Tc ∝ T 2

c , at smaller and larger dopings2,4.

This rapid and non-monotonic variation of ∆C/Tc over
a relatively small range of 0.03 < x < 0.12 is unlikely to
be attributed to change in γ and has to be explained
by other effects2. The reduction of ∆C/Tc in the over-
doped regime may be caused by interband scattering off
non-magnetic impurities6, which is pair-breaking for s±

pairing, and the reduction of ∆C/Tc in the underdoped
region may be due to phase separation. However, the
near-symmetric reduction on both sides from the optimal
doping is difficult to explain either by impurity scatter-
ing or by phase separation. Strong coupling effects do
increase ∆C/Tc over some range of couplings5, although
they are unlikely to explain non-monotonic behavior of
∆C/Tc around optimal doping.

We propose a different explanation. We argue that
the origin of strong doping dependence of ∆C/Tc is the
coexistence of spin-density-wave (SDW) magnetism and
s± superconductivity (SC).7,11,12 In Ba(Fe1−xNix)2As2,
Ba(Fe1−xCox)2As2 and, possibly, in other FeSCs, opti-
mal doping xopt nearly coincides with the end point of
the coexistence region (tetra-critical point).11 We analyze
the behavior of ∆C/Tc near xopt within BCS theory and
find that ∆C/Tc is by itself discontinuous and jumps by a
finite amount when the system enters the coexistence re-

gion (see Fig. 1). For a wide range of parameters ∆C/Tc

immediately after the jump well exceeds the BCS value.
Beyond a mean-field treatment, paramagnetic fluctua-
tions transform the discontinuity in ∆C/Tc at xopt into
a maximum, such that ∆C/Tc decreases on both sides of
optimal doping, as illustrated in Fig. 1.

We also examine the behavior of ∆C/Tc along the en-
tire Tc line in the coexistence region. In our two-pocket
model we find that ∆C/Tc decreases together with Tc,
follows ∆C/Tc ∝ T 2

c over some range of Tc, and becomes
exponentially small at the lowest Tc. The explanation of
this behavior goes beyond a standard paradigm that Tc

and ∆C decrease because FS available for superconduc-
tivity is modified by SDW. If that was the only effect,
then the DoS would not change significantly and ∆C/Tc

would only weakly depend on Tc. We find that the strong
decrease of ∆C/Tc originates from the fact that Tc line
necessarily crosses over into the region in which SDW
order gaps out the hole and the electron FSs which are
reconstructed by SDW8. In this situation, all states are
gapped at Tc and ∆C/Tc is exponentially small. We find
that the precursors of this behavior develop at a higher
Tc, when the reconstructed FS is still present, and ∆C/Tc

decreases in the entire co-existence phase. In more realis-
tic 4 or 5-pocket models, the system still remains a metal
even at the lowest Tc because at least one FS is not in-
volved in SDW reconstruction.9. That FS accounts for a
metallic behavior and a non-zero ∆C/Tc. Still, the total
∆C/Tc is well below BCS value.

The behavior of ∆C/Tc outside the coexistence region
is likely to be a combination of several effects. When
paramagnetic fluctuations weaken, ∆C/Tc reduces to its
BCS value. Further decrease of ∆C/Tc is partly due to
impurities,6,10 and partly due to shrinking of the hole FSs
and to the fact that at larger x the gap along electron
FSs becomes more anisotropic

The method. To obtain ∆C, we expand the free en-
ergy in powers of the SC order parameter ∆ to order ∆4.
When the SC transition occurs from a pre-existing SDW
state, the expansion reads

F(∆,M0)

NF
=

F0

NF
+ α∆(M0, T )∆

2 + η(M0, T )∆
4, (1)



2

where F0 = F(0,M0) is the free energy of a pre-existing
SDW state, M0 = M0(T ) is the SDW order parame-
ter which minimizes F(0,M), and η includes the feed-
back of the finite SC order parameter on the SDW state,
M2 = M2

0 − O(∆2), see Fig. 1(a). The Tc is given by
α∆(M0(Tc), Tc) = 0 and the specific heat jump is

∆C
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3γ

2π2η

(
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)2
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,
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∂α∆

∂T
+

∂α∆

∂M2
0

dM2
0

dT
.

