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Abstract 

The biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of 
mammal bone. Hydroxyapatite crystallizes in the hexagonal and monoclinic phases, the main 
difference between them being the orientation of the hydroxyl groups. Using density functional 
theory we study the energetics of the hexagonal and monoclinic phases along with the several 
hypothetical crystal structures of hydroxyapatite. The monoclinic phase has the lowest energy, 
with the hexagonal phase being only 22meV/cell higher in energy. We identify a structural 
transition path from the hexagonal to monoclinic phase with the activation energy of 0.66 eV per 
hexagonal cell. At room temperature the transition occurs on a millisecond time scale. The 
electronic structures of the monoclinic and hexagonal phases are compared. For the hexagonal 
phase we calculate the phonon frequencies at the Γ-point and elastic constants. Both are in good 
agreement with available experiment. 

 

I. Introduction 

A carbonated form of hydroxyapatite [Ca10(PO4)6(OH)2] is one of the most abundant 
materials in mammal bone [1]. It crystallizes within the free space between tropocollagen protein 
chains (Fig. 1) and strengthens the bone tissue. The mineral content of a typical human bone 
increases with age and reaches a maximum value in males and females at different ages [2]. 
From this peak value the mineral content starts to decrease leading to diseases such as e.g., 
osteomalacia (softening of the bone caused by the loss of bone mineral). Some of the emergent 
applications of hydroxyapatite are, therefore, bone repair and replacement, and production of 
synthetic bone material [3]. Although by itself HA is too brittle to be used as a bone replacement 
directly, a variety of coating techniques have been developed in recent years to combine the 
strength of metals (such as titanium) with the natural bio-activity of HA [4]. The key property 
besides the bio-activity is therefore the HA adhesion to metals. The adhesion is governed by 
chemical bonding and thus the problem is that of the electronic properties of the interface.  
Therefore, a thorough understanding of the electronic and mechanical properties of HA, its 
surface and interfaces to other substrates are of scientific interest. 

A significant amount of experimental work on HA has been done, and in particular in the 
medical implant field, for an excellent review of this work we refer the interested reader to ref. 
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[4]. Some of the first experimental reports of HA date back to 1936 [5]. In his work on dental 
enamel, Schmidt demonstrated that the crystallographic c-axes of the HA platelets within the 
collagen framework are well aligned with the collagen fibrils (Fig. 1). The hexagonal crystal 
structure of HA with P63/m symmetry (#176 in the International X-Ray Tables, figure 2) and the 
atomic positions were determined in 1958 by Posner et al. using the X-ray diffraction [6]. In 
1964 Kay and co-workers refined the positions of the OH molecules using neutron diffraction 
[7]. Studies of the alignment of tropocollagen chains in mammal bone and alignment and growth 
of HA crystals were done by Weiner and co-workers [8]. In the 1970s [9] Carlisle showed that 
doping (in that study with Si) can play an important role in supporting the bone growth. A 
monoclinic variant of HA was suggested in 1967 by Young [10]. He inferred that a HA crystal 
sufficiently free of impurities and vacancies could crystallize in the monoclinic phase analogous 
to the known monoclinic chlorapatite. Prior to this work it was believed that HA only appeared 
in a hexagonal structure. Recently, the monoclinic variant of hydroxyapatite attracted significant 
interest [e.g. 11,12]. 

From the theoretical point of view the HA crystal presents an interesting challenge due to its 
complexity and importance in biological and biophysical systems. Only with the recent increase 
in computational power a theoretical study on HA became feasible, and of late along with other 
calcium apatites HA has been subject to a number of first principles calculations. De Leeuw, 
using density functional theory (DFT), analyzed the HA crystal structure and specifically the 
position and orientation of hydroxyl molecules [13]. She suggests that the experimentally found 
OH disorder in the crystal is due to locally ordered domains with differently oriented OH 
molecules. In the simplest case, this is achieved in a monoclinic cell. Later, using DFT Calderin 
et al. [14] have analyzed the crystal structure and electronic density of states of stoichiometric 
and OH-deficient HA as well a variety of other calcium apatites. They found that monoclinic and 
hexagonal HA are very close in energy indicating no particular preference for crystallization in a 
specific structure. They also found that apatites permit exchanging the OH molecules with other 
anions. The electronic structure has been confirmed by Rulis and co-workers using the 
orthogonalized linear combination of atomic orbitals method [15]. More recently, studies have 
focused on altering the electronic and chemical properties of HA with doping. For example, 
Chappell and Bristowe have studied the influence of substituting phosphorus with silicon on the 
HA crystal and electronic structure [16]. Silicon incorporation is found to be energetically most 
favorable in combination with removing one of the two negatively charged OH pairs in the 
primitive cell to maintain the overall charge neutrality (the ionic charge of SiO4 is -4 vs. -3 of a 
PO4 unit). Other recent theoretical studies of doping include the substitution of OH by fluorine 
[17] (making the crystal a mixture of HA and flourapatite (FA)), introduction of carbonate ion 
( −2

