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Superconducting rings are an ideal system for studying phase coherence in one dimension. We
study the temperature dependence of the magnetic susceptibility of superconducting rings with a
scanning superconducting quantum interference device (SQUID). The physical parameters of the
rings were designed to reduce the superconducting phase stiffness. We observe a suppression of
the susceptibility signal below the critical temperature, which we attribute to a thermodynamic
sampling of metastable states with different phase winding number, termed fluxoid fluctuations.1

We introduce a simple model1 for the susceptibility of a ring affected by fluxoid fluctuations and
compare it with one dimensional Ginzburg Landau (GL) theory including all thermal fluctuations.
We find good agreement between our fluxoid model and the full 1D GL theory up to a shift in
the critical temperature. Additionally our magnetic susceptibility data is well described by 1D GL
theory.

PACS numbers: 73.23.Ra, 74.40.-n, 73.23.-b, 74.25.Ha, 74.25.Dw, 74.62.-c

I. INTRODUCTION

In this paper, we study the properties of supercon-
ducting 1D wires in a model system: uniform isolated
aluminum rings. Superconducting rings have states with
uniform phase windings that differ by integer multiples
of 2π, called fluxoid states. Phase slips allow for tran-
sitions between fluxoid states. During a phase slip the
order parameter phase loses or gains a twist by suppress-
ing superconductivity in a portion of the ring. Phase
slips are detected as jumps in measurable quantities such
as the current. In contrast, fluxoid fluctuations represent
the thermal occupation of different fluxoid states. Their
impact on the ring’s current is represented by a thermo-
dynamic sampling of all energetically accessible fluxoid
states. By generating a Boltzmann distribution of these
fluxoid states, Koshnick formulated a new model1 which
predicts a suppression in the temperature dependence
of the ring’s zero field magnetic susceptibility. Com-
plementing previous experiments that studied amplitude
fluctuations in rings with long mean free paths,2,3 we
present experimental data from short mean free path
rings which exhibit a downturn in the susceptibility close
to the critical temperature. Moreover we show our new
fluxoid fluctuation model provides a good fit to the sus-
ceptibility data. This paper is not intended to be a com-
plete review of superconducting fluctuations in reduced
dimensions. We restrict our analysis to thermal fluctu-
ations of the GL order parameter that are described by
1D GL theory. We do not treat quantum fluctuations
or Langevin noise and we assume our rings are homoge-
neous.

Fluctuations play an important role in the supercon-
ducting behavior of samples of reduced dimensionality:4

they can make electron pairing and long-range phase
coherence occur at different temperatures in uncon-
ventional superconductors,5 lead to the Berezinskii-

Kosterlitz-Thouless transition6 in two dimensions (2D),
cause the destruction of long range phase order in in-
finitely long one-dimensional (1D) wires,7 and determine
the resistive properties of 1D wires of finite length.8–11

The nature of superconducting fluctuations in rings has
generated significant interest. Fluxoid dynamics in in-
dividual rings have been probed as a function of ring
size,12–14 magnetic field,13,15,16 and temperature.14,17,18

The occupation of metastable fluxoid states has also been
measured to determine a crossover from 1D to 2D behav-
ior in wide rings.19,20 Phase slip rates have been stud-
ied in both conventional low Tc[3] and unconventional
high Tc[21] superconducting rings. Ring inhomogeneities,
such as weak links or nonuniform widths, have been stud-
ied as phase slip sites that can impact the ring’s current-
phase relationship and fluxoid transitions.16,22–26

Transport measurements have long been used as a
probe of superconducting fluctuations.27,28 Transport
measures voltage, which is directly related to the phase
slip rate. In contrast, we use a scanning SQUID to make
a magnetic measurement that is sensitive to the thermo-
dynamic equilibrium current in the ring. Specifically we
measure the effects of superconducting fluctuations on
the ring’s equilibrium supercurrent, I, as a function of
applied flux, Φa, measured in a temperature range near
the critical temperature, Tc. Direct measurements of the
ring current as a function of applied flux are useful be-
cause they provide access to the thermodynamic free en-
ergy through the derivative I = −∂F/∂Φa. While there
are also interesting features in the full flux dependence,2

in this paper we measure the ring’s zero field suscepti-
bility as a function of temperature, dI(T )/dφ|φ=0, where
φ ≡ Φa/Φ0 and Φ0 ≡ h/2e is the superconducting flux
quantum.

Theoretical work using Ginzburg-Landau (GL) theory
has predicted the current in the presence of an applied
flux threading the ring. Ambegaokar and Eckern applied
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a Gaussian approximation to GL to predict a mesoscopic
persistent current driven by superconducting fluctuations
above Tc.

29,30 However, the Gaussian approximation, ac-
curate far above Tc where the quadratic term in the GL
free energy dominates, diverges as T approaches Tc. von
Oppen and Riedel formulated a transfer matrix approach
to GL theory that accounts for all thermal fluctuations
to calculate the supercurrent and correct the divergence
at Tc.

31 More recently, Schwiete and Oreg proposed a
simplification of the full formulation by von Oppen and
Riedel (VOR) that makes an analytic prediction for the
ring’s susceptibility, dI/dΦa, in the limit where the su-
perconducting coherence length is of order the radius.32

Schwiete and Oreg provide a simple alternative to solv-
ing the VOR model numerically. This model is applicable
to long mean free path rings with a short circumference,
rather than the short mean free path rings with long cir-
cumferences discussed in this paper.

A number of different experiments have used current
and susceptibility measurements to study fluctuations
in individual superconducting rings.2,3,14,23,33 Zhang and
Price studied the phase slip rate and susceptibility as a
function of temperature in a single Al ring.3 The ring’s
geometry and long mean free path favored amplitude
fluctuations that were expected to support a susceptibil-
ity response above Tc. However, the observed susceptibil-
ity signal was an order of magnitude larger than predicted
by GL theory. Koshnick et al.

2 measured the suscepti-
bility of 15 individual rings with long mean free paths as
a function of Φa. All rings showed a fluctuation induced
susceptibility response above Tc, which agreed well with
complete 1D GL theory.31

This paper focuses on rings with shorter mean free
paths and longer circumferences, which should exhibit
fluxoid fluctuations. Instead of generating an enhance-
ment in the susceptibility above Tc, fluxoid fluctuations
can suppress the ring’s superconducting response well be-
low Tc. We start in Sec. II A by describing the different
thermal fluctuations experienced by our rings, and estab-
lish the physical conditions that support fluxoid fluctua-
tions. We outline a model,1 derived from the 1D GL free
energy functional, where a thermal distribution of flux-
oid states suppresses the rings’ diamagnetism (Sec. II C).
Our theoretical analysis concludes by comparing our flux-
oid model to a complete theory that includes all thermal
fluctuations in the GL framework31 (Sec. II D). We find
good agreement between the models in rings with short
mean free paths where fluxoid fluctuations dominate the
response. Finally, we discuss our measurement technique
in Sec. III and present data from two sets of ring sam-
ples, which are well described by our 1D GL models (Sec.
III C).