(2)

To obtain actual expressions for α∆ and η, we need to
specify the band structure of a material. Since our goal
is to demonstrate the discontinuity of ∆C/Tc at xopt and
the reduction of ∆C/Tc along the coexistence onset, we
adopt a simplified 2D two-band model with the hole-like
band near the center of the Brillouin zone (BZ), with
ξh = µh − k2/2mh, and electron-like band near the cor-
ner of the BZ, with ξe = −µe+k2x/2mx+k2y/2my, where
kx and ky are deviations from (π, π). The same model
was earlier considered in Refs.11–13. At perfect nesting,
ξe = −ξh, while for a non-perfect nesting ξe = −ξh+2δϕ,
where δϕ = δ0 + δ2 cos 2ϕ captures the difference in the
chemical potentials and in electron and hole masses, via
δ0, and ellipticity (mx 6= my), via δ2. Without loss
of generality, we assume that δ0 changes with doping,
but the ellipticity parameter δ2 is doping independent.
We consider an effective low-energy theory with angle-
independent interactions in the SDW channel and in the
s± SC channel, 12,14,15. We assume that the pairing in-
teraction is attractive without specifying its origin.

We decompose these four-fermion interactions using
SDW and SC order parameters M and ∆, and express
couplings in terms of transition temperatures Tc,0 to the
SC state in the absence of SDW and Tm,0 to the perfectly
nested SDW state (δ0,2 = 0) in the absence of SC. Note
that the actual Tm differs from Tm,0 even in the absence
of SC and decreases when δ0 and δ2 increase.

The free energy for such a model has the form12

F(∆,M)
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∆2

2
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2
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,

where En =
√

ε2n +∆2, εn = πT (2n + 1) are the Mat-
subara frequencies (n = 0,±1,±2, . . . ), and 〈. . . 〉 denotes
averaging over ϕ along FSs. For this functional we find
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The derivatives are taken at ∆ = 0 and M = M0 with
M0 defined by

ln
Tm,0

T
= 2πT

∑

εn>0
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〈
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(5)
In the absence of SDW, M0 ≡ 0, dα∆/dT = ∂α∆/∂T ,
η = A(M0 = 0) = 7ζ(3)/(32π2T 2), and we reproduce
the BCS result ∆C/Tc = 1.43γ. To obtain ∆C/Tc inside
SDW phase we solve Eq. (5) for M2

0 (T ), insert the re-
sult into Eqs. (4), evaluate dα∆/dT and η and substitute
them into Eq. (2). ∆C/Tc depends on three input pa-
rameters δ0, δ2, and Tm,0/Tc,0, and generally differs from
the BCS value.
Results. We present ∆C/Tc as function of δ0 for fixed

δ2 and Tm,0/Tc,0 in Fig. 1(b). It grows from zero value at
the low-temperature onset of the coexistence phase and
reaches its maximum at the tetra-critical point, where
Tc reaches Tc,0. At this point, ∆C/Tc jumps back to the
BCS value.
Plotted as a function of Tc/Tc,0 in Fig. 2, ∆C/Tc shows

exponential behavior at small Tc and approximate T 2
c be-

havior at intermediate Tc/Tc,0 . 0.5. The magnitude
of ∆C/Tc at Tc,0 increases when the width of the coex-
istence region shrinks. This can be easily understood,
since shrinking of the coexistence region brings the sys-
tem closer to a first order transition between SDW and
SC at which the entropy itself becomes discontinuous at
Tc, and ∆C/Tc diverges. In the opposite limit, when the
width of the coexistence range is the largest, ∆C/Tc is
much smaller and can even be below the BCS value.
The decrease of ∆C/Tc at at small Tc ≪ Tc,0 and the

discontinuity at Tc ≈ Tc,0 can be understood analytically.
In the low Tc limit, it turns out that SDW state immedi-
ately above Tc is fully gapped (in the two-band model).
To see this we note that at low T the condition on Tc

becomes, to a logarithmical accuracy,

2πTc

∑

εn>0

1

εn



1− Re

〈

δϕ
√

δ2ϕ −M2
0

〉



 = ln
Tc,0

Tc
(6)