3CO ) to study physiologically found carbonated form of HA [17], and calcium substitution by 
titanium [18] and strontium [19] to induce structural modifications. Using a classical shell-model 
Calderin at al. investigated the lattice dynamics, calculated thermal factors and simulated the 
infrared spectra of HA [20]. They find good agreement with experiment for the low-frequency 
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and high-frequency vibrational modes at the Γ-point, whereas in the intermediate frequency 
range the reported agreement is poor. More recently, classical and quantum-mechanical 
molecular dynamics simulations have been used to study preferred surface orientations and 
terminations of HA [17, 21, 22] and to study the water and amino acid adsorption on the HA 
surface [17, 21, 23, 24, 25]. 

Despite the recent progress, many questions remain. Little is known, for example about the 
transformation mechanisms between the hexagonal and monoclinic phases. The mechanical 
properties of HA remain virtually unstudied. HA is still a challenging subject for first principles 
calculations due to a large number of atoms in the unit cells and variation in nature of 
interatomic bonding. In this paper, using density functional theory we investigate both hexagonal 
and monoclinic forms of HA. We identify the monoclinic phase as the ground state and analyze 
possible pathways for the phase transition between the hexagonal and monoclinic phases. We 
carefully compare the electronic structure of both phases. For the hexagonal phase we calculate 
the phonon frequencies at the Γ-point and elastic constants. Both are in good agreement with 
available experiment. 

II. Computational details 

All calculations are done using density functional theory as implemented in the VASP 
code [26-30]. We use the Perdew-Wang [31] (PW91) exchange correlation functional and 
projected augmented wave (PAW) pseudopotentials [32]. The valence configurations are 1s1 for 
hydrogen, 3s23p3 for phosphorus, 4s2 for calcium and 2s22p4 for oxygen. We use 700eV as the 
kinetic energy cut-off for bulk calculations. When calculating the phonon frequencies we 
increase the energy cut-off to 950eV to obtain highly accurate forces. In all calculations - except 
for the elastic constant calculations - we allow for full relaxation of the cell including changing 
the volume, adjusting the atomic positions and cell shape. When calculating the elastic constants 
we only allow for the relaxation of ionic positions within the strained cells. Symmetry operations 
are switched off during relaxation. We use a 6×6×8 Monkhorst-Pack [33] k-point mesh for the 
Brillouin Zone (BZ) integration of hexagonal cells that ensures the convergence to 1.8meV/cell. 
For the monoclinic primitive cells we use 6×4×6 Monkhorst-Pack k-point meshes. All structures 
are relaxed until the largest force on atoms in the cell is smaller than 20meV/Å. When 
calculating the vibrational modes, we relax the atomic positions until the largest force is smaller 
than 0.2meV/Å. 

 