II. FLUCTUATION THEORY

A. Types of Fluctuations

GL theory introduces a complex order parameter,
ψ(r), with an associated amplitude and phase. Fluctu-
ations are deviations in ψ from the mean field solutions
corresponding to local minima of the GL free energy func-
tional, which affect the order parameter’s amplitude or
phase. Fluctuations become significant when the ther-
mal energy of the system allows multiple wavefunctions
to contribute to the ring’s response. When multiple flux-
oid states are thermally accessible even at zero applied
flux the ring fluctuates between its minimum energy flux-
oid state and the metastable fluxoid states, a process we
call fluxoid fluctuations. In addition to fluxoid fluctu-
ations, 1D GL theory accounts for fluctuations in the
amplitude of the superconducting order parameter, and
phase fluctuations that are not uniform around the ring.
The main difference between our fluxoid model presented
in Sec. II C and the full 1D GL theory formulated by Von
Oppen and Riedel (Sec. II D) is the latter includes these
amplitude and non-uniform phase fluctuations.
It is important at this point to emphasize the distinc-

tion between phase slips and fluxoid fluctuations. Flux-
oid fluctuations represent equilibrium phenomena and
will not be observable on measurement timescales if the
ring is not experiencing phase slips which populate higher
phase winding states. The next three subsections will lay
out and compare the energy scales for the onset of both
fluxoid fluctuations and phase slips.

1. Fluxoid Fluctuations

The ring geometry of our samples imposes a constraint
on the order parameter phase. The order parameter
phase must be single valued modulo 2π, therefore the
cylindrical symmetry of the system results in a phase
that winds by an integer multiple of 2π around the ring.
Each fluxoid state, with free energy Fn and phase wind-
ing 2πn, represents a stable local minima of the GL free
energy functional.
We start by finding expressions for Fn. One dimen-

sional Ginzburg-Landau theory introduces the GL free
energy functional in the presence of a magnetic field rep-

resented by the vector potential ~A

F [ψ(x)] =

∫
[

α|ψ(x)|2 + 1

2
β|ψ(x)|4

+
~

2m∗

∣

∣

∣

∣

∣
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∣

∣

∣

∣
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 d3x. (1)

α and β both depend on T , and α2/β = Bc(T )
2/µ0 is

related to the superconducting critical field, Bc(T ). e∗
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and m∗ are the charge and mass of the Cooper pairs and
µ0 is the permeability of free space.

We look for stable solutions that locally minimize the
Ginzburg Landau free energy functional. In a homoge-
neous one dimensional ring fluxoid states have free ener-
gies

Fn(T, φ) = −Fc(T )

(

1− ξ(T )2

R2
(φ− n)2

)2

, (2)

where the critical field, and the ring volume (V =
2πRwd) determine the ring’s total condensation energy
(Fc(T ) = V Bc(T )

2/2µ0). w is the ring width and d is
the thickness. The dependence on ξ(T )/R accounts for
the suppression of the superfluid density by the phase
gradient around the ring with coherence length ξ(T ) and
radius R. The applied flux, φ = Φa/Φ0, can be trans-
formed into a shift in the boundary conditions for a wave
function in a ring,34 and therefore contributes to the en-
ergy in the same way as n.

We approximate the energy associated with each flux-
oid state by expanding the mean field GL free energy
expression, Eq. (2), to lowest order in ξ(T )/R. The en-
ergy difference between the lowest energy fluxoid states
at zero applied flux,

∆F±1,0(T, φ = 0) = F±1(T, φ = 0)− F0(T, φ = 0)

≈ 4πξwd
B2

c

2µ0

ξ

R
, (3)

is indicated with a red arrow in Fig (1). This energy
barrier determines the onset of fluxoid fluctuations in our
zero-field susceptibility measurements presented in Sec.
III.

2. Phase Slips

A phase slip is the process of changing the fluxoid num-
ber by 2π by briefly driving the order parameter ampli-
tude to zero in a coherence-length-sized section of the
ring.4 The phase slip activation energy is found by cal-
culating the lowest energy pathway between two flux-
oid states as defined by the energy barrier for the saddle
point in wave function configuration space. The saddle
point energies, Fsn, being stationary points of the free en-
ergy, must also satisfy the GL equations; however, these
solutions represent unstable configurations. We find an
approximate condition for the onset of phase slips from
calculations of the energy barrier.

Langer and Ambegaokar were the first to use 1D GL
theory to calculate the saddle point free energy barrier
between fluxoid states in 1D wires where the wire length
was much greater than the superconducting coherence
length.8 Zhang modified Langer and Ambegaokar’s solu-
tion for a ring geometry,35 and found the saddle point

energy in rings where L≫ ξ(T ).

Fsn(T, φ) =

Fc(T )

(

8
√

2δ(T, φ, n)

3

ξ(T )

L
− (2 + δ(T, φ, n))2

9

)

,(4)

where L = 2πR is the ring’s circumference and δ(T, φ, n)
is the normalized difference between the square of the
order parameter amplitudes near and far from a phase
slip event. δ(T, φ, n) is a real number between 0 and 1
that satisfies the relation

2πn =

√

1− δ

3

L

ξ(T )
+2 tan−1

(
√

3δ

2(1− δ)

)

+2πφ. (5)

For φ = n+ 1/2, δ = 1.
We are interested in a regime where L ≫ ξ(T ), and δ

remains close to one for moderate n. Using the substitu-
tion κ =

√
1− δ and expanding to lowest order in κ, we

arrive at a simplified expression for δ.

δ(T, φ, n) = 1−
(√

3π(2n− 2φ− 1)
L

ξ(T ) − 2
√
2

)2

(6)

Extending the L≫ ξ limit allows us to set δ ≈ 1. This
approximation makes Fsn(T, φ) = Fsn(T ) independent
of flux. We can now calculate the free energy barrier for
phase slips as a function of applied flux, ∆Fs±1,0(T, φ),
for a ring that starts in the n = 0 fluxoid state and
transitions to the n = ±1 state.

∆Fs±1,0(T, φ) = (Fs±1(T )− F0(T, φ))

≈ ξwd
B2

c

2µ0

(

8
√
2

3
− 4π

ξ

R
φ2

)

(7)

This energy barrier depends on the applied flux and is
indicated by the gray shaded region in Fig 1. In the limit
where L≫ ξ the second term in Eq. (7) can be ignored,
and the energy barrier no longer depends on flux.

3. Comparison of Energy Scales

In Fig 1, the energy expressions for the fluxoid states,
Eq. (2) blue solid line, and the saddle point states, Eq.
(4) green dashed line, for two rings with different L/ξ
are plotted as a function of flux and fluxoid number n.
The solid red arrow indicates the energy barrier for flux-
oid fluctuations at φ = 0, Eq. (3). It is the energy dif-
ference between consecutive fluxoid states. The shaded
area shows the flux dependent energy barrier for phase
slips between the n = 0 and the n = ±1 fluxoid states,
Eq. (7). This is the energy difference between the fluxoid
state and the saddle point state. The figure demonstrates
how the energy barrier for phase slips decreases with in-
creasing applied flux.
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FIG. 1: (Color Online) (a-b)Free energy of fluxoid states (blue
solid line, Eq. (2)) and saddle point energies (green dashed
line, Eq. (4)) as a function of applied flux, in units of the
condensation energy, Fc. The energy barrier between adja-
cent fluxoid states at zero applied flux, ∆F±1,0, is indicated
by the solid red arrow. The saddle point energy barrier for
phase slips is a flux dependent quantity indicated by the gray
shaded region. The saddle point barrier at φ = 1/2, indicated
by the black dashed arrow, sets the condition for thermal equi-
librium.