This equation is satisfied only ifM0 > max{δϕ} = δ0+δ2,
which is the condition that the SDW state gaps fermionic
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excitations.12 Superconductivity emerges from this fully
gapped SDW state by purely energetical reasons – below
Tc it becomes energetically advantageous to gradually re-
duce the magnitude of the SDW order M below M0, and
create a non-zero SC order ∆. The contribution to the
free energy from SC ordering comes from the rearrange-
ment of quasiparticle states above the gap. As a result,
the magnitude of the specific heat discontinuity at Tc

in the two-band model becomes exponentially small. In
more realistic 4 band and 5 band models, ∆C/Tc also de-
creases exponentially but tends to a finite value because
at least one FS is not involved in the SDW reconstruc-
tion.9

We next consider ∆C/Tc near the end point of the
coexistence regime, when Tm → Tc,0+0, andM0 is small.
In this limit we expand α∆, η, and F0 in terms of M2

0

and express Eq. (2) as

∆C

Tc
=

3γ

8π2A0T 2
c

(

1− 2Tc
∂αm

∂T
C0

B0

)2

(

1−
C2

0

A0B0

) , (7)

where the derivative is taken at Tc, the coefficients A0,
B0 and C0 are given by Eqs. (4) with M0 = 0, and

∂αm

∂T
=

1

2T
− 2π

∑

εn>0

〈

δ2ϕεn

(ε2n + δ2ϕ)
2

〉

. (8)

The terms containing C0/B0 originate from the fact that
SDW order is suppressed by SC order, M2 ≈ M2

0 −
(C0/B0)∆

2. In the absence of SDW order, these terms
are absent and ∆C/Tc reduces to the BCS result. Once
M0 is small but finite, ∆C/Tc changes discontinuously
and is value is now determined by the interplay between
the additional (C0/B0) terms in the numerator and the
denominator in 7. In general, the additional term in the
demoninator is more important because at perfect nest-
ing (δ0,2 = 0) C2

0 = A0B0.
11,12. As a result ∆C/Tc at

Tc = Tc,0 − 0 is generally larger than at Tc = Tc,0+0. In
Fig. 3 we show ∆C/Tc at Tc = Tc,0 − 0 for varios δ0 and
δ2. Over a wide range of parameters, ∆C/Tc Over some
range of parameters, ∆C/γTc at Tc,0− 0 significantly ex-
ceeds the BCS value.
Beyond mean-field. In a mean-field description, ∆C/Tc

is discontinuous at the tetra-critical point P , Fig. 2,
with Tm = Tc,0. The free energy F0 and the specific
heat jump depend on the finite square of the SDW or-
der, M2

0 ∝ (Tm − T ). Although above Tm the average
M0 = 0, one expects to replace M2

0 by the finite sec-

ond moment of SDW order due to Gaussian fluctuations,
〈M2

0 〉fluct ∝ (T − Tm). These fluctuations modify the

mean–field result for ∆C/Tc on both sides around the
tetra–critical point, and transform the discontinuity in
∆C/Tc into a maximum, as illustrated in Fig. 1. As a re-
sult, ∆C/Tc enhances upon approaching optimal doping
both from the coexistence phase and from higher dopings.
Still, the increase of ∆C/Tc should be more rapid within
the SDW-ordered phase. An enhancement of ∆C/Tc by
paramagnetic fluctuations was earlier obtained in Ref.16.
Comparison with experiments. The theoretical be-

havior of ∆C/Tc is quite consistent with the observed
doping evolution of ∆C/Tc in Ba(Fe1−xNix)2As2 and
Ba(Fe1−xCox)2As2

2,4. In these materials ∆C/Tc is
peaked at the tetra-critical point, which coincides with
the optimal doping xopt, and decreases for deviations
from xopt in both directions, faster into the coexistence
region. To make the comparison quantitative, in Fig.4
we plot our results together with the measured ∆C/Tc in
Ba(Fe0.925Co0.075)2As2 (Ref.4). We see that the agree-
ment is quite reasonable.