III. Results 
A. Ground state crystal structure 

To identify the theoretical ground state of HA we start from the experimental structure 
reported by Posner et al. and Kay and Young (as shown in Fig. 2) [6, 7]. They report a hexagonal 
primitive cell of P63/m symmetry (#176 in the International X-Ray Tables, Fig. 2) that contains 
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ten Ca atoms, six phosphate (PO4) groups and two hydroxyl (OH) molecules. In Fig. 3 we 
present a top view of the crystal. For pictorial purposes we shift the original primitive cell 
boundaries along the a and b axes in such a way that the OH column is now in the center of the 
cell. There are two types of Ca atoms in the cell. Ca atoms of one type are arranged in a hexagon 
around the OH molecules (Fig. 3). The darker and lighter color distinguishes two atomic planes. 
The darker balls are located at z=0.25c, and the lighter ones are at z=0.75c. The remaining four 
Ca atoms are arranged in two columns at the corners of the cell in Fig 3. In the upper left column 
the two CaI atoms are located at z=0.999c and z=0.501c. In the lower right column the two 
remaining CaI atoms are located at z=0.499c and z=0.001c. Similarly to first type Ca, six 
phosphorus atoms of the PO4 molecules are arranged in two triangles around the OH channel, 
three are at z=0.25c and three at z=0.75c. Again, the darker and lighter color in Fig. 3 
distinguishes between the two planes. While most of the atomic coordinates reported in 6 and 7 
are almost exactly the same, the two structures differ in the position of the OH molecules. In ref. 
6 the exact positions of hydrogen atoms could not be determined and the oxygen atoms are said 
to be located within the symmetry related planes at 0.25c and 0.75c. The later work [7] specifies 
the positions of hydrogen atoms and suggests that oxygen of the OH is shifted by ~0.3Å along 
the c-axis with respect to the previously reported positions as indicated in figure 2. The OH 
groups bring a structural ambiguity: two OH molecules do not have an energetic preference 
whether to point the hydrogen atom ‘upwards’ or ‘downwards’ along the c-axis. This is 
accounted for by introducing 0.5 occupancies in both possible arrangements. To simplify our 
discussion we introduce a notation where arrows (↑) and (↓) correspond to the z-coordinate of 
the hydroxyl group oxygen being smaller and larger than the z-coordinate of hydrogen, 
respectively. The pair of hydroxyl groups per primitive cell is denoted by a pair of arrows. In the 
hexagonal primitive cell four different orientations (↑↑),(↑↓),(↓↑),(↓↓) are possible with (↑↑) and 
(↓↓) cells, and (↑↓) and (↓↑) cells being equivalent. 

To identify the ground state we calculate the energy of both the (↓↓) and (↓↑) configurations. For 
later use, we also consider cells in which the hydroxyl molecules are slightly tilted away from 
the c-axis keeping the oxygen atoms on the c-axis and OH bond length fixed. These are indicated 
by (↘↙) if tilted from a (↓↓) configuration and by (↘↖) if tilted from a (↓↑) configuration. 
Additionally, we consider monoclinic cells created by doubling the hexagonal unit cell in the b 
direction. Here, each of the two contributing hexagonal cells is described by one pair of arrows 
for the OH-orientation, for example (↓↓)(↓↓) or (↓↓)(↑↑) in the simplest cases. The (↓↓)(↓↓) 
configuration resembles a monoclinic cell which is reducible to a single hexagonal cell with a 
(↓↓) configuration. On the other hand, the (↓↓)(↑↑) configuration resembles a monoclinic cell 
that cannot be reduced further due to the alternating OH-orientation in subsequent OH columns.  

The binding energies of all models are compared in Figure 4. The top line in the graph indicates 
which reference the unrelaxed cell is based on and arrows indicate the OH-configuration before 
relaxation. The results per hexagonal cell are plotted in ascending energy order. The mixed 
configuration (↓↓)(↑↑) monoclinic structure suggested by Elliott [34], yields the lowest energy 
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(structure 1) and is used as the reference energy. The lattice constants are a=9.53Å, b=2a and 
c=6.91Å. We find the second lowest energy for the hexagonal cell (structure 2) with the lattice 
constants a=b=9.53Å and c=6.91Å. The relaxed bond lengths of the hydroxyl and phosphate 
groups and bonding angles P-O-P of the phosphates in structure 2 are listed in Table 1. We find 
excellent agreement with experiment [6,7]. During the relaxation of structures 3 and 4 we find 
that the OH pairs realign with the c-axis ending up in structure 2. In structure 6 hydrogen atoms 
stay at the tilted positions during the relaxation yielding a binding energy which is ~269meV/cell 
higher than the hexagonal ground state structure 2. The (↓↑) type configurations where OH pairs 
flip within the same c-column are ~0.4eV higher in energy (per hexagonal cell) than the ground 
state making them unlikely. 