Our magnetic susceptibility data points are generated
by extracting the slope at zero field of the current re-
sponse of a ring threaded by magnetic flux, where the
applied flux is swept through several flux quanta. We
are interested in the energy barrier for fluxoid fluctua-
tions at φ = 0, because we expect those fluctuations to
affect our zero field susceptibility signal.

Since fluxoid fluctuations represent a thermodynamic
sampling of fluxoid states, this description is only valid in
thermal equilibrium when frequent phase slips populate
higher phase winding states. At low temperatures, if the
applied flux is swept through the entire range presented
in Fig 1, then the lowest saddle point energy barrier,
found at the ends of the flux range, determines the onset
of phase slips. In this case the ring will be hysteretic, or
even exhibit no transitions if the barrier for phase slips
remains large compared to the thermal energy over the
entire flux range.

In thermal equilibrium the ring has sufficient ther-
mal energy to make a transition at every crossing of
the phase winding state, and there is no hysteresis in
the forward and backward field sweeps. Consequently
phase slips must be energetically favorable at each value
of φ = n + 1/2. Therefore the condition for equilibrium
requires the thermal energy to be greater than the en-

ergy barrier for phase slips at φ = 1/2, indicated by the
black dashed arrow in Fig 1(a&b). Fluxoid fluctuations
will suppress the thermal equilibrium ring response if the
energy barrier for fluxoid fluctuations is also small com-
pared the temperature. For example, the ring in Fig 1(a)
has a larger barrier for fluxoid fluctuations at φ = 0 than
phase slips at φ = 1/2. As the temperature is increased,
phase slips will drive the ring into thermal equilibrium
before the temperature where fluxoid fluctuations sup-
press the response. The ring in Fig 1(b) is in the oppo-
site limit, the barrier for fluxoid fluctuations at φ = 0
is smaller than the thermal equilibrium barrier for phase
slips. In this ring fluxoid fluctuations will not be appar-
ent on the measurement time scale until phase slips allow
the ring to enter thermal equilibrium.

B. Phase Slips and Equilibrium

The ring is in thermal equilibrium when the thermal
energy is greater than the phase slip energy at φ = 1/2,
allowing phase slips to occur at a rate that is fast com-
pared to experimental time scales. In our experiments we
consider rings to be in thermal equilibrium when no hys-
teresis is observable in measurements of the ring current
vs. applied flux. Langer and Ambegaokar’s (LA) formula
for the phase slip rate provides additional insight for es-
timating the onset of thermal equilibrium in our rings.
LA theory predicts a phase slip rate, Γ, that depends
exponentially on the temperature and the saddle point
energy barrier,8 ∆Fs±1,0, Eq. (7).

Γ ∝ exp

(

−∆Fs±1,0(T, φ)

kBT

)

(8)

LA theory is only valid in the limit where ∆Fs±1,0 ≫
kBT , and phase slips are rare events. We will not make
precise predictions for the onset of thermal equilibrium,
because the condition for equilibrium, ∆Fs±1,0(T, φ) →
kBT , occurs outside the limits of the model. Instead we
focus on how the exponential dependence of the phase
slip rate affects phase slips in our rings.
At low temperatures phase slips can still occur, but the

exponential decrease of the phase slip rate with temper-
ature makes it highly unlikely to encounter phase slips
within the measurement time. As a result, when we
record the current vs. applied flux in our rings at dif-
ferent temperatures, we expect to see no phase slips at
the lowest temperatures as long as the applied flux re-
mains low. The flux dependence of ∆Fs±1,0(T, φ) shows
that we could drive phase slips in rings even at the lowest
temperatures by applying a larger flux. As the temper-
ature increases we expect the phase slip rate to increase
exponentially and eventually become fast compared to
the measurement time, bringing our rings into thermal
equilibrium.
The following sections explore the effects of fluctua-

tions on the ring’s response in thermal equilibrium. Each
of the models presented below includes a different set of
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fluctuations. By comparing the model predictions for
different ring parameters we can pinpoint the effect of
different fluctuations on ring response and set a physi-
cal regime where each type of fluctuations will dominate.
Specifically we find that in rings with weak phase stiffness
a model including only fluxoid fluctuations accurately re-
produces the ring response.

C. Fluxoid Number Distribution Model

We start with a model derived from 1D GL expressions
that includes only fluxoid fluctuations. In this model all
variation around the ring is described by a single homo-
geneous phase winding number, n. This model is not
complete because it does not include local variations in
the amplitude or phase. Put another way this model in-
cludes only the large fluctuations between local minima
in the GL free energy (see Fig. 1), and ignores all the
small fluctuations about each local minimum as well as
the saddle points and intermediate states. It is instruc-
tive to develop this model because comparisons between
this fluxoid only model and more complete models shed
light on what portion of the fluctuation response of a ring
is due to solely to fluxoid fluctuations.
We return to the mean field 1D GL free energy, Eq. (2),

which is related to the ring current by I = −∂F/∂Φa.
Taking a derivative yields an expression for the ring cur-
rent of the n fluxoid state.

In(T, φ) = I0(T )(φ− n)

(

1− ξ(T )2

R2
(φ− n)2

)

(9)

where

I0(T ) =
2V Bc(T )

2
ξ(T )2

Φ0µ0R2
. (10)

I0(T )(φ − n) is the Meissner response which decreases
linearly with increasing temperature close to Tc. The
cubic term arises from pair-breaking.
The energy associated with each fluxoid current state,

Fn(T, φ), was given in Eq. (2). If phase slips occur at a
high enough rate, so that the metastable fluxoid states
are in thermal equilibrium as discussed in the previous
section, we can model4,33 the resulting current response
as a Boltzmann distribution of fluxoid states.

IF (T, φ) =

∑

n In(T, φ) exp (−Fn(T, φ)/kBT )
∑

n exp (−Fn(T, φ)/kBT )
. (11)

We label the total ring current generated by fluxoid
states IF to distinguish it from the total ring current
including all fluctuation states presented in the next sec-
tion. We study the susceptibility response of the ring at
zero applied flux, dI(T )/dφ|φ=0. In our rings L ≫ ξ,
so we expand Fn(T, φ) to lowest order in ξ/R to ob-
tain Fn(T, φ) ≈ I0(T )Φ0/2(φ − n)2 − Fc(T ). Ignor-
ing the pairbreaking term in the current response yields

In(T, φ)≈I0(T )(φ− n). We use these expressions to find
the derivative of the total ring current at φ = 0.

dIF (T )

dφ

∣

∣

∣

∣

φ=0

= I0(T )

(

1−
∑

n 2σn
2 exp(−σn2)

∑

n exp(−σn2)

)

(12)

where σ ≡ I0(T )Φ0/2kBT . Eq. (12) shows that including
a distribution of fluxoid states reduces the ring’s suscep-
tibility response from the mean field value, I0(T ). The
second term in Eq. (12) is proportional to the RMS fluc-
tuation of the fluxoid number, n. The magnitude of the
reduction in susceptibility depends on σ. When σ is large,
terms with n 6= 0 are small and the susceptibility is ap-
proximately equal to the mean field value. When σ is
small, the n = ±1 terms begin to play a significant role.
We define a criterion1 when fluxoid fluctuations reduce
the Meissner response by more than 5%

dIF (T )

dφ
≈ I0(T ) <

12kBT

Φ0
. (13)

In plots of the susceptibility vs. temperature we observed
a suppression below the mean field value for susceptibili-
ties below this cutoff. This downturn in the susceptibility
signal, which occurs at T less than Tc, is a hallmark of
the suppression of the diamagnetic response by fluxoid
fluctuations.

