Large magnetoelectric effect in ferroelectric/piezomagnetic heterostructures

Pavel Lukashev, Kirill D. Belashchenko, and Renat F. Sabirianov

Phys. Rev. B 84, 134420 — Published 17 October 2011
DOI: 10.1103/PhysRevB.84.134420
Large magnetoelectric effect in ferroelectric/piezomagnetic heterostructure

Pavel Lukashev1,3, Kirill Belashchenko1,3, and Renat F. Sabirianov2,3

1) Department of Physics and Astronomy, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588-0299
2) Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska 68182-0266 and
3) Nebraska Center for Materials and Nanoscience, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588-0299

(Dated: September 20, 2011)

We present results of the first principles calculations on the large magnetoelectric effect in ferroelectric/piezomagnetic multilayers. We consider thin film layered heterostructure of typical ferroelectric, such as PbTiO$_3$, with piezomagnetic (PzM) Mn-based antiperovskite, such as Mn$_3$GaN. The atomic displacements induced by the FE polarization as well as mechanical stress at the interface break the triangular magnetic symmetry of the PzM phase producing net magnetization in the system. Induced magnetization can be controlled by changing the direction of polarization in ferroelectric phase. Our calculations show that reversal of the polarization results in change of the net magnetization in the system by more than 50%.

PACS numbers: 75.50.-y,75.80.+q

I. INTRODUCTION

The control of the magnetic properties of complex materials by external electric field and electrically driven switching phenomena have attracted significant interest because of their potential applications, which may prove to be faster and more energy efficient than the current memory or electronics technology. Materials which possess ferroelectric (FE) polarization and magnetization are called multiferroic and the coupling between these two order parameters constitutes a magnetoelectric (ME) effect1. Compared to bulk multiferroics2, only a few of which are known, heterostructures made of FE and ferromagnetic (FM) components show stronger ME coupling3. In most of the proposed systems ME coupling in the heterostructures is strain mediated, in contrast to the mechanism related to displacement of magnetic atoms in the bulk multiferroics. Recently, novel mechanisms were established which lead to ME coupling. At ferromagnet/insulator interfaces the ME effect may originate from purely electronic mechanisms. It was predicted that atomic displacements at the FM/FE interface caused by FE switching change the overlap between atomic orbitals at the interface, which in turn affects the interface magnetization4,5. Recently it was demonstrated that ME effect can be induced by free carriers6. In this case, due to spin-dependent screening7, an applied electric field produces an accumulation of spin-polarized electrons or holes at the metal-insulator interface resulting in a change of the interface magnetization8 and the exchange splitting9-11.

In this paper we explore ME phenomena in layered FE/PzM heterostructures based on antiperovskite materials which have zero net magnetization in the ground state. In particular, we consider thin film layered heterostructure of Mn$_3$GaN with ferroelectric PbTiO$_3$. We study possible mechanisms of the magnetization induction in this system, such as atomic displacements caused by FE polarization and surface strain due to lattice mismatch, which may break the magnetic symmetry of the Mn$_3$GaN, producing net magnetization in the system. We also consider the possibility of controlling the induced magnetization in PzM phase by switching the direction of the polarization in FE phase.

II. MN-BASED ANTIPOERVSKITES

Antiperovskite compounds belong to the same crystallographic space group as regular perovskites. However, in antiperovskites the 3c sites are not occupied by oxygen but by transition-metal atoms like Mn forming the corresponding cages of octahedral symmetry as shown in Fig. 1. These materials show variety of magnetic structures and phase transitions. Many interesting properties of antiperovskites have been reported, such as invar effect or even negative thermal expansion12, near zero temperature coefficient of resistance13, a giant magnetoresistance14, piezomagnetic15 and flexomagnetic16 effects. The magnetic ground state of Mn$_3$GaN is shown in Fig. 1. This is the non-collinear Γ59 structure (in the classification of Bertaut et al.17) with the local magnetic moments on the (111) plane forming clockwise or counterclockwise configurations, compensating each other. As a result in the ground state Mn$_3$GaN has zero net magnetization. Yet, our recent study15 shows that these compounds exhibit linear PzM effect, in particular appearance of the net magnetization upon application of in-plane biaxial strain. The PzM effect is due to the rotation of the local magnetic moments of the Mn atoms from their equilibrium directions. Upon rotation the moments in the (111) plane become inequivalent.