The energy difference between the monoclinic (structure 1) and hexagonal (structure 2) cells is 
only ~22meV per hexagonal cell suggesting that at room temperature HA can crystallize in a 
mixed phase with randomly distributed (↓↓) and (↑↑) domains. In the rest of the paper we will 
focus on these two structures.  

B. Activation energy for the hexagonal to monoclinic transition 

The monoclinic phase of HA was first described by Elliott et. al. [34] who, following the 
work by Young [10], prepared a sample consisting of ~30% monoclinic HA and 70% hexagonal 
phases. They concluded that HA grown in a sufficiently clean experimental environment and 
having little impurities or vacancies can assume monoclinic symmetry under ambient conditions. 
Later, Hitmi et al. [35] found that while at ambient conditions both the hexagonal and 
monoclinic phases can occur. When heated above 470K HA always assumes the hexagonal 
structure, and the transformation is reversible. The overall structural similarity of the monoclinic 
and hexagonal phases and closeness of the calculated binding energy raise a question of the 
activation barrier and transition mechanism. To investigate theoretically possible pathways of the 
transition we use transition state theory and more specifically, the nudged elastic band method 
(NEBM) [36] as implemented in the VASP code.  

We start by calculating the energy barrier between two equivalent hexagonal structures (↓↓) and 
(↑↑), using hexagonal structure 2 described in section A. We assume that changing the OH-
configuration from (↓↓) to (↓↑) is unlikely as we have found the latter to be 0.4eV higher in 
energy than the former. The transformation involves not only the hydrogen displacement but also 
that of oxygen (Fig. 5), because the equilibrium positions of oxygen are shifted from the mirror 
planes at ¼ and ¾ containing Ca triangles. One possible pathway for the transition is to move the 
hydrogen atoms of the OH molecules along the z-axis. This requires breaking the OH-bonds and 
re-bonding hydrogen with the oxygen atom of the adjacent OH molecule (Fig. 5). 
Simultaneously, the oxygen atoms of the OH are moved in the opposite direction to their new 
equilibrium positions. Another possible mechanism is rotating each hydrogen atom around its 
bonding oxygen while simultaneously translating the oxygen to its new equilibrium position. The 
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rotation and translation of the hydrogen atom Hi from configuration (↓) to (↑) is described using 
spherical coordinates as: 

 ( )
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Note that ( )iHOr  is not constant throughout the transition as the original oxygen atom has to move 

along the c-axis to its new equilibrium position. The ( )iHOr  and the angle ϑ  are used to create the 

images for the NEBM to describe the transition pathway. The angle iϕ  is given with respect to 
the a  lattice vector and is chosen to move the H atoms in between two Ca atoms (Fig. 6). This 
yields two choices: 

(i) Rotate hydrogen atom with angles 3/1 πϕ = , 3/42 πϕ =  and move the oxygen atom 
(ii) Rotate hydrogen atom with angles  3/1 πϕ = , 3/22 πϕ =  and move the oxygen atom 

Figure 5 illustrates the linear and rotational transformations, and Fig. 7 shows the calculated 
energy along these transition paths. The energy barriers are 3.5eV for the linear transition, and 
1.3eV and 1.4eV in the rotational transitions (i) and (ii), respectively. These result in the 
activation energy per OH of 1.75eV, 0.65eV and 0.7eV for the linear and spherical transitions, 
respectively. The large difference in energy is not surprising as the first mechanism requires 
breaking the OH-bonds. On the other hand, in the rotational flip no bonds are broken. The 
barriers for two rotational transitions are very similar and close in energy. In what follows we 
only consider the rotational transformation of type (i). 

Expanding the potential energy of the rotational transformation to second order around the 
minimum, we calculate the oscillation frequency of approximately 250cm-1 corresponding to the 
period of fs134≈τ . The average time after which a spontaneous flip from (↓↓) to (↑↑) occurs is 
therefore 

 ( ) aTkENt BB 162/exp 0,)()( ≈×=×=↑↑→↓↓ ττ , (2) 

at room temperature. In equation (2), N is the number of attempts needed to simultaneously flip 
both OH molecules per unit cell if each attempt has the probability of success of 

( )TkEp BB /exp 0,−= . We use EB,0=1.3eV for the activation energy. The average transition time 

between the two equivalent hexagonal structures (↓↓) and (↑↑) is one hundred sixty two years at 
room temperature. 