D. von Oppen and Riedel Model

Thus far, we have considered a fluxoid model that pre-
dicts the existence of the downturn in susceptibility below
Tc. In some rings, near T = Tc, the L ≫ ξ(T ) assump-
tion we made to obtain Eq. (12) is not valid because L
is of order ξ. As a result, the energy between succes-
sive metastable states can no longer be approximated
by expanding Eq. (2) to lowest order in ξ/R. When
we include the quartic term from Eq. (2), the GL free
energy vanishes rather than increasing indefinitely for
φ− n > L/ξ(T ). Thus, the Boltzmann distribution, Eq.
(11), is not well defined because summing over all n leads
to a divergent denominator. The numerator on the other
hand remains finite since states with φ− n > L/ξ(T ) do
not contribute. Furthermore, our treatment thus far has
ignored phase fluctuations that are not uniform around
the ring and all amplitude fluctuations.
To address these issues, we compare our simple fluxoid

model to complete 1D GL theory as formulated by von
Oppen and Riedel,31 which generates numeric solutions
for the susceptibility that include all thermal fluctuations
within the GL framework in homogeneous rings. Ap-
plying a harmonic oscillator approximation to the VOR
model, as discussed in the next section, provides a direct
mathematical connection between the VOR model and
the fluxoid model discussed in the previous section.
Following von Oppen and Riedel,31 we begin with the

expression for the GL energy functional given in Sec. II
Eq. (1). In cylindrical coordinates (r, θ, z), we map the
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free energy onto a one dimensional ring geometry with no
lateral variation of the order parameter. ψ(r, θ, z) = ψ(θ)
and dx3 = wdRdθ. We redefine Rdθ as dx.
We rewrite Eq. (1) using reduced variables ψ(x) =

ψ̄(x̄)
√

|α|/β, ∇̄ = ξ∇, and x̄ = x/ξ. ξ(T ) is the su-
perconducting coherence length and is given by ξ(T ) =

~/
√
2m∗α.

F [ψ̄(x̄)] =

E0(T )kBT

∫ Λ(T )/2

−Λ(T )/2

[

η|ψ̄(x̄)|2 + 1

2
|ψ̄(x̄)|4

+

∣

∣

∣

∣

(

∇̄ − 2πi

Λ(T )
φ

)

ψ̄(x̄)

∣

∣

∣

∣

2
]

dx̄ (14)

η is +1(−1) for temperatures above (below) the super-
conducting critical temperature Tc. Λ(T ) is the reduced

circumference Λ(T ) = L/ξ(T ) =
√

8πkB|T − Tc|/Ec and
E0(T )kBT = wdξ(T )Bc(T )

2/µ0 is the condensation en-
ergy of a ring section of length ξ(T ). The correlation
energy for the ring, Ec = π2

~vf ℓe/3L
2, includes the

mean free path, ℓe, and Fermi velocity, vf , which is
2.03 × 106m/s in aluminum. E0(T ) can also be written
as

E0(T ) =
(2π)5/2

21ζ(3)

(

kB|T − Tc|
Ec

)3/2
EcMeff

kBT
, (15)

where ζ(3) = 1.021 is the Riemann zeta function. M =
k2fwd/4π is the number of transverse channels. kf is
the Fermi wave vector, which for an aluminum ring is
kf = 1.75 × 1010m−1. Including disorder results in an
effective number of channels, Meff =Mℓe/L.
We obtain the thermodynamic expression of the cur-

rent from the flux derivative of the ring’s partition func-
tion.

I(T, φ) = −kBT
1

Zsc

∂

∂Φa
Zsc (16)

The partition function is the path integral of the GL free
energy.

Zsc =

∫

[dψ̄(x̄)][dψ̄∗(x̄)] exp

(−F [ψ̄(x̄)]
kBT

)

(17)

The VOR model uses a transfer matrix technique36 to
map the Ginzburg-Landau path integral partition func-
tion, Eq. (17), onto another partition function

Z =
∞
∑

l=−∞

exp(−i2πlφ)
∞
∑

n=0

exp(−2E0(T )Λ(T )En,l)

(18)
where En,l are the eigenvalues of the fictitious 2D single-
particle Hamiltonian,

H = − 1

8E0(T )2
∇2 +

1

2
η~r2 +

1

4
~r4. (19)

We define ~ρ = (2E0(T ))
1/3~r and rewrite Eqs. (18) and

(19) to emphasize the parameter γ(T ).2

Z =

∞
∑

l=−∞

exp(−i2πlφ)
∞
∑

n=0

exp(−γ(T )1/3En,l)(20)

H = −1

2
∇2 +

1

2

Λ(T )2

γ(T )2/3
~ρ2 +

1

4
~ρ4 (21)

The temperature dependence is set by the coherence
length through the relation Λ(T ) = L/ξ(T ). The pa-
rameter

γ(T ) ≡ Λ(T )3

2E0(T )
=

42ζ(3)

π

kBT

MeffEc
(22)

determines the relative effect of fluxoid fluctuations on
the ring’s susceptibility response.2 Gamma is related to
the physical ring parameters as follows γ ∝ TL3/wdle

2.
The γ(T ) parameter is also inversely proportional to the
superconducting phase stiffness, K, which we express
in terms of our parameters K = LΛ(T )2/wγ(T ).37 For
rings with larger γ(T ) as the temperature approaches
Tc several phase winding states are thermally accessi-
ble and contribute to a suppress the susceptibility. The
definition of γ introduced in Koshnick et al.

2 made the
approximation T = Tc. The larger temperature range
explored in this paper makes it necessary to reintro-
duce the T dependence. We use the relation I0(T ) =
4π2kBTL

2/Φ0ξ(T )
2γ(T ) to compare the VOR model to

the mean field and fluxoid models.
Eqs. (20) and (21) can be solved numerically. The

Hamiltonian can be rewritten as a harmonic oscillator
with a quartic perturbation. We write matrix elements
in terms of the coefficients and diagonalize numerically
to find the eigenvalues.35,38 The eigenvalues are used in
the partition function, Eq. (20), and substituted into the
thermodynamic equation for the current, Eq. (16), to
generate the full current response. We find the zero-
field susceptibility by taking a derivative with respect to
applied flux at φ = 0.
Analytic solutions can be instructive, and as a result

it is useful to find approximations to the full VOR model
that are valid over some set of ring parameters or temper-
atures. One such approximation is to ignore the quartic
perturbation to the Hamiltonian, which then takes the
form of a simple harmonic oscillator. Moreover, making
this approximation provides a direct mathematical con-
nection between our fluxoid model and the full 1D GL
model of VOR.

