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A variety of open quantum networks are currently under intense examination to model energy
transport in photosynthetic systems. Here we study the coherent transfer of a quantum excitation
over a network incoherently coupled with a structured and small environment that effectively models
the photosynthetic reaction center. Our goal is to distill a few basic, possibly universal, mechanisms
or ”effects” that are featured in simple energy-transfer models. In particular, we identify three
different phenomena: the congestion effect, the asymptotic unitarity and the staircase effects. We
begin with few-site models, in which these effects can be fully understood, and then proceed to
study more complex networks similar to those employed to model energy transfer in light-harvesting
complexes.

PACS numbers:

I. INTRODUCTION

The transport of electronic excitations over biological
networks of chromophores is the relevant mechanism for
the light-harvesting step of photosynthesis1–6. Recently,
long-lived quantum coherent oscillations have been ob-
served in ultrafast experiments carried out on several
biological systems, even at room temperature7–12. One
of the key features of these exciton-transfer networks is
their open nature, namely, that their coupling with the
protein vibrational environment is, arguably, the domi-
nant effector of transport in these systems. The inter-
play of unitary dynamics and the system-bath interac-
tion has been predicted to be beneficial to the network
functionality at biological conditions13–22. The compe-
tition between exciton delocalization and environment-
induced relaxation among excitons has been studied for
a long time2–4,6,7,15,18,20 (see also the book23). Realis-
tic numerical modeling of these open quantum networks
is, to some extent, possible and currently actively pur-
sued in the physical chemistry community20,24–33. Nev-
ertheless, the physical chemistry and quantum informa-
tion community has learned much from simple Markovian
models14,17,26,32.

In this paper, motivated by the above, we will in-
vestigate a few simple yet illuminating models of open
quantum networks in order to identify a handful of basic
mechanisms or effects that are featured in fully analyz-
able toy models and that may persist for larger, more
complex quantum transport networks. In particular, we
will focus on coherently-coupled qubits subject to dissipa-
tion/dephasing and irreversibly connected to an auxiliary
quantum system. The role of this latter is to model the
reaction center of light-harvesting complexes, where the
electronic excitation is separated into an electron and a
hole and the charge-transfer stage of photosynthesis be-
gins. Of interest to us is the reaction center of the LH1-
RC complexes present in purple bacteria1,2,26,34. We will
adopt a Markovian master equation of the Lindblad form
to describe the overall system dynamics. Different ener-

gies, or equivalently time-scales, will enter the definition
of the Liouville superoperator L. The interplay of these
time-scales controls the non-trivial phenomenology that
we explore in this manuscript. Finally, singling out a
few intriguing, possibly universal features of such a phe-
nomenological landscape is the goal of the simple calcu-
lations presented in this paper.
In the next three sections (II, III and IV) we will

consider different toy models consisting of few sites or
chromophores (modeled as quantum two-level systems,
or qubits), manifesting particular features which can be
fully understood by analytical calculations. See Fig. 1 for
a cartoon picture of the various networks considered. In
section V, we will consider more realistic networks bor-
rowed from models of light-harvesting complexes. Via
numerical simulations we will show that these effects may
persist in more realistic systems.

II. THE CONGESTION EFFECT

In exciton and electron transfer events, there can be de-
lays in energy transport due to the timescales of the bio-
logical process. A particular element might be shut down
while transport takes place, effectively making an exci-
ton or electron wait until the transport is possible35. In
the following section, we will describe this phenomenon
in model systems and characterize it as the congestion

effect.
In the standard modeling of incoherent (and irre-

versible) transfer of excitations from one site to another,
the Förster electromagnetic coupling mechanism permits
the transfer of populations at a given rate γ. If the dy-
namics is described using a Lindblad form ρ̇ = LL (ρ) ,
where LL (X) = LXL† −

{

L†L,X
}

/2, this can be ac-
counted for by a jump operator of the form L =

√
γσ−⊗

σ+, where σ± are Pauli ladder operators. In the actual
transfer process excitations may spread on complicated
pathways, interact with external modes, and so on. In
most cases the detailed microscopical process that give
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Figure 1: Summary of the toy-networks analyzed analytically
in sections II and III.

rise to such a transfer term are to a large extent unknown,
and this motivates the simple phenomenological Lindbla-
dian given above. On the basis of the detailed balance
condition this one-way transfer must always be accompa-
nied by the reverse process which transfers excitations in
the opposite direction (see e.g.36). The backward transfer
rate, γback, satisfies approximately γback/γ ≈ e−∆F/kT .
Here, aiminig at simplicity, we will neglect the effect of
backward process; in other words we will assume that the
free energy difference, ∆F , is large as compared to the
temperature.

Later on we will model that part of light-harvesting
complexes where the exciton is finally transferred to
the reaction center, via a one-way process as done else-
where in the literature14,15,17,18,26,28,29,32. However we
will move from this simple phenomenological picture by
adding different layers of complexity. More precisely we
will give the reaction center a richer structure allowing
it to accommodate for more than one exciton, and/or we
will split the trapping process in two by adding an ex-
tra, fictitious site, with the aim of introducing another
time-scale in the trapping process (γ−1

b in figure 1).

In this section, we explore possible congestion effects
that arise from the dependence of the transfer rate on the
number of excitations involved, in the same way traffic
flow might be inversely proportional to the number of
vehicles present on roads.