The three fold symmetry magnetic structure in Mn$_3$GaN is due to the negative exchange interaction on the frustrated (111) planes which are similar to Kagome lattices. The interfaces of such lattice with perovskite systems should alter their magnetic structure because
the exchange interactions of the interface atoms with the inner layers of Mn$_3$GaN will be modified, and exchange interactions between interfacial Mn atoms will also change. This removes the three fold symmetry in the system and magnetization is expected to be induced. For example, if we consider three antiferromagnetically coupled Mn atoms arranged on the corners of equilateral triangle, the lowest energy state corresponds to the triangular magnetic structure, i.e. the angles between directions of the spin moments are 120 degrees. However, if the exchange coupling between one of the spin pairs is altered then the lowest energy state will have net magnetization because the angle between spin moments will change. The larger modification of exchange parameters at the interface corresponds to the larger value of the induced magnetization. Therefore, the rotation of interfacial spin moments changes the overall magnetic structure of the film. At two inequivalent interfaces different magnetizations are expected to be induced. The change in the exchange coupling between Mn sites at the interface due to the atomic displacements in FE phase is expected to be large because of generally strong dependence of exchange coupling on interatomic distance. Details of the exchange interaction mechanism in Mn$_3$GaN are provided in Ref. [16].

Since the PzM effect is linear in Mn$_3$GaN, the magnetization in the PzM/FE heterostructures should be induced without need for the external magnetic field. This is the main difference between system considered in this paper and the FE/magnetostrictive heterostructures.

III. COMPUTATIONAL MODEL AND METHODS

We perform our calculations using the projector augmented wave (PAW) method18, implementation of PAW in Vienna Ab-Initio Simulation Package (VASP) code19 within a local density approximation (LDA) of the density functional theory (DFT). We use 8x8x1 k-point sampling and the Methfessel-Paxton integration method20 for the heterostructure and tetrahedron method for PbTiO$_3$ and Mn$_3$GaN calculations. We form a stoichiometric heterostructure consisting of 4 unit cells of PbTiO$_3$ and 4 unit cells of Mn$_3$GaN. The termination interface is assumed to be PbO/GaMn and TiO$_2$/Mn$_2$N which corresponds to the electrostatically optimal configuration, i.e. Mn sites neighbor oxygen, while Pb neighbors Ga. Other terminations (PbO/Mn$_2$N and TiO$_2$/GaMn) result in strong tetragonal distortion due to atomic charge configuration at the surface.

We choose LDA to treat the exchange and correlation energy of the electrons following earlier reports21–24 that Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA)25 poorly describes FE systems such as PbTiO$_3$ by largely overestimating the c/a ratio and the FE polarization. But for the Mn$_3$GaN the LDA fails to correctly describe magnetic ground state. This problem is solved by on site replacement of the L(S)DA with the strong intra-atomic Hartree-Fock like interaction, - method known as L(S)DA+U. We use the rotationally invariant LSDA+U26 and the effective on-site Coulomb interaction parameter (U) for Mn atoms of 2 eV. This results in correct description of the magnetic ground state of Mn$_3$GaN.

We performed the structural optimization for the perovskite PbTiO$_3$ with the following results: the in-plane lattice constant, $a = 3.870$ Å; the c/a ratio is 1.037; the out-of-plane FE displacements are 0.26 Å between Ti and O atoms and 0.34 Å between Pb and O atoms27.