E. Harmonic Oscillator Model

The harmonic oscillator (HO) approximation is valid
at temperatures well below Tc, where the wave functions
contributing to Eq. (20) only extend over a narrow re-
gion around the minimum of the Mexican hat potential
of Eq. (21), so that the latter can be approximated by
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FIG. 2: (Color Online) Theoretical susceptibilities calcu-
lated using the mean field model, black dotted line Eq. (10),
the fluxoid model, purple dot-dash line Eq. (12), the VOR
model, red solid line Eqs. (16, 20, 21), and its approximate
HO solution, green dashed line Eqs. (16, 26), for rings with
w = 80 nm and Tc = 1.55K. For all values of γ(T = Tc),
the VOR and HO response well below Tc only match the
mean field and fluxoid predictions if Tc is renormalized. a)
γ(T = Tc) = 3. The VOR model predicts a susceptibility
above Tc. b) γ(T = Tc) = 3100. A downturn occurs at
dI/dφ ≈ 12kBT/Φ0 ≈ 120nA, T ≈ 1.52K. The fluxoid, HO
and VOR models reproduce the overall lineshape of the down-
turn, up to an offset in Tc. However, the three models predict
downturns of different sizes with the largest predicted by the
VOR model. c) γ(T = Tc) = 170, 000 Fluxoid fluctuations
dominate the response over a wide temperature range and
the fluxoid and HO models become increasingly accurate pre-
dictors of the full fluctuation theory.

a quadratic expansion. In this case, fluctuations from
the quartic nature of the potential should not play a sig-
nificant role. We refer to the fluctuations in this model
as quadratic fluctuations, rather than Gaussian fluctua-
tions, to avoid confusion with small order parameter fluc-
tuations above Tc, which are often referred to as Gaussian
fluctuations.

We can quantify the range of validity for the HO model

using the Ginzburg parameter. The Ginzburg parameter
is Gi = |TLG − Tc|/Tc, where TLG is the temperature
where the heat capacity due to fluctuations is equal to
the heat capacity jump at the critical temperature. We
can rewrite the Ginzburg parameter with respect to γ(T ),

Tc/EcGi ∝
√

(γ).2 At temperatures below the limit set
by the Ginzburg parameter, fluctuations are small and
approximated as quadratic fluctuations from GL the-
ory and the HO model is valid. At temperatures close
to Tc the quartic term becomes significant and a non-
perturbative approach, presented in the previous section,
is required to capture the fluctuation response.
Eigenstates of the Hamiltonian given in Eq. (21) have

the form ~r = |r| exp(ilφ), so the Hamiltonian can be

written as a 1D problem, H = − 1
2

d2

dr2 + V (r) where

V (r) =
l2

2r2
+

1

2

Λ(T )2

γ(T )2/3
r2 +

1

4
r4. (23)

Expanding V (r) about its minimum at Rm(l) leads to
the eigenvalues

En,l =
l2

2Rm(l)2
+
Rm(l)

4

4
+ ω(n+ 1/2) (24)

where ω =
√

Λ(T )2/γ(T )2/3 + 3Rm(l)2 + 3l2/Rm(l)4.
Only terms that change with l, the angular momen-

tum coordinate in the fictitious Hamiltonian, contribute
to the flux dependence of the partition function, thus
only these terms contribute to the thermodynamic ring-
current. If we make an approximation and only include
the l2/2Rm(0)

2 terms, where Rm(0) is the value for r
that minimizes V (r) when l = 0, the current from Eq.
(16) is

IHO(T, φ) =

kBT

Φ0

∞
∑

l=1

4πl sin (2πlφ) exp(l2γ(T )/2Λ(T )2)

1 +
∞
∑

l=1

2 cos (2πlφ) exp(l2γ(T )/2Λ(T )2)

,(25)

which is exactly equivalent the fluxoid current Eq. (11).
Through this approximation we are able to show a di-
rect link between the harmonic oscillator approximation
to the VOR model and the fluxoid model. Including the
second two terms of Eq. (24), which account for the an-
gular momentum dependence of ω and Rm(l), we get

Z =

∞
∑

l=−∞

exp(−i2πlφ) exp(−γ(T )1/3V (Rm(l)))

× exp(−γ(T )1/3ω/2)
1− exp(−γ(T )1/3ω) . (26)

Using this simplified partition function we can find the
ring’s current and consequently its susceptibility in the
limit where we ignore only quartic fluctuations.



8

F. Comparison of Models

We have presented the theoretical basis for four models
including: the mean field model, the fluxoid model, the
harmonic oscillator model and complete 1D GL theory
formulated by von Oppen and Riedel. We now compare
the physics captured by each model in Fig. 2 by plot-
ting the theoretical susceptibility response as a function
of temperature for rings with three different γ(T = Tc)
parameters.
The mean field model is our baseline. It gives the ring

response in the absence of all superconducting fluctu-
ations. At the other extreme, the VOR model incor-
porates all thermally activated GL fluctuations into the
ring response. In between we have the fluxoid model,
which includes only fluxoid fluctuations and the har-
monic oscillator model which ignores only quartic fluctu-
ations. By comparing these models for rings with differ-
ent γ(T = Tc) we determine how fluctuations contribute
to the response.
One striking feature in all three Fig. 2 plots is that

both the VOR model and its HO approximation have an
offset in the linear regime, far below Tc, compared to the
mean field and fluxoid models. This downshift reflects a
renormalization in Tc due to consideration of all possible
fluctuation modes.
Fig. 2(a) shows a ring with γ(T = Tc) = 3. The low

gamma parameter means it has strong phase stiffness,
making fluxoid fluctuations unlikely. The temperature
range where we expect to encounter fluctuations is very
close to Tc. The two models that include only quadratic
fluctuations, the HO model and the fluxoid model, both
fail to reproduce the lineshape of the VOR model for this
ring. We are clearly within the temperature range pre-
scribed by the Ginzburg parameter where quartic fluctua-
tions must be taken into account. Susceptibility enhanc-
ing amplitude fluctuations at and above Tc overwhelm
the susceptibility reduction expected from fluxoid fluctu-
ations. A downturn is not observable, instead the small
γ(T = Tc) leads to a susceptibility signal above Tc.
When γ(T = Tc) = 3100, as shown in Fig. 2(b), the

fluxoid induced downturn becomes visible below Tc start-
ing at T ≈ 1.52K and 120 nA, as predicted by our fluxoid
criterion, Eq. (13). All three fluctuation models qualita-
tively reproduce the shape of the susceptibility suppres-
sion. As expected, the VOR model predicts a greater
susceptibility suppression than the fluxoid or HO mod-
els, because only the VOR model includes all thermal
fluctuations. The excess suppression between the flux-
oid and VOR models is presumably due to contributions
from non-homogeneous phase winding solutions, ampli-
tude fluctuations, or both. While the excess suppression
between the HO and VOR models is due to fluctuations
caused by the quartic nature of the potential.
For γ(T = Tc) = 170, 000, shown in Fig. 2(c), the sus-