Incoherent transfer I: • γ
 •. Before turning to ana-

lyze the possible implementations and consequences of
such an effect, let us summarize the Lindblad opera-
tors for incoherent Förster transfer among two sites,
L =

√
γσ−

1 σ
+
2 . This process can be pictorially visualized

by the following diagram, • γ
 • (see also Fig. 1). The

quantum master equation is given simply by ρ̇ = LL (ρ).
We denote by n the population operator satisfying n|η〉 =
η|η〉 with η = 0, 1, and by n its possibly time-dependent
expectation value for excitations, i.e. n = 〈n〉 := tr (nρ).
Since the effect of the Lindbladian is to transfer a par-
ticle from site 1 to site 2, the total number operator
is a conserved quantity. We therefore obtain a differ-

ential equation for the population in the following way:
first note that ṅi = tr (niρ̇) = tr [niLL (ρ)] . Given that
n1 + n2 = ntot is constant in time, it suffices to analyze
the population of site 1, ṅ1 = −γn1+γ〈n1n2〉. Now note
that in the single-particle sector, ntot = 1, 〈n1n2〉 = 0
(to see this use n

2
tot = ntot + 2n1n2), leading to a trans-

port equation ṅ1 = −γn1 that can be readily solved
for the population at sites 1, n1 (t) = e−γtn1 (0) and
2, n2 (t) = n2 (0) + (1− e−γt)n1 (0). The jump operator
achieves precisely what we expected: the population in
site one decreases exponentially at a rate γ and the pop-
ulation of site 2 increases accordingly. The same result
could have been obtained by solving the (16 dimensional)
differential equation for the full density matrix. Starting
at time zero with ρ (0) = {ρi,j} the time-evolved density
matrix ρ (t) in the basis {|11〉, |10〉, |01〉, |00〉}, is








ρ1,1 e−γt/2ρ1,2 ρ1,3 ρ1,4
e−γt/2ρ2,1 e−γtρ2,2 e−γt/2ρ2,3 e−γt/2ρ2,4

ρ3,1 e−γt/2ρ3,2 (1− e−γt) ρ2,2 + ρ3,3 ρ3,4
ρ4,1 e−γt/2ρ4,2 ρ4,3 ρ4,4









.

It is interesting to note in passing, that for some en-
tangled initial states the asymptotic density matrix
ρ (t→ ∞) is still entangled. The process LL cannot,
however, create entanglement.
Incoherent transfer II: • �. We now allow the sec-

ond site to accommodate for more than just one exci-
ton. Accordingly we and replace the second qubit with
a larger d = 2s+ 1 dimensional space. One can then act
on the second site with irreducible spin s representation
of SU (2) operators.
For this case, we can model a particle conserving trans-

fer process with a jump operator given by L =
√
γσ−

1 S
+
2

where S+
2 is a raising operator of the irreducible spin

s representation of SU (2). The population at site 2
is N2 = Sz

2 + s1I. Once again, since the total particle
number ntot = n1 + N2 is conserved in a given particle
sector, one has ntot (t) = ntot. We then obtain the fol-
lowing differential equation for population at site 1: ṅ1 =
−γ〈n1S−

2 S
+
2 〉. By noting that S−

2 S
+
2 = (N2+1)(2s−N2),

and employingN2 = ntot−n1, N
2
2 = n2

tot−2ntot−1+2n1,
and n

2
1 = n1, we obtain an explicit differential equation

for n1:

ṅ1 = −γntot [(2s+ 1)− ntot] n1

n1 +N2 = ntot.

Excitation transfer now occurs at an effective rate
which depends on the total population: γeff =
γntot [(2s+ 1)− ntot]. Note that 0 ≤ ntot ≤ 2s+ 1 and,
correctly, γeff (ntot = 0) = γeff (ntot = 2s+ 1) = 0, i.e. no
transfer takes place when the network is either com-
pletely empty or completely full. The maximum transfer
rate is attained when the condition ntot = (2s+ 1) /2
is satisfied. The lesson we get from this slightly modi-
fied example, is that transferring excitations to an object
with more than just two levels, is likely to result in a
population dependent transfer rate.
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Figure 2: Top panel: The population n3 for the case described
in section II , as a function of time and γb. In this model, the
initial state has two excitations at sites 1 and 2: |1, 1, 0, 0〉.
The parameters for the model are J = 1, γ = 0.1. Bottom:

panel: Slices of the same plot at different times are shown.
The non-monotonic behavior of the population as a function
of the rate γb is evident at small values of it.

Interplay between coherent hopping and transfer: • J↔
• γ
 • γb

 •. We will further illustrate the concept above
by considering a variation on the theme. We consider a
coherent-hopping Hamiltonian on four sites of the form
H = (J/2)

(

σ−
1 σ

+
2 + h.c.

)

that acts on the first two sites.
The excitations are transferred irreversibly from site 2 to
site 3 via a quantum jump operator L =

√
γσ−

2 σ
+
3 and

subsequently from site 3 to site 4 with Lb =
√
γbσ

−
3 σ

+
4 .

J is the coherent coupling strength. In the following, we
explore the interplay between the two incoherent transfer
rates γ and γb. Let us focus on the population at site 3,
n3 (t). The effect of γb is that of removing excitation
population from site 3. However when γb becomes large,
excitations are rapidly transferred to site 4 inhibiting the
effect of Lb (Lb (ρ) → 0). This results in a non-trivial
non-monotonic effect as a function of γb. This feature
can be visible only if we have at least two particles in
the network. Let us then consider the following initial
(pure) state with excitations localized at sites 1 and 2:
|1, 1, 0, 0〉. As shown in Figure 3, in this case, the time-
evolution of the populations takes the following form:

n1 (t) = C1e
−γt + C2e

−γt/2 + C3 (t) e
−tγb

+C4e
−t(γ+ω)/2 + C5e

−t(γ−ω)/2

n2 (t) = C′
1e

−γt + C′
2e

−γt/2 + C′
3 (t) e

−tγb

+C′
4e

−t(γ+ω)/2 + C′
5e

−t(γ−ω)/2

n3 (t) = 1 +B1 (t) e
−tγb +B2e

−tγ +B3e
−tγ/2

+B4e
−t(γ+ω)/2

n4 (t) =
γ (1− e−tγb)− γb (1− e−tγ)

γ − γb
,

where Ci, C
′
i, Bi are only functions of J, γ, γb, and

C3, C
′
3, B1 are functions of time as well. Finally ω =

√

γ2 − 4J2, resulting in an imaginary eigenvalue of the
Liouvillian for 2 |J | > γ. This in turn shows up in an os-
cillating behavior of the populations as a function of time.
In Figure 2, the behavior of population 3 as a function of
time and γb is plotted for the given values of J and γ. For
large values of t, one can observe a non-monotonic behav-
ior as a function of γb emphasized in the bottom panel of
Figure 2. This behavior can be qualitatively understood
as follows. Consider the behavior of n3 as a function of
γb for a large fixed time t̃. Since the effect of γb is that of
taking away particles from site 3, n3 first decreases when
γb is increased from zero at fixed t̃. Anyway, if γb is fur-
ther increased, excitations are taken away at a faster rate
and transferred to site 4. This means that at the fixed
time t̃ site 4 tends to get full for large γb, thus inhibiting
the effect of Lb. Population n3 then increases with γb.
When γb is further increased, site 4 becomes effectively
full and Lb is turned off, the population becomes then
independent of γb and n3 saturates.