The calculated lattice constant of Mn$_3$GaN is 3.86 Å15 which results in only 0.5% lattice mismatch at the FE/PzM interface. We performed optimization of the heterostructure lattice parameters as follows: 1) we set the in-plane lattice constant to 3.87 Å; 2) the initial FE displacements are chosen from the ground state values and are always kept fixed in the two "non-interfacial" unit cells of PbTiO$_3$ to preserve the bulk-like FE polarization in the system; 3) we perform ionic relaxations at different c/a ratios and find the optimal values for both directions of FE polarization. The value of the in-plane lattice constant of 3.87 Å is very close (only ~0.5% larger) to the ground state lattice constant of the Mn$_3$GaN, therefore we expect that the magnetic reconstruction on the interface will be mostly due to the FE out-of-plane displacements, not the in-plane strain, hence manifesting the stronger ME coupling. We call polarization left if Ti and Pb atoms are shifted to the left relative to the O atoms as shown on the Fig. 2 (a). We call the opposite polarization right (see Fig. 2 (b)).
IV. RESULTS

The results of the heterostructure lattice optimization are summarized in Table I. Fig. 2 shows the PbTiO$_3$/Mn$_3$GaN heterostructure after ionic relaxation for (a) right P, (b) left P. Fig. 3 shows the inter-atomic distances at the PbO/GaMn and TiO$_2$/Mn$_2$N interfaces after relaxation, as well as atomic charges for (a) right P, (b) left P. These two Figures show that while non-interfacial cells have interatomic bond distances similar to the bulk values in the parent compound, yet at the same time there are substantial atomic displacements in interfacial TiO$_2$ and PbO planes. These displacements also alter the magnetic state of Mn$_3$GaN substantially. While bulk antiperovskite has zero net magnetization, the total magnetic moment in the 40-atom cell after relaxation is \sim1.63μ_B for the right and \sim1.06μ_B for the left P. Thus, switching the polarization sign results in a clear manifestation of the large magnetoelectric coupling. The induced magnetization is mainly due to the change in the magnetic structure at the interfaces. This is shown on the Fig. 4 which demonstrated the distribution of the induced magnetic moments per Mn$_3$GaN cell for left P (green) and right P (blue). The numbering of the unit cells is as follows: "1" corresponds to the Mn$_3$GaN unit cell at the PbO/GaMn interface, "4" corresponds to the Mn$_3$GaN unit cell at the TiO$_2$/Mn$_2$N interface, "2" and "3" correspond to the non-interfacial Mn$_3$GaN unit cells. The non-interfacial cells for the case of left P mainly keep the bulk magnetic structure which results in their induced magnetization being small. At the same time, the interfacial cells break their magnetic symmetry due to strong structural distortion which results in large induced magnetic moment. For the right P the distribution of the induced magnetization per cells is different. In particular, there is large magnetization in two unit cells at the TiO$_2$/Mn$_2$N and much smaller magnetization at the PbO/GaMn interface. Table II and Table III presents magnetic moments per Mn$_3$GaN unit cell resolved in Cartesian coordinates for right and left P correspondingly. Numbering of the cells is consistent with the one on the Fig. 4. We can see from this Table that one more difference in the magnetic moment distribution for right and left P is that the z-component (see Fig. 2) of the induced magnetization is substantially larger for the former than for the latter.