ceptibility response is dominated by fluxoid fluctuations,
shown by the almost identical lineshape shared by the
fluxoid model and the VOR model. The total response is

also well represented by the harmonic oscillator approxi-
mation showing that in this region nearly all fluctuations
are quadratic in nature.
Fig. 2(c) shows a larger temperature range than the

previous panels, and the GL approximation that T is
close to Tc is not valid over the whole plot. GL the-
ory is valid in the range of temperature where the linear
mean field response approximates a temperature depen-
dence that goes as (1− t4), t = T/Tc, shown as an orange
dotted line. An alternative criterion is that T > ∆(T ),
where ∆(T ) is the superconducting gap. These both re-
sult in approximately the same range of validity. GL
theory has been applied with success at temperatures
far from Tc, but interpretation of results in this regime
should be treated with caution. The (1− t4) dependence
is not included in panels (a) and (b) because all plotted
temperatures lie within the valid range.
In the next section we describe our measurement of

ring susceptibility for rings with different γ(T = Tc). We
find good agreement between our data and the fluctua-
tion response predicted by the fluxoid model and full 1D
GL theory.

III. SAMPLE AND MEASUREMENT

TECHNIQUE

A. Sample Preparation

We measured quasi-one-dimensional superconducting
rings in a dilution refrigerator39 with a scanning SQUID
susceptometer40 that was specifically designed for this
purpose. We focus on data from two different samples
expected to exhibit fluxoid fluctuations. Sample I’s rings
were fabricated and measured previously.33 The rings
were narrow and dirty with TcI ≈ 1.5 K. They were made
by depositing a 40 nm thick aluminum film by e-beam
evaporation at a rate of about 1 Å/s and a pressure of
approximately 10−6 mBar on a Si substrate patterned
with poly(methyl methacrylate) (PMMA) resist. Dur-
ing the deposition, the rate temporarily dropped to a
negligible level for about 10 min and subsequently recov-
ered. This unintentional delay caused the formation of
two superconducting layers separated by an AlOx tun-
neling barrier. The coupling between the two Al layers
depended on the width of the rings with narrow rings
(w ≤ 190 nm) and wide rings (w ≥ 250 nm) showing a
single order parameter. Intermediate widths showed evi-
dence of weak interactions between the two layers leading
to two order parameter effects.33 In this work we only
present data from the narrow rings which showed no two
order parameter behavior. However, due to the oxidiza-
tion process we suspect the thinnest rings have a large
oxidized layer that reduces the thickness of the supercon-
ductor. Consequently we expect that these rings have an
effective height that is less than 40 nm. We can test this
prediction by extracting the ring’s cross-section from fits
to the VOR model.
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The rings on sample II were fabricated specifically for
this paper. The fabrication process was almost identi-
cal to the rings from sample I except the evaporated
film was thinner, d = 15 nm, and there was no inter-
ruption in the evaporation. The deposited rings were
wide and dirty with TcII ≈ 2.1K. Of the many fabricated
rings of different widths and radii, only the widest rings,
w ≈ 850 nm, had a diamagnetic response. The next
widest rings, w ≈ 450 nm, showed no signs of supercon-
ductivity indicating that they were oxidized throughout.
This evidence makes it difficult to predict with certainty
what portion, if any, of the 850 nm rings are oxidized.
For each sample we used Ginzburg Landau models3,33,41

to fit a zero temperature penetration depth λI(0) ≈ 800
nm, λII(0) ≈ 1.5 µm, and coherence length ξI(0) ≈ 80
nm, ξII(0) ≈ 30 nm.
The agreement with theory is perhaps surprising given

that our rings may not be in the 1D limit. We note that
finding agreement between the data and the model is not
sufficient to prove the correctness of the theory. Zhang
applied finite width corrections to 1D GL theory and
found close agreement in the susceptibility response of
1D and 2D rings.35 Despite the large width of the rings,
Abrikosov vortices are not expected to be present in our
rings at low applied fields,12,21 and thus will not impact
our zero field susceptibility measurements.

B. Measurement

Measurements were done with a voltage biased DC
SQUID susceptometer amplified by a series-array SQUID
preamplifier.42 The SQUID is mounted on a piezo-
resistive scanning assembly,39 which is connected to the
mixing chamber of a dilution refrigerator through a single
copper braid. The temperature of the scanner and sam-
ple is controlled with sub-millikelvin precision through
feedback. The SQUID sensor’s counter-wound geome-
try, with on-sensor modulation coils for feedback, enable
cancellation of an applied field to one part in 104.40 The
ring current is measured by positioning the SQUID about
1µm above the ring and recording the flux induced by the
ring’s current in the SQUID’s 4.6µm diameter pick-up
loop. During the measurement, the applied flux thread-
ing the ring is varied by several flux quanta at a few Hertz
by an on-sensor field coil. This measurement is repeated
13µm above the ring and the ring signal is computed as
the difference between the two positions for each value of
applied flux. This procedure allows us to achieve an ad-
ditional three orders of magnitude of background cancel-
lation. A more detailed description of the measurement
system was given by Koshnick et al.2

We plot the flux induced in the SQUID’s pick-up loop
as a function of the flux applied by the field coil in Fig.
3 for two different rings. The measurement is repeated
to record the full temperature dependence of the ring’s
response. The ring current, I, is coupled as flux into the
SQUID pick-up loop through their mutual inductance,
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FIG. 3: (Color Online) Plots of SQUID response vs. applied
flux at different temperatures for a ring from each of the two
samples. Rings b and e refer to specific rings plotted in Fig.
4. Ring b Tc = 1.56K and ring e Tc = 2.08K. The curves
evolve from non-hysteretic with no fluxoids at low tempera-
tures, through a hysteretic regime, to non-hysteretic with a
change in fluxoid number at every applied flux quantum near
Tc. The orange dotted lines are fits to the GL current, Eq.
(9), at low temperatures and to the Boltzmann distribution,
Eq. (11), at high temperatures. We extract the ring’s suscep-
tibility at each temperature by taking the derivative at φ = 0.

M . ΦSQUID = MI. We estimate the mutual inductance
between the SQUID pick-up loop and a ring by calcu-
lating the mutual inductance between two on axis rings
with radii r1 and r2 a distance z apart.

M = πµ0r1r2

∫ ∞

0

dκe−κ|z|J1(κr1)J1(κr2) (27)

J1 is a Bessel function of the first kind. For all our
mutual inductance calculations we assume a ring-pick-
up loop separation of 1µm. Through a separate fitting
technique33 we estimate the actual distance between the
pick-up loop and the ring to range from 0.75 − 1.1µm.
Ring currents and susceptibilities quoted later in this pa-
per have error bars that reflect this systematic uncer-
tainty in the coupling factor which would shift the entire
data set.
The ring response curves plotted in Fig. 3 evolve from

cubic and non-hysteretic at low temperatures through
a hysteretic regime to periodic and non-hysteretic near
Tc. At low temperatures the current response is well de-
scribed by the GL current with no phase windings, Eq.
(9) with n = 0, shown as a orange dotted line in pan-
els (a) and (e) of Fig. 3. Due to the low temperatures
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and small applied flux the energy barrier for phase slips
is large compared to kBT . As a result, no phase slips
occur on the scale of the measurement time and the ring
remains in the n = 0 fluxoid state. As the temperature
increases and approaches the saddle point energy barrier
phase slips begin to occur, which allows the ring to transi-
tion to higher fluxoid states; however, the phase slip rate
is still slow compared to the measurement time leading
to a hysteretic response.
Finally, as the temperature approaches Tc the phase

slip rate becomes fast and the ring relaxes to thermal
equilibrium. As the flux is swept phase winding transi-
tions occur within some range of φ = n+1/2. The ring’s
response is no longer hysteretic and can be modeled as
a Boltzmann distribution of all fluxoid states, Eq. (11),
shown as a orange dotted line in panels (d) and (h) of
Fig. 3. We extract the magnetic susceptibility of the ring
at each temperature where the ring is in thermal equi-
librium by fitting a low order polynomial to obtain the
slope at φ = 0.