For the sake of completeness we also consider the solu-
tion with one excitation localized at site 1, i.e. |1, 0, 0, 0〉
at time t = 0. In this case the time-dependence of the
populations is,

n1 (t) =
e−tγ/2

ω3

[

−2J2ω +
(

γ2 − 2J2
)

ω cosh

(

tω

2

)

+γω2 sinh

(

tω

2

)]

n2 (t) =
2J2e−tγ/2

ω2

[

cosh

(

tω

2

)

− 1

]

n3 (t) = A1e
−tγb + A2e

−tγ +A3e
−t(γ+ω)/2 +A4e

−t(γ−ω)/2

n4 (t) = 1−
3

∑

i=1

ni (t)

where Ai are time independent functions of the param-
eters. One can see in Fig. 3 that the non-monotonic
behavior of n3 as a function of γb is for this initial con-
dition absent. As expected, since in the network there
are no-excitations enough to fill the reaction center, the
“congestion effect” is now absent.
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Figure 3: n3, as a function of time and γb. Initial state has one
excitation at sites 1: |1, 0, 0, 0〉. Parameters are J = 1, γ =
0.05.

III. THE STAIRCASE EFFECT

In this section, we explore the situation where excitons
are fed into a quantum network at a given constant rate
γin and are extracted at a rate γout.

This model can be justified by the fact that some
photosynthetic complexes such as purple bacteria and
green-sulfur bacteria37 live in low-light conditions. The
electron-transfer event that occurs in the reaction center
is a process that takes place in the order of picoseconds.
We therefore take the common practice of modeling the
reaction center as an incoherent trap14.

Injection-extraction:
γin
 • J↔ • γout

 . Here, we con-
sider the simplest model for the injection and extrac-
tion of an exciton. The model corresponds to two sites
coupled coherently via the hopping Hamiltonian, H =
(J/2)

(

σ−
1 σ

+
2 + σ+

1 σ
−
2

)

. Besides the coherent evolution
term, an incoherent injection of excitons is given by a
jump operator Lin =

√
γinσ

+
1 which injects particles at a

rate γin and a corresponding incoherent extraction term
Lout =

√
γoutσ

−
2 .

The corresponding 16×16 Lindblad superoperator ma-
trix can be diagonalized. A complex eigenvalue with a
non-zero imaginary part gives rise to oscillating behavior
in the populations when |γin − γout| < 2 |J |.

Let us first concentrate on the asymptotic state of the
evolution, ρ (t→ ∞). Solving Ltot (ρ) = 0, one realizes
that the asymptotic state is unique and independent of
the initial state. Although this feature is expected in nat-
ural physical systems and follows, for instance, from the
detailed balance hypothesis, it is not necessarily satisfied
in our simple toy models (see e.g. Sec. II).

In the standard basis, {|1, 1〉, |1, 0〉, |0, 1〉, |0, 0〉}, the

0 5 10 15 20
t0.0

0.1

0.2

0.3

0.4

n

n2

n1

0.0 0.1 0.2 0.3 0.4
n20.0

0.1

0.2

0.3

0.4

n1

Figure 4: J = 2, γin = 0.2 (injection), and γout = 0.3 (dissipa-
tion). Bottom: parametric plot with same parameters. The
red dots correspond to times given by Tn = (1/2 + n)T0,
T0 = 2π/ω, (n = 1, 2, . . .) and the correct frequency is

ω =
√

4J2 − (γin − γout)
2. As explained in the text using

general arguments, T0 = O
(

J−1
)

.

explicit expression of the asymptotic state is

ρ (∞) =
1

(γin + γout) (J2 + γinγout)
×















J2γ2
in

(γin+γout)
0 0 0

0
γinγout(J2+(γin+γout)

2)
(γin+γout)

iJγinγout 0

0 −iJγinγout J2γinγout

(γin+γout)
0

0 0 0
J2γ2

out

(γin+γout)















.

The only non-vanishing correlations are 〈σz
1σ

z
2〉, 〈σz

1〉 and
〈σz

2〉. Thus this state is separable but has non vanishing
classical correlations: 〈σz

1σ
z
2〉 − 〈σz

1〉〈σz
2〉 6= 0. Equiva-

lently, the asymptotic state is a classical mixture of states
with definite populations.
Having ρ (∞) we can compute the asymptotic popula-

tions:

n1 (∞) =
γin

(

J2 + γinγout + γ2out
)

(γin + γout) (J2 + γinγout)
(1)

n2 (∞) =
γinJ

2

(γin + γout) (J2 + γinγout)
. (2)

A few simple facts can be directly seen from equa-
tions (1), (2). First, for small γin populations deviate
by O (γin) from zero; vice versa for γout small popu-
lations deviate by O (γout) from one. Instead, when
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J is small excitations get loaded at site 1 but take a
long time to reach site 2 so that n1 = 1 − O

(

J2
)

,

n2 = O
(

J2
)

. Finally, for very large J both populations

tend to n1 ≃ n2 = γin/ (γin + γout) +O
(

J−2
)

.