How strongly the value of ∆C/Tc at xopt exceeds the
BCS result is difficult to gauge because γ has to be ex-
tracted from the normal state C(T ) for which γT contri-
bution is only a small portion of the total specific heat. In
Ba(Fe1−xCox)2As2, ∆C/Tc ∼ 26 mJ/(mol ·K2) at xopt,
and γ ≃ 20 mJ/(mol ·K2)4. In this case, the maximim of
∆C/Tc is not far from the BCS result. At the same time,
in Ba1−xKxFe2As2 ∆C/Tc is over a 100 mJ/(mol · K2)
near xopt, well above the BCS value3, even if γ is as large
as reported3,4 50− 60 mJ/(mol ·K2).

Conclusions. We demonstrated that the specific heat
jump ∆C/Tc across transition from SDW to the coex-
istence phase significantly deviates from the BCS value.
The key result is that ∆C/Tc is peaked at the onset of
the coexistence phase and decreases for doping deviations
in both directions. In the coexistence phase, ∆C/Tc de-
creases as T 2

c at intermediate Tc and even faster at small-
est T . Outside the co-exisatence phase ∆C/Tc reduces in
our model to the BCS value. Further reduction of ∆C/Tc

at larger dopings x > xopt is, most likely, a combination
of several effects: (1) the enhancement of a non-magnetic
interband impurity scattering6,10; (2) stronge anisotropy
of the gap on the electron FSs that increases η; (3) the
reduction of γ due to shrinking of the hole FSs. Our theo-
retical results agree quantitatively with the experimental
data
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Figures

FIG. 1: (Color online) (a) The specific heat C(T ) and SC and
SDW order parameters ∆ and M as functions of T . We con-
sider the jump of C(T ) at the onset of SC. (b) The behavior
of ∆C/(γTc) as a function of δ0, which scales with doping. In
a mean-field theory, ∆C/Tc is discontinuous at the end point
of the coexistence state (P) and jumps back to BCS value
∆C/Tc ≃ 1.43γ at larger dopings (dashed horizontal line).
Beyond mean-field, paramagnetic fluctuations smear the dis-
continuity of ∆C/Tc and transform it into a maximum, as
schematically shown by the solid line.
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FIG. 2: (Color online) Top: The phase diagram in T -δ0 plane
for Tm,0/Tc,0 = 2 and several δ2/(2πTc,0) = 0.4, 0.28, 0.26,
corresponding to wide, medium, and narrow doping ranges of
the coexistence phase. SDW, SC and the SDW+SC phases
meet at the tetra-critical point P (in this case also meet-
ing normal (N) state). Bottom: The behavior of ∆C/γTc vs
Tc/Tc,0 in the coexistence region for these δ2. The arrows
indicate Tc, below which the whole FS is gapped by SDW.
As Tc is lowered through this value, ∆C/Tc decreases, as T 2

c

at intermediate Tc and exponentially at lower T . Near the
tetra-critical point, ∆C/Tc may well exceed the BCS value
1.43γ.
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FIG. 3: (Color online) Left: the coexistence region (un-
shaded) in the δ2-δ0 plane. Each point corresponds to a par-
ticular ratio Tm,0/Tc,0 and this ratio increases monotonically
as δ0 grows at fixed δ2. Right: The value of ∆C/γTc at the end
point of the coexistence region for δ2/2πTc,0 = 0.4, 0.28, 0.2
Thin solid line is the BCS value ∆C/Tc = 1.43γ. Diamonds
represent the values ∆C/γTc at Tc = Tc,0 − 0 for the curves
for δ2/2πTc,0 = 0.4 and 0.28 in Fig. 2

FIG. 4: (Color online) A comparison between the cal-
culated ∆C/Tc and the experimental data from Ref.4 for
Ba(Fe0.925Co0.075)2As2 for dopings below the optimal one.
We used Tm,0/Tc,0 = 1.45 and δ2/2πTc,0 = 0.174.