<table>
<thead>
<tr>
<th>Mn$_3$GaN cell</th>
<th>Magn-x</th>
<th>Magn-y</th>
<th>Magn-z</th>
<th>Magn-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.106</td>
<td>-1.065</td>
<td>1.494</td>
<td>2.465</td>
</tr>
<tr>
<td>2</td>
<td>0.550</td>
<td>1.243</td>
<td>-1.611</td>
<td>2.108</td>
</tr>
<tr>
<td>3</td>
<td>-0.118</td>
<td>-0.252</td>
<td>0.461</td>
<td>0.546</td>
</tr>
<tr>
<td>4</td>
<td>-0.261</td>
<td>-0.192</td>
<td>0.051</td>
<td>0.328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mn$_3$GaN cell</th>
<th>Magn-x</th>
<th>Magn-y</th>
<th>Magn-z</th>
<th>Magn-total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.333</td>
<td>-2.161</td>
<td>0.529</td>
<td>3.224</td>
</tr>
<tr>
<td>2</td>
<td>0.153</td>
<td>0.162</td>
<td>-0.180</td>
<td>0.286</td>
</tr>
<tr>
<td>3</td>
<td>0.157</td>
<td>0.177</td>
<td>-0.028</td>
<td>0.238</td>
</tr>
<tr>
<td>4</td>
<td>1.192</td>
<td>1.187</td>
<td>0.002</td>
<td>1.682</td>
</tr>
</tbody>
</table>
Magnetization per unit cell (µB)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.73</td>
<td>1.73</td>
<td>0</td>
<td></td>
<td>1.95</td>
<td>2.96</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>-1.73</td>
<td>0</td>
<td>-1.73</td>
<td></td>
<td>-2.05</td>
<td>-1.93</td>
<td>0.24</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-1.73</td>
<td>1.73</td>
<td></td>
<td>-0.03</td>
<td>-2.61</td>
<td>-0.47</td>
</tr>
<tr>
<td>4</td>
<td>1.73</td>
<td>1.73</td>
<td>0</td>
<td></td>
<td>2.03</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>-1.73</td>
<td>0</td>
<td>-1.73</td>
<td></td>
<td>-0.26</td>
<td>-2.05</td>
<td>0.24</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-1.73</td>
<td>1.73</td>
<td></td>
<td>-0.13</td>
<td>-2.61</td>
<td>-0.47</td>
</tr>
<tr>
<td>7</td>
<td>1.73</td>
<td>1.73</td>
<td>0</td>
<td></td>
<td>2.19</td>
<td>2.17</td>
<td>-0.26</td>
</tr>
<tr>
<td>8</td>
<td>-1.73</td>
<td>0</td>
<td>-1.73</td>
<td></td>
<td>-2.05</td>
<td>-2.61</td>
<td>0.24</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>-1.73</td>
<td>1.73</td>
<td></td>
<td>-0.26</td>
<td>-2.05</td>
<td>0.24</td>
</tr>
</tbody>
</table>

FIG. 4: Distribution of the net magnetic moment per Mn₃GaN unit cell for left P (green) and right P (blue). Black arrows show the (110) direction of the in-plane projection of the magnetization in the unit cell.

FIG. 5: Densities of states for bulk Mn₃GaN (top panel) and PbTiO₃ (bottom panel).

TABLE IV: Local magnetic moments of Mn atoms for 3 different configurations: a) bulk Mn₃GaN, b) PzM/FE heterostructure with left P, c) right P. Numbers in the first column correspond to the 4 unit cells of Mn₃GaN in the stacking direction, i.e. 1 corresponds to the Mn₃GaN unit cell at the PbO/MnGa interface, 2 to the next Mn₃GaN unit cell, etc. Numbers in the second column correspond to the 3 Mn atoms in the unit cell, i.e. 1 is the Mn atoms in the MnGa plane, while 2 and 3 are the Mn atoms in the Mn₂N plane.

the Table IV for the bulk Mn₃GaN reflect orientation of the magnetic moments in the (111) plane while the initial (before relaxation) moments for the heterostructure were chosen in the (001) plane. Because spin-orbit interactions are not included, the easy axis can be chosen arbitrarily, and, for computational convenience, was taken along (001) axis in the heterostructure calculations. One can see from the Table IV that while at the PbO/GaMn interface the in-plane projection of the induced magnetization stays essentially the same upon reversal of FE polarization, yet on the TiO₂/Mn₂N interface it reverses its direction upon reversal of the polarization (schematically shown by the black arrow on the Fig. 4). Indeed, by taking the sum of the components for the local magnetic moments in the 4-th unit cell we see that the resultant induced magnetization on the interface for the left P is along (1,1,0) while for the right P along (-1,-1,0) direction. Same is true for the 3-rd but not for the 1-st and 2-nd unit cells. This reversal of the magnetization at the interface is one of the mechanisms behind large ME coupling in the system. The other is the large out-of-plane induced magnetization in the 1-st and 2-nd unit cells for the right P. We also emphasize here that since the
main contribution to the induced magnetization comes from the interfacial unit cells, we do not expect that increasing the thickness of Mn$_3$GaN will considerably alter the induced magnetization in the system, i.e. the non-interfacial unit cells of the thicker Mn$_3$GaN film should have vanishingly small net magnetization.