Let us now turn to the dynamics and consider first the
most interesting case namely when the initial state is the
empty state |0, 0〉. A typical result is shown in figure 4.
An interesting feature clearly emerges: when population
n1 increases, n2 stays almost constant and vice-versa.
Such a feature is particularly evident in the paramet-
ric plot. In the lower panel of figure 4 we also stressed
another peculiarity of this process: the time needed to
increase a given population when the other is constant
(i.e. the horizontal and vertical steps between two red
dots in Fig. 4), is always the same. We call T0 this new,
emerging, time-scale. The description of the entire pro-
cess then is the following. First particles are injected at
site 1 and population at site 2 stays zero until a time
T0/2. Next, for T0/2 < t < 3/2T0 the situation is re-
verted and population 2 increases while population 1 re-
mains constant. The process continues in this fashion
until an asymptotic state is reached. Given the shape of
the curve in Fig. 4 we refer to this situation as “stair-
case effect”. The emerging time-scale can be given a
physical interpretation considering the limit when both
injection and extraction rates are very small. In this
case the dominant process is that dictated by the Hamil-
tonian H which represents an excitation hopping back
and forth between sites 1 and 2. The period of this
oscillation is inversely proportional to the energy-level
difference ∆E and is therefore of order J−1 (in math:
T0 ≈ 2π/∆E = O

(

J−1
)

). It is also clear that the popu-
lations n1 (t), n2 (t) must increase from zero to reach the
asymptotic values given in Eqs. (1) and (2). The staircase
effect is then an interplay between coherent oscillations
and increase of n1 (t), n2 (t). It is however a very pe-
culiar interplay, namely one in which when n1 (t) grows
n2 (t) stays constant and vice-versa. The first part of the
curve in figure 4, namely for 0 < t < T0/2 can be under-
stood with simple arguments. During this time-window
the population at site 1 grows but any disturbance needs
a time T0/2 to reach the second site where, correspond-
ingly, the population stays zero. It would be interesting
to see whether an extension of the methods of Ref.19 not
restricted to the zero-/one-particle sector, allows to ob-
tain a kinetic rate equation for the populations n1, n2 in
this setting. Such a kinetic rate equation would convey a
simple classical description for the peculiar interplay be-
tween “oscillations” and “growth” that gives rise to the
step-like behavior of Fig. 4.

In general, if we substitute the two sites with an open
chain of length L, we expect (at least for small γin, γout)
that T0 will be the time needed for the excitations to
travel from one side of the chain to the other, i.e. T0 ≈
L/v where v is the velocity of quasiparticles. Of course
this picture can be correct only as long as a quasi-particle
description applies (cf. Sec. VC).

Let us now consider the injection-extraction dynamics
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Figure 5: |1, 0〉. Parameters are J = 2 γin = 0.2 (pump)
and γout = 0.3 (dissipation). Below: parametric plot, same
parameters.

with an initial state |1, 0〉, i.e. at time zero the injection
site is occupied. A typical (in the oscillating regime) sce-
nario is shown in Fig. 5. Starting with an initial state
|0, 1〉, the situation is almost identical with n1 and n2

interchanged. In fact, one can show that for initial states
with one definite excitation, populations at any time sat-
isfy the following duality relation

n1 (γin, γout) = 1− n2 (γout, γin) .

As previously explained the asymptotic populations do
not depend on the initial populations and are still given
by equations (1) and (2). The parametric plot in the
lower panel of Fig. 5 shows that with this initial condition
the staircase effect is not present.

Three-site injection-extraction:
γin
 • J↔ • J↔ • γout

 . A
slight generalization of the above idea is given by a three
site chain with injection on the first site and extraction
on the third. For simplicity we consider a uniform chain
with equal couplings J12 = J23 = J . In this case the
asymptotic populations are given by

n1 (∞) =
γin

(

J2 + γinγout + γ2out
)

(γin + γout) (J2 + γinγout)

n2 (∞) =
γin

(

J2 + γ2out
)

(γin + γout) (J2 + γinγout)

n3 (∞) =
γinJ

2

(γin + γout) (J2 + γinγout)
.

Note that populations n1 and n3 are the same as n1,
n2 in the previous, two-site case. Starting from the to-
tally empty state, the asymptotic state is reached in a
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similar manner as in the two-site case. In particular,
the parametric plot of the injection and extraction sites
(n1 (t) , n3 (t)) displays a staircase shape exactly as in the
two site case. As we will show in Sec. VC, this feature
survives even in a longer chain, and is to some extent re-
sistant to small static diagonal disorder and dephasing.

IV. ASYMPTOTIC UNITARITY

Another effect we want to study is the possibility that
a coherent dynamics (or sub-dynamics) may emerge out
of a dissipative or partly incoherent dynamics. To make
things more clear let us immediately discuss the simplest
example showing this feature.

Hopping and transfer: • J↔ • γ
 •. The model

consists of three sites (qubits). On the first two
sites acts a coherent hopping of the form H =
(J/2)

(

σ−
1 σ

+
2 + σ+

1 σ
−
2

)

. On top of that, particles are
transferred irreversibly from site 2 to site 3 via a jump
operator given by L =

√
γσ−

2 σ
+
3 . It is clear that, if a

particle sits at site 3 the incoherent part of the dynam-
ics is not effective, that is LL [ρ12 ⊗ |1〉〈1|] = 0. If we
start with an initial state |1, 1, 0〉 with sites 1 and 2 oc-
cupied and site 3 empty, for effect of the dynamics, site 3
will get populated at a rate γ, and on the first two sites
there will remain one particle coherently hopping back
and forth. By this we mean that for a sufficiently large
time the evolved state will be similar to a coherent evo-
lution: ρ (t) = etLtot [ρ] ≃ e−itH ρ̃eitH =: ρ̃ (t). For what
concerns the state ρ̃ we only know that it will contain two
particles; it can be obtained by evolving back unitarily
ρ (t), i.e.

ρ̃ = lim
t→∞

eitHρ (t) e−itH .

Indeed, if the dynamics becomes unitary, the above limit
is well defined. Notice that ρ̃ is nothing but the station-
ary solution of the original master equation in the interac-
tion picture associated with H . The same reasoning can
be done for the subsystem consisting on sites 1 and 2,
i.e. we can define ρ̃1,2 by evolving back unitarily ρ1,2 (t).
Since H does not act on site 3 we have ρ̃1,2 = tr3ρ̃. An
explicit computation confirms that ρ̃ = ρ̃1,2⊗|1〉〈1|, i.e. in
the equivalent, unitary dynamics, one particle sits at site
3. The explicit form of ρ̃1,2 in the standard basis is

ρ̃1,2 =
1

2 (J2 + γ2)







0 0 0 0
0 J2 + 2γ2 −iJγ 0
0 iJγ J2 0
0 0 0 0






.