Now consider the monoclinic cell. Assuming that the OH molecules located along the 
neighboring columns do not interact, the energy barrier for rotational transitions in the 
monoclinic cell can be written as 
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 (↓↓)(↓↓) → (↑↑)(↑↑) : 
(↓↓)(↓↓) → (↓↓)(↑↑) : 

EB = 2EB,0 / 4 = EB,0 / 2 = 0.65eV 
EB =   EB,0 / 4 = 0.33eV . (3) 

In equation (3) EB,0 is the previously calculated energy barrier of 1.3eV in the hexagonal cell, 
and EB is the activation energy per OH pair in the monoclinic cell. Transforming (↓↓)(↓↓) to 
(↑↑)(↑↑) requires the same energy per OH as flipping (↓↓) to (↑↑). However, the activation 
energy per OH to transform from (↓↓)(↓↓) to (↓↓)(↑↑) is reduced by a factor of two. The 
experimentally obtained range for the activation energy to change from hexagonal to monoclinic 
is 0.016-0.630eV per OH and 0.84-0.89eV per OH, reported by Hitmi and Nakamura [35,37], are 
in qualitative agreement with our results. Hitmi suspected a rotational transition, while 
Nakamura suspected a linear one explaining why the two ranges are so different. Using classical 
molecular dynamics Hochrein et. al. [38] find 0.52eV per OH flip in good agreement with our 
results. Using our calculated activation energy we write the probability of transformation from 
(↓↓)(↓↓) to (↓↓)(↑↑) as  

 ( )TkEp BB 2/exp 0,−= . (4) 

Using the same oscillation period as for the hexagonal cell the average time for the spontaneous 
hexagonal-monoclinic transition is estimated as 

 ( ) msTkENt BB 262/exp 0,))(())(( ≈×=×=↑↑↓↓→↓↓↓↓ ττ , (5) 

at room temperature. The short transition time suggests that the hexagonal phase would always 
flip to the monoclinic phase under ambient conditions. Further investigation is needed to explain 
why the transition from the monoclinic to hexagonal phase occurs at 470K. 

C. Electronic structure 

The total electronic density of states (DOS) for both the hexagonal and monoclinic 
structures is shown in Figure 8 a). For comparison we normalize the DOS to the hexagonal cell. 
The DOS of both structures are very similar, and the following description applies to both 
phases. Note that we distinguish between the oxygen atoms from the phosphate molecules (O(P)) 
and oxygen atoms from the OH molecules (O(H)). The states between -20eV and -17eV mainly 
consist of O(P), O(H) and phosphorous 2s and 3s states, respectively. At -17eV the hydrogen 1s 
states are mixed in. In an ideal PO4 tetrahedron the phosphorus sp3 hybridized orbitals form σ 
and π bonds with the surrounding oxygen. The σ-type electronic states appear in two peaks 
within the energy window -8eV to -4eV. In an ideal PO4 tetrahedron these σ-states would be 
closer to each other in energy. However, in the HA crystal the PO4 tetrahedron is slightly 
distorted from the ideal 109.5° bonding angle leading to a split in the energy levels. We find the 
σ* electronic states in the conduction band between 6eV and 9eV. The remaining O(P) and O(H) 
p-states are the main contributors to the DOS between -3eV and the top of the valence band. 
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Calcium 4s-states contribute mainly between -3eV and the top of the valence band at zero. In 
Figure 8 b) we show the partial DOS projected on the different atomic species in the hexagonal 
and monoclinic cells in the near gap region. At the bottom of the conduction band the main 
contribution is from the s-like states of Ca atoms. The conduction band between 6eV and 8eV is 
almost entirely made up by unoccupied Ca states with l=2. In both crystals the GGA band gap is 
5.23eV in good agreement with the previously reported LDA band gap of 5.40eV [14]. Thr 
reported experimental values of the band gap range from 3.95eV [39] to more than 6eV [40]. Our 
calculations suggest a large band gap considering that GGA underestimates the gap. Since the 
DOS of the hexagonal and monoclinic phase appear very similar, we only calculate the band 
structure for the smaller hexagonal cell. In Figure 9 we show the calculated band structure along 
the high-symmetry directions in the Brillouin zone in the near gap region. First, we notice that 
HA is an