The local magnetic moment of Mn at the PbO/GaMn interface is strongly reduced when FE polarization points left. This is the reason why in case of the left P the interfacial unit cell of Mn$_3$GaN (at PbO/GaMn interface) has large induced magnetization (the other two Mn local magnetic moments are left uncompensated). The strong reduction of the local magnetic moment on Mn atom at PbO/GaMn interface in the case of the left P is mainly due to proximity of oxygen. The interatomic Mn-O distance in this case is 1.87Å which is considerably lower than that in the case of the right P (2.01Å) as can be seen in Fig. 3. The sharp decrease in Mn-O distance is associated with the increased hybridization of Mn and O states and as a result in strong suppression of Mn magnetic moment.

V. ELECTRONIC STRUCTURE

To get further insight into the mechanism behind large ME effect in the considered system we turn our attention to the electronic structure analysis. Fig. 5 shows calculated densities of states (DOS) for the ground state bulk Mn$_3$GaN (top panel) and PbTiO$_3$ (bottom panel). As expected, the former is metallic while the latter is insulating with a wide band gap of \sim1.5 eV.

![Fig. 6: Unit cell resolved densities of states for Mn$_3$GaN (top panel) and PbTiO$_3$ (bottom panel) in the heterostructure, for left P. Numbering of the cells is consistent with the one described in the Results section.](image)

![Fig. 7: Unit cell resolved densities of states for Mn$_3$GaN (top panel) and PbTiO$_3$ (bottom panel) in the heterostructure, for right P. Numbering of the cells is consistent with the one described in the Results section.](image)
in the gap are due to interfacial unit cells of PbTiO$_3$ (black line corresponding to the PbTiO$_3$ unit cell at the TiO$_2$/Mn$_2$N, while blue line to the PbTiO$_3$ unit cell at the PbO/GaMn interfaces). The not-interfacial unit cells of PbTiO$_3$ in the heterostructure are mostly insulating (see red and green lines at the bottom panels of Fig. 6 and Fig. 7). The small non-zero values at the Fermi level are probably coming from broadening of the states and some effect of incomplete basis. The insulating nature is quite obvious from the shift of DOS of cells. The DOS curves are shifted with respect to each other to the higher energy (from 1 to 4) in case of left P, and in opposite direction in case of right P because of the electric field is present due to polarization. If PbTiO$_3$ in the heterostructure would become metallic in all cells this shift would be largely screened by conduction electrons.

Mn$_3$GaN DOS in the heterostructure also undergoes distortion in the heterostructure compared with the bulk (compare top panel of the Fig. 5 with the top panels of the Fig. 6 and Fig. 7). For both left and right P DOS of the Mn$_3$GaN at the PbO/GaMn interface is higher than at the TiO$_2$/Mn$_2$N interface (compare black and blues lines at top panels of Fig. 6 and Fig. 7). This is consistent with our result that the larger contribution to the induced magnetization comes from the PbO/GaMn interface (see Fig. 4).

VI. CONCLUSIONS

In conclusion, we have demonstrated the mechanism to electrically control the magnetic properties of thin-film layered ferroelectric/piezomagnetic heterostructures (in particular PbTiO$_3$/Mn$_3$GaN). The magnetization induced in the multilayer is due to the lowering of the T^g magnetic symmetry of Mn$_3$GaN caused by the interfacial strain and FE displacements. The magnetization of the heterostructure can be controlled by an external electric field by switching the direction of FE polarization. Switching of the polarization changes the magnetization by more than 50%. The FE/PzM interface magnetization shows strong dependance on the direction of the FE polarization. In principle, the ME mechanism described in this work may be used for practical applications, such as in magnetic switches. Therefore we hope that our results will stimulate experimental work on the PzM/FE layered thin-film heterostructures.

Acknowledgments

P.L. thanks Evgeny Y. Tsymbal for helpful discussions. This work was supported by the National Science Foundation and the Nanoelectronics Research Initiative through the Materials Research Science and Engineering Center at the University of Nebraska.
27. The corresponding GGA values are: a=3.84 Å; c/a=1.24; Ti-O displacement = 0.43 Å, Pb-O displacement = 0.71 Å.