This state is a quantum superposition of one-particle
states with n1 = 1/2 + γ2/2

(

J2 + γ2
)

and n2 = 1/2 −
γ2/2

(

J2 + γ2
)

.
What are the possible indicators of asymptotic unitar-

ity? Since the purity is constant under unitary evolution,
one possibility is to look at the purity of the total sys-
tem or of some part of it. The time-derivative of such a

quantity will then be close to zero, for approximate uni-
tary evolution. Since for Lindbladian evolution the purity
derivative is ∂ttr

(

ρ2
)

= 2tr [ρ (t)Ltot (ρ)], this definition
has the advantage of being numerically stable. In our toy
model we have

tr
{

[ρ1,2 (t)]
2
}

= tr
[

ρ2
]

= 1− J2

2 (J2 + γ2)
+

−2e−γt
(

J2 + γ2 + γ2 cos (Jt)
)

+ e−2γt
(

3J2 + 4γ2
)

2 (J2 + γ2)
.

Unfortunately the purity tends to a constant whenever
the solution tends to a constant, as happens, for instance,
along the natural process reaching the asymptotic state.
In other words, the smallness of the purity derivative is
a necessary but not sufficient condition for asymptotic
unitarity.
Another possibility is to measure some distance be-

tween the actual state and the one obtained with unitary
evolution: ‖ρ (t)− ρ̃ (t)‖. Once again, we might as well
restrict to a particular subsystem. Using the operator
norm the result for our toy-model is particularly simple
and illuminating

‖ρ (t)− ρ̃ (t)‖ = ‖ρ1,2 (t)− ρ̃1,2 (t)‖ = e−γt.

This confirms our initial intuition: the dynamics becomes
unitary at a rate γ. This approach has a very clear mean-
ing but has the disadvantage of being computationally
demanding as it requires the computation of a matrix
norm and the evaluation of ρ̃ (t). A simpler alternative
is the following.
Consider the spectral representation of the Hamilto-

nian H =
∑

nEn|n〉〈n|. If the total evolution becomes
similar to a unitary evolution, the matrix elements of the
density matrix in the eigenbasis |n〉 evolve in time like
phases:

〈n|ρ (t) |m〉 ≃ 〈n|ρ̃ (t) |m〉 = e−it(En−Em)〈n|ρ̃|m〉.

In our model the eigenbasis of the two-site Hamiltonian is
{|0, 0〉, |1, 1〉, |ψ±〉 = (|1, 0〉 ± |0, 1〉) /

√
2}. For instance,

one can show that

〈ψ−|ρ1,2 (t) |ψ+〉 = γ

iJ + γ

(

e−tγ − cos (Jt)− i sin (Jt)
)

.

Pictorially the parametric plot of the real and imaginary
part of this matrix element folds on a circle (of radius

γ/
√

J2 + γ2) after a time γ−1 (see Fig. 6).
This method to mark the appearance of asymp-

totic unitarity, as well as the study of the distance
‖ρ (t)− ρ̃ (t)‖, has a major advantage with respect to
those based on ρ̇ (t). Namely it allows to discriminate be-
tween approximate unitary evolution and the usual reach
of an asymptotic state for which ρ̇ = 0.
We would like to end this section by stressing

the (almost obvious) relation of asymptotic unitarity
with the quantum-information concept of noiseless or
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Figure 6: 〈ψ−|ρ1,2 (t) |ψ+〉 for the model considered in the
text. Parameters are J = 2, γ = 1.

decoherence-free subspace/system38. The quantum net-
works considered in this paper are of hybrid type, namely
some of the inter-site couplings are coherent i.e., hop-
ping, and other are incoherent i.e., irreversible transfer
described by L. On the other hand, the dynamics re-
stricted to the range of the projection P := 1112⊗|1〉〈1| is
unitary because, as noticed in the above, LL(PρP ) = 0.
This means that the range of P is indeed a decoherence-
free subspace. Now the dynamics is such that, for ap-
propriate initial conditions limt→∞ n3(t) = 1 or equiva-
lently limt→∞ ‖Pρ(t)P −ρ(t)‖ = 0 . This means that the
asymptotic state belongs to the range of P, which in turn
implies the unitary nature of the long-time dynamics.

V. TOY MODELS FOR PHOTOSYNTHETIC

COMPLEXES

In this section we want to check if and how the ef-
fects studied so far can survive in more realistic networks.
Specifically, we will consider models which can be rele-
vant for the description of energy transfer in photosyn-
thetic systems. Similar simple modelizations of photo-
synthetic systems are currently under intense investiga-
tion (see e.g.13,15,18,19,26). Differently from most of the
current literature, here we want to analyze the effect that
multi-exciton configurations can have on the transfer dy-
namics. To this end we will consider the dynamics in the
whole Liouville space and not restricted to the zero- and
one-exciton sector as usually done. This requirement re-
sults in a computational cost exponentially large in the
system size (as opposed to the standard linear growth)
which effectively limits the size of the network which can
be efficiently simulated to very short ones.

For the analysis of the congestion effect and asymp-
totic unitarity we will use the network configuration of
the LH1 complex, which is made of 32 bacterioclorophyll

Figure 7: N particles on the ring interact via dimerized near-

est neighbor hopping constants ti,i+1 = t
(

1 + δ (−1)i
)

. Each

of these particle can hop to the central site (N + 1th) with
hopping constant J . The central site transfers excitations in-
coherently to the reaction center via L =

√
γσ−

N+1σ
+
RC . The

reaction center itself is connected to a (2s+ 1)− dimensional
“battery” via Lb =

√
γbσ

−

RCS
+
bat. The effect of external de-

grees of freedom is schematized by incoherent dissipation and
dephasing processes (thin, blue, wavy lines). In actual LH1
complexes the sites on the ring are bacteriochlorophylls, and
N = 32.

units, limited, however, to a very small ring (L = 4
sites). We have tried to incorporate in our short net-
works most of the features which are present in the actual
LH1 complex39,40, so that our toy-models are effectively
a scaled-down version of the actual LH1 complex.