C. Susceptibility Data

We measured thirty-eight rings on sample I and twelve
rings on sample II. Sample I was fabricated and measured
primarily for a different experiment.33 As a result only
eight of the rings measured have sufficient susceptibility
data over a wide enough temperature range to make com-
parisons with the models presented in the previous sec-
tion. Two representative rings were selected from Sam-
ple I for this paper. The three rings from Sample II were
chosen to show a variety of ring parameters, and because
they had the most dense susceptibility data over the im-
portant temperature range. The set of five rings allows us
to explore the effects of ring size and mean free path on
the fluctuation response. Fig. 4 shows the susceptibility
vs. temperature data for the five rings. Each ring’s phys-
ical parameters are given in table I. We extracted the
ring radii from the flux periodicity of the ring’s response
in thermal equilibrium and confirmed the measurement
though SEM imaging. The ring thicknesses were mea-
sured with AFM, and the width with SEM. Fitting to the
VOR model allowed us to estimate values for the ring’s
cross-section and mean free path. We used the measured
ring width and thickness plus an additional error factor
as an upper limit on the cross-section parameter in the
VOR model for rings (c-e). No lower limit was enforced
due to the possibility that oxidation may have reduced
the superconducting cross-section.
Fig. 4 plots the susceptibility vs. temperature curves

for five rings. The blue susceptibility data points repre-
sent the slope at φ = 0 of the SQUID response at dif-
ferent temperatures scaled by the ring-SQUID mutual
inductance to obtain the ring current. The error bars
represent height errors in our calculation of the mutual
inductance, Eq. (27). This error is systematic and ex-
pected to be the same for all points in a panel. Using Tc,
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FIG. 4: (Color Online) Zero field susceptibility (blue dots)
vs. temperature plotted for five different rings. In all plots
the solid red line is a fit to the VOR model, Eqs. (16, 20, 21).
The dotted black line is the expected mean field susceptibil-
ity given by I0(T ), Eq. (10), using the VOR fit parameters.
The gray shaded area represents the 95% confidence interval
from bootstrapping. The error bars represent the systematic
uncertainty in the SQUID-ring mutual inductance.
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Directly Measured Extracted from VOR fits

R (µm) w (nm) d (nm) wd (nm2) 95% CI ℓe (nm) 95% CI

a(I) 0.50 123 40 1598 1140- 2314 6.4 4.3 - 9.4

b(I) 1.97 90 40 583 492- 1177 8.5 4.4 -10.4

c(II) 1.21 840 15 13319 2811-14790 0.11 0.09- 0.48

d(II) 1.75 850 15 14790 11896-14790 0.08 0.07- 0.11

e(II) 1.82 850 15 13602 9172-14790 0.08 0.07- 0.12

TABLE I: Table of ring values. Values for the cross-section and mean free path, extracted from fits to the VOR model, are
given with their 95% confidence interval. An upper limit of 14790 nm2 was enforced on the ring cross-section to constrain the
fits for rings (c-e).

Tc (K) 95% CI γ(T = Tc) 95% CI E0(T = 0) 95% CI

a(I) 1.556 1.554-1.557 9.20 6- 14 2138 1850-2550

b(I) 1.555 1.550-1.556 899 760-1660 898 820-1300

c(II) 2.076 2.072-2.086 78× 103 (18- 95) ×103 2650 1180-2870

d(II) 2.074 2.066-2.083 353× 103 (261-443) ×103 2590 2280-2730

e(II) 2.080 2.075-2.086 438× 103 (294-536) ×103 2370 1910-2550

TABLE II: Table of fitted values. We used the temperature independent portions of γ(T ) and E0(T ) as fit parameters in
the VOR model. This table reports values for γ(T = Tc) and E0(T = 0) as well as the limits of the 95% confidence interval
obtained from bootstrap analysis for the data presented in Fig. 4.

and the temperature independent portions of γ(T ) and
E0(T ) as the free parameters, the red line is a fit of the
data to the VOR model, Eqs. (16, 20, 21). The fit results
used to generate the red curves are given in table II. We
report values for γ(T ) at Tc and E0(T ) at T = 0. The re-
ported Tc represents the nominal mean field Tc entering
the VOR model.31 The fitted values of γ(T = Tc) are also
listed on each of the plots. The black dotted line is the
mean field ring response, Eq. (10), which is the expected
response if no fluctuations were present. Deviations in
the data from the black dotted line show the influence
of fluctuations on a given ring. Finally, the gray region
of the curve is the 95% confidence interval (CI) obtained
from bootstrapping.

Using the fit results from table II along with the known
values of the ring radii given in table I we can extract val-
ues for the ring’s cross-section and mean free path from
expressions for E0(T ), Eq. (15), and γ(T ), Eq. (22). The
ring parameters obtained in this way are given along with
their 95% confidence intervals in table I. We note that
the mean free paths extracted from VOR fits for rings
(c-e) are extremely small, ℓe ∼ 1Å. Physically the mean
free path is the distance electrons travel before scatter-
ing, which should be limited to the lattice constant of 4Å
in aluminum. However, as a fit parameter these low val-
ues are consistent with mean free paths extracted from
measurements of HcII in thin aluminum films.43 Alter-
natively these small mean free paths may indicate that
we are reaching the limits of the validity of 1D GL the-

ory for rings with especially large widths or that the fit
is under-constrained as described below.

Due to the evaporation conditions discussed previ-
ously, we’re not confident that the entire cross-section
of each ring is superconducting. For the two rings on
sample I the fitted cross-sections are smaller than the
values found using AFM/SEM, which confirms our sus-
picion that a portion of the ring is oxidized. The data
from the three sample II rings is within the downturn
region, i.e. the decrease in the susceptibility is not lin-
ear even at the lowest plotted temperatures. Practically
we are limited on the low end of the temperature range
by the point where the SQUID response curves go hys-
teretic. A three parameter fit is under-constrained and it
is consequently difficult to get accurate VOR fits without
susceptibility data at lower temperatures including the
point where the data is reduced from the linear response.
As a result, for rings (c-e) we put a strict upper limit of
w× d = 14790 nm on the cross-section which acted as an
additional constraint on the VOR fits. The cross-sections
extracted from fits to the constrained VOR model for the
rings on sample II agree well with the AFM/SEM cross-
section indicating little oxidation. A similar limit was not
applied to rings (a-b) because data in the linear suscep-
tibility region kept the fit from being under-constrained.
We find good agreement between the susceptibility data
and fits to the VOR model for all rings except ring (d),
where it is clear that the VOR model does not capture
the shape of the data at high temperatures. It is un-
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FIG. 5: (Color Online) Comparison of the four models plotted
using parameters obtained from fitting the data from ring (c)
to the VOR model. Fitting to the fluxoid model would yield
an equally good fit with a slightly different Tc.

clear why the VOR model provides a poor fit for this
ring. It is possible that errors from extracting the sus-
ceptibility near Tc, errors that are not accounted for in
the error bars, are particularly large for measurements
on this ring.