A. Congestion effect

Our motivation for the study of the “congestion effect”
originated from a careful analysis of the structure of the
reaction center in LH1-RC complexes. In most photosyn-
thetic bacteria, photons are captured by light-harvesting
antennae where a particle-hole exciton is created and car-
ried to the reaction center (RC) where eventually a redox
reaction takes place1. In the LH1-RC complexes present
in purple bacteria42 the light harvesting complex and the
RC form a compact core unit. Typical transfer times of
excitations to the RC are of the order of hundreds of pi-
coseconds. A cartoon picture of the LH1-RC complex
is shown in figure 7. Yellow spheres represents the bac-
teriochlorophylls forming LH1. In the purple bacterium
Rodobacter sphaeroides, there are 32 bacteriochlorophylls
(BChl) displaced on a ring surrounding the reaction cen-
ter. In figure 7 we display a possible structure for the
RC. Instead of treating the RC as a simple two-level sys-
tem, as typically done in the literature, we replace the
RC with a structure containing two qubits and a d-level
system which we call a “battery”. In purple bacteria
this structure has to be imagined sitting at the center of
the ring. The first of these qubits (the N + 1th) inter-
acts via coherent dipole-dipole hopping with the BChls
of the ring. Excitations are then transferred at a rate γ
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to what we call reaction center. In turn, the RC itself
is connected to larger d-level system (d = 3 in our sim-
ulations) via irreversible transfer at a rate γb. It is the
interplay between the two timescales γ−1 and γ−1

b , and
their relation to the transfer efficiency, that we want to
analyze here.
The master equation for the whole system is of Lind-

blad type: ρ̇ = −i [H, ρ] + Ltot (ρ). For what we said so
far, the incoherent part is given by Ltot = LL + LLb

+
Lnoise with L =

√
γσ−

N+1σ
+
RC and Lb =

√
γbσ

−
RCS

+
bat.

Dissipation and dephasing effects are taken into account
via incoherent terms acting on the sites of the ring

Lnoise =
∑N

j=1 LLj,diss
+ LLj,deph

with Lj,diss =
√
γdissσ

−
j

and Lj,deph =
√
γdephnj .

Regarding the Hamiltonian of the ring degrees of free-
dom, we referred to the detailed structure of couplings
given in39,40. The most salient feature emerging from
the data of40 is that the couplings present a dimerized
structure: strong coupling t+ = t (1 + δ) alternate with
weak ones t− = t (1− δ). Indeed, instead of using all the
couplings ti,j reported40, almost the same band struc-
ture can be obtained using only a nearest neighbor de-
scription with a dimerization of δ = 0.12. Some groups
have suggested the possibility that dimerization might
favor the transfer efficiency41. Our choice of resorting to
a dimerized nearest neighbor hopping structure has the
additional advantage of making the system scalable to
different sizes N . Hence our choice for the Hamiltonian
is

H =
N
∑

j=1

tj
(

σ−
j σ

+
j+1 + σ+

j σ
−
j+1

)

+J
(

σ−
j σ

+
N+1 + σ+

j σ
−
N+1

)

.

This represents N particles on a ring hopping between

neighboring sites with constants tj = t
(

1 + δ (−1)j
)

and

to a central site N +1 with hopping constant J . We will
also add static random diagonal noise (H → H+

∑

j ǫjnj)
to inhibit the possible appearance of decoherence-free
subspaces which can limit the efficiency of transfer18. To
be specific we will use static random noise of the form
∑

j t cos (je)nj where e is the Neper constant. This form

of static noise mimics random noise of amplitude (vari-
ance) t and zero mean, but it has the computational ad-
vantage of being reproducible.
The results of our simulations are shown in Fig. 8. We

initialize the system by starting with a pure Dicke state
for the ring while keeping all other sites empty. This

means the initial state is |ψ0〉 =

(

N
n

)−1/2
(

σ+
tot

)n |0〉

where σ+
tot =

∑N
j=1 σ

+
j refers only to the ring sites and

|0〉 is the empty state for the whole system. The choice
of an initial Dicke state is natural for a series of reasons.
First it allows to treat initial states with general defi-
nite particle number n ≤ N . Second, Dicke states are
symmetric under permutation, thus carrying no net mo-
mentum. If the photon’s wavelength is larger than the
size of the LH1 complex, the excitations created must be
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Figure 8: “congestion effect” in light-harvesting complexes.
Upper panels: clean system, no dissipation and dephasing.
The ring has N = 4 sites, hopping constants are t = J =
1 (meV ) and dimerization is δ = 0.12. Diagonal static noise
of the form ǫn = t cos (en) is added (see main text). The
RC transfer rate is set to γ = 0.3 ps−1. Lower panels: same
parameters plus dissipation and dephasing γdiss = γdeph =
0.03 ps−1. Left panels: the initial state is a two-particle Dicke
state for the ring, other sites are empty. Right panels: the
initial state is a three-particle Dicke state for the ring, other
sites are empty.

a completely delocalized k = 0 object. In any case, since
only the k = 0 component of the ring couples to the cen-
tral N + 1th site, transfer in the antisymmetric channel
k = π, being a higher order process, is highly suppressed
and gives much lower transfer efficiency26.
We first performed simulations on a “clean” system,

i.e. with no dissipation or dephasing present. In Fig. 8 we
plotted the population of the reaction center (normally
called efficiency η in the literature) as a function of time
for different values of γb. Looking at the upper panels
of Fig. 8, the situation is completely analogous to the
congestion effect observed in our simple toy model (see
Figures 2, 3). As long as we start with a number of
excitations which can be accommodated in the battery,
they will all flow to the battery for γb 6= 0 (left panel).
When we start with 3 particles in the ring we see again
the appearance of a non-monotonic behavior between γb
and γ which shows up as a valley at large times and
γb . γ (γb smaller than, but of the order of γ). When we
add additional decoherence in the form of dissipation and
dephasing the situation is only quantitatively changed.
The valley due to the “congestion effect”, although less
pronounced, is still visible in the bottom right panel of
Fig. 8.

B. Asymptotic unitarity

To study asymptotic unitarity the “battery” is an un-
necessary complication. Therefore, we will use the same
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model of Fig. 7 without the battery site and the cor-
responding jump operator. This leads to a network of
N + 2 qubits where the site N + 1 is connected to site
N + 2 (that we called RC) via irreversible transfer at
a rate γ. As done previously, we will use an n-particle
Dicke state as initial state. Let us first consider the case
where the only incoherent term is the one transferring
particles from the central site to the RC. In this case
the dynamics becomes exactly unitary when the RC is
full. Simulations on a network with N +2 = 6 qubits are
shown in Fig. 9. We also show the effect of dissipation
and dephasing, though one order of magnitude smaller
than the RC transfer. For short times the evolution is
the same as for the clean (i.e. no dissipation and dephas-
ing) case, however for time of order γ−1

diss dissipation sets
in and the parametric plot for a generic matrix element
〈n|ρ (t) |m〉, spirals down to zero (Fig. 9 bottom right
plot).
The conclusion of this section is as simple as it is in-

triguing, in view of potential applications to biological
systems. If the time-scale γ−1

diss is large enough, there

may exist a time window Trelax < t < γ−1
diss in which

quantum effects are not only visible but the dynamics
is effectively unitary! In our models Trelax is the time
needed for the RC to get filled, and is of the order of
Trelax ∼ γ−1. Considering the LH1-RC complex, the
separation of time-scales does indeed occur and gener-
ally the dissipation is four orders of magnitude smaller
than the RC charge-separation rate26,33.
The experimental observations reported in35 suggest

that the reaction center in photosynthetic aggregates has
a richer structure than usually believed. Accordingly,
in place of the simple description of the RC as a sink
where excitations disappears, we modeled the last part
of the excitation transfer to the reaction center via an
incoherent transfer between two two-level systems. This
has the implication that the reaction center cannot accept
further excitations when it is full. Although the qubit
model is clearly far from a realistic portrayal of organic
chromophores, this is a plausible feature of the reaction
center (see also26).

C. Staircase effect

Here we want to show that the staircase effect, studied
in Sec. III, survives in more elaborate networks. We will
study this effect in the model depicted in Fig. 10. To
tell the truth, very similar networks as that considered
here, have been analyzed in the literature. The kind of
networks analyzed in Ref.19 are essentially the same as
that of Fig. 10 except for the incoherent injection on the
first site. In19 the authors considered the efficiency of
transfer of a single exciton localized on the left-most site
traveling towards the “trap” sitting after the right-most
site. Our modelizations is the simplest one which takes
into account a continuous feeding of excitons into the net-
work. The resulting dynamics is not constrained to any
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Figure 9: N + 2 = 6 sites. On the upper panels we plot the
populations of the ring and of the RC as a function of time
(arbitrary units). Bottom panels: parametric plot of the real
and imaginary parts of a matrix element 〈ψm|〈1|ρ (t) |ψn〉|1〉
for certain m, n. |ψn〉 are the Hamiltonian eigenstates. Left
panels: the Hamiltonian has t = J = 1, δ = 0.12, diagonal
static noise ǫp = t cos (ep) , and no dissipation or dephasing.
Excitations are transferred to the RC at a rate γ = 0.2. Right
panels: same parameters, but on the particles of the ring acts
dissipation and dephasing with γdeph = γdiss = 0.01.

Figure 10: N sites interact via a nearest-neighbor hopping
Hamiltonian. Particles are injected, and respectively expelled
incoherently at rates γin, γout on the first and last sites . On
top of this basic structure we can add static diagonal disorder
and dissipation as well as dephasing (symbolized by blue wavy

arrows) Lnoise =
∑N−1

j=2
LLj,diss

+ LLj,deph
.

particle sector so that the simulation must necessarily be
carried out in the whole Liouville space thus making the
computational cost exponential in the chain length. For
this reason we limited our simulation to open chains of
N = 6 sites but we have no reason to doubt that similar
qualitative behavior remains for longer chains.
The model we consider consists of an open chain of

N sites hopping coherently between nearest neighbors,
i.e. the Hamiltonian is

H =

N−1
∑

j=1

J
(

σ−
j σ

+
j+1 + σ+

j σ
−
j+1

)

.

Particles are injected into the first site of the chain via a
jump operator Lin =

√
γinσ

+
1 and taken away at the last

site via Lout =
√
γoutσ

−
N . On top of this basic framework
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Figure 11: Staircase effect on an open chain of N = 6 sites.
Parameters are J = 1 and γin = 0.2, γout = 0.3. nIN, nOUT

are the population at the injection, extraction site respectively
while nNET is the total number of excitons in the network.
First row panels: neither dissipation nor dephasing, and no
static noise. Second row panels: addition of diagonal static
noise ǫn = J cos (en). Third row panels: static noise plus
dissipation and dephasing γdiss = γdeph = 10−2.

we add different layers of complexity. First we can add
some static random diagonal noise, i.e. we add site de-
pendent energies to the coherent part H → H+

∑

j ǫjnj.
Second we can also include dissipation and dephasing
acting on the inner sites of the chain by adding the fol-

lowing superoperator: Lnoise =
∑N−1

j=2 LLj,diss
+ LLj,deph

(Lj,diss =
√
γdissσ

−
j and Lj,deph =

√
γdephnj as defined

previously).

The picture that we have is the following. Through the
coherent part of the evolution, excitations travel in the
chain in packets of quasiparticles at velocities vk = O (J)
(k is a quasi-momentum label). This introduces a lag
timescale T0 ≈ L/v ∼ O (L/J), which is the time needed
for an excitation to travel from one side of the chain to
the other. From Fig. 11 (all panels) we see that, when the
population at the injection site increases, the population
at the expulsion site stays constant during this time-lag
T0 and vice versa.