Looking at the sequence of five rings it is clear that the
extent of the suppression of superconductivity increases
as γ(T = Tc) increases. This is just what we expect for
a series of rings where fluxoid fluctuations play a larger
and larger role.

Ring (a) shows an enhancement of the superconducting
response above Tc. This response is caused by amplitude
fluctuations and has been studied by Koshnick et al.

2 and
Zhang and Price.3 As we showed in our description of the
theoretical models, only the VOR model can correctly
reproduce the upturn in susceptibility above Tc.

The remaining four rings in Fig. 4 show a suppression
of the susceptibility signal below the mean field response
(black dotted line). However, of the plotted rings only
ring (b) has a large enough temperature range to ob-
serve a downturn from the linear regime. The downturn
for ring (b) occurs at T ≈ 1.52K and 120 nA, which cor-
responds to the criterion for fluxoid fluctuations given in
Eq. (13). Such agreement validates our criterion for the
onset of susceptibility suppression driven by fluxoid fluc-
tuations. The free energy configuration space for ring (b)
resembles Fig. 1(a) where phase slips onset and bring the
ring into thermal equilibrium before fluxoid fluctuations
at zero applied flux are energetically accessible. The full
temperature range plotted for rings (c-e) is already deep
in the suppression region. This is due to the fact that
for rings (c-e) fluxoid fluctuations and phase slips onset
at approximately the same temperature as shown in Fig.
1(b). In the next section we expand the temperature
range by adding susceptibility data from lower tempera-
ture hysteretic ring response curves. The additional data
confirms that the response is suppressed from the mean
field value.

We have shown that the VOR model, based on 1D GL

theory, describes the temperature dependence of the sus-
ceptibility. To get a feeling for the type of fluctuations
that play a role in the ring response we plot the fluxoid
model and the HO model in addition to the VOR model
and mean field model for ring (c) in Fig. 5. It is clear
that fluxoid fluctuations cause the majority of the sup-
pression. Quadratic fluctuations of a non-fluxoid nature
described by the HO model contribute to the renormal-
ization of Tc and quartic fluctuations described by the
VOR model play only a minor role. In fact the fluxoid
model would fit the data equally well with just a shift in
the Tc.
The data set, taken as a whole, confirms the points

we made throughout this paper. Fluxoid fluctuations
not only suppress the rings superconducting response
but play an increasingly large role in the suppression
as γ(T = Tc) increases. We showed that our suscep-
tibility vs. temperature data is well described by a GL
model for homogeneous rings, formatted by von Oppen
and Riedel,31 that includes all thermally activated fluc-
tuations. The largest gamma rings can be equally well
described by our simple fluxoid only model. Furthermore
we can use fits to the VOR model to reproduce some of
the rings’ physical parameters including the cross-section
and mean free path. Finally, by using VOR fit param-
eters we can employ our two approximate models, the
fluxoid model, and the harmonic oscillator model, to de-
termine the how much of the suppression is due to ei-
ther fluxoid fluctuations or quartic fluctuations, shown
for ring (c) in Fig. 5.

D. Hysteretic Susceptibility Data

For rings (c-e) in Fig. 4 we expect the onset of the
downturn induced by fluxoid fluctuations to occur in a
temperature range where the SQUID response curves are
hysteretic, as shown in Fig. 3. This is due to the fact that
in these longest, dirtiest rings L≫ ξ(T ) and fluxoid fluc-
tuations are already energetically favorable at the tem-
perature when phase slips begin to occur, as discussed
in Sec. II A. Fluxoid fluctuations are never energetically
favorable for ring (a) and they onset well after phase slips
in ring (b). From the ring (b) susceptibility data we see
that phase slips onset at ∼ 1.3K while fluxoid fluctua-
tions onset at ∼ 1.51K.
To demonstrate that the data presented represents a

real reduction in the ring response we examine the sus-
ceptibility signals at lower temperatures that fall in the
hysteretic regime. We extract susceptibility data by tak-
ing the slope at zero current on the long continuous sides
of the hysteretic curves.
Fig. 6 shows susceptibility data in the hysteretic regime

(green points) and reproduces the susceptibility data and
fits from the non-hysteretic regime (blue points and solid
red line) from rings (b-e) in Fig. 4. Fig. 6 also shows the
(1 − t4) dependence, plotted as an orange dotted line,
that sets the validity of our GL based models.
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The hysteretic data points in rings (c-e), panels (b-d),
follow the mean field curve until a crossover point when
they line up with the VOR model and the higher temper-
ature susceptibility data. This provides evidence that the
susceptibility measured from the SQUID response curves
in thermal equilibrium is suppressed from the mean field
value. The drop in susceptibility from the mean field
value occurs when the phase slip rate is sufficiently high
and multiple fluxoid states compete to suppress the re-
sponse.

IV. CONCLUSIONS

Superconducting phase slips in one dimensional rings
and wires have been the subject of theoretical and ex-
perimental interest for decades. While phase slips in 1D
structures determine the onset of resistance, the fluxoid
processes we described here cause the loss of another hall-
mark of superconductivity, the ability to screen magnetic
fields. In this paper we have outlined four models that
describe the effects of superconducting fluctuations on
the susceptibility response in rings. We have shown that
the responses of rings with various physical parameters
can be characterized by 1D GL theory as described by
von Oppen and Riedel for uniform rings that includes all
thermal fluctuations. By comparing the models we can
determine the types of fluctuations that contribute to the
response of a given ring. We found that for rings with
weak phase stiffness the ring response can be described
using a fluxoid only model, indicating that these types
of fluctuations are the dominant cause of suppression of
the susceptibility signal. One could imagine extending
this ring system to a weakly connected grid, linking our
results to the field of percolation superconductivity. Ad-
ditionally, achievable experimental conditions allow flux-
oid fluctuations to occur at temperatures down to 50
mK. Such a setup could provide experimental conditions
for examining the quantum mechanical behavior of a 1D
ring.44
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FIG. 6: (Color Online) Susceptibility data from rings (b-e).
The green points are the slopes of the hysteretic curves, which
estimate the susceptibility in the hysteretic regime. The error
bars account for a systematic error in the coupling constant
that would shift all points together. The blue points are re-
produced from Fig. 4, which plots the susceptibility of the
ring’s response in thermal equilibrium. The red solid line is a
fit of the blue non-hysteretic data to the VOR model and the
black dotted line is the mean field response, both are repro-
duced from Fig. 4. Also plotted is the (1 − t4) temperature
dependence which limits the validity of GL theory.
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