Considering the central and lower panel of Fig. 11 we
can appreciate how robust the effect is with respect to
various type of “perturbations”. The addition of static
random noise has the effect of localizing states and shuf-

fling the single-particle dispersion ǫk. Both of these ef-
fects destroy the picture of wavepackets traveling at con-
stant velocity, in that both the traveling times and the
dispersion of the wave-packets increase. Instead the ad-
dition of dissipation (and dephasing) to the network,
mostly has the effect of relaxing the system at a faster
rate. As long as the system has not relaxed the effect
remains visible. Comparatively, the presence of static
coherent noise hinders the stair-case effect more to dissi-
pation and dephasing.

VI. CONCLUSIONS

Inspired by the models which are recently being used to
describe energy transfer in photosynthetic pigments, we
have identified and discussed a few effects arising in quan-
tum networks with coherent (Hamiltonian) as well as in-
coherent (Lindblad) coupling between the nodes. For the
reader’s sake we summarize here below these basic effects

1. Congestion effect. The incoherent transfer of exci-
tations is inversely proportional to the population
in the reaction center. This is due to the hard-core
nature of the excitations that effectively reduces
the amplitude of the jump operator as the reaction
center fills.

2. Asymptotic unitarity. Coherent, unitary evolu-
tion may emerge out of a dissipative, incoherent
dynamics. This happens if states which annihilate
the incoherent part of the dynamics can be reached
during the time evolution. For this effect to be
observable one needs a separation of time-scales,
Trelax ≪ Tdiss. Such separation of time-scales does
take place in some photosynthetic systems e.g. in
the LH1-RC complexes present in purple bacteria.

3. Staircase effect. This effect refers to a situation
in which particles are injected incoherently, travel
coherently along a given chain, and then are ex-
pelled (or digested) at a certain rate at the other
end of the chain. The effect of the coherent part is
to introduce a time-scale T0 = O (L/v) = O (L/J),
(L is the system size, v the velocity of excitations
and J is the energy scale of the coherent network).
T0 is roughly the time needed for the excitations
to travel from one side of the chain to the other.
The peculiar feature emerging from the dynamic
evolution, is that when the population at the injec-
tion site increases, the population at the expulsion
site stays constant during this time-lag T0 and vice
versa. This effect results in a step-like behavior in
the parametric plot of the injection/extraction pop-
ulations. It would be interesting to see if a modifi-
cation of the methods of Ref.19 not constrained to
the zero-/one-particle sector, allows to derive a sim-
ple classical description – a kinetic rate equation–
for this effect.
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The effects we analyzed in this paper can be traced back
to very simple mechanisms displayed even by networks
composed by only few qubits. We provided analytical
solutions for these toy models and showed numerical ev-
idence that these effects survive in more elaborated net-
work such as those modeling energy transfer in purple
bacteria. Clearly, further investigations are in order to
establish the relevance of the elementary calculations pre-
sented in this paper to the newborn field of quantum
biology.
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6 M. T. W. Milder, B. Brüggemann, R. van Grondelle, and
J. L. Herek, Photosynth. Res. 104, 257 (2010).

7 T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E.
Blankenship, and G. R. Fleming, Nature 434, 625 (2005).

8 G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn,
T. Manc̆al, Y.-C. Cheng, R. E. Blankenship, and G. R.
Fleming, Nature 446, 782 (2007).

9 E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi,
P. Brumer, and G. D. Scholes, Nature 463, 644 (2010).

10 G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R.
Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S.
Engel, PNAS 107, 12766 (2010).

11 G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg,
M. Ballottari, R. Bassi, and G. R. Fleming, PNAS 107,
13276 (2010).

12 J. M. Womick, S. A. Miller, and A. M. Moran, J. Chem.
Phys. 133, 024507 (2010).

13 K. Gaab and J. Bardeen, J. Chem. Phys. 121, 7813 (2004).
14 M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-

Guzik, J. Chem. Phys. 129, 174106 (2008).
15 P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and

A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009).
16 P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, J. Phys.

Chem B 113, 9942 (2009).
17 M. B. Plenio and S. Huelga, New J. Phys 10, 113019

(2008).
18 F. Caruso, A. Chin, A. Datta, S. Huelga, and M. Plenio,

J. Chem. Phys. 131, 105106 (2009).
19 J. S. Cao and R. Silbey, J. Chem. Phys. A 113, 13825

(2009).
20 J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, New J.

Phys. 12, 105012 (2010).
21 A. Chin, A. Datta, F. Caruso, S. Huelga, and M. Plenio,

New J. Phys. 12, 065002 (2010).

22 O. Mulken and T. Schmid, Phys. Rev. E 82, 042104 (2010).
23 H. van Amerongen, L. Valkunas, and R. van Gron-

delle, Photosynthetic excitons (World Scientific, Singapore,
2000).

24 J. Cao, J. Chem. Phys. 107, 3204 (1997).
25 T. Renger and R. Marcus, J. Chem. Phys. 116, 9997

(2002).
26 A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. Johnson,

Phys. Rev. B 78, 085115 (2008).
27 A. Ishizaki and G. Fleming, J. Chem. Phys. 130, 234111

(2009).
28 S. Lloyd and M. Mohseni, New J. Phys. 12, 075020 (2010).
29 J. Zhu, S. Kais, P. Rebentrost, and A. Aspuru-Guzik

(2010), accepted by J. Phys. Chem. B.
30 A. Nazir, Phys. Rev. Lett 103, 146404 (2009).
31 P. Nalbach, J. Eckel, and M. Thorwart, New J. Phys. 12,

065043 (2010).
32 F. Fassioli and A. Olaya-Castro, New J. Phys. 12, 085006

(2010).
33 F. Fassioli, A. Nazir, and A. Olaya-Castro, J. Phys. Chem.

Lett. 14, 2139 (2010).
34 A. W. Roszak, T. D. Howard, J. Southall, A. T. Gardiner,

C. J. Law, N. W. Isaacs1, and R. J. Cogdell, Science 302,
1969 (2003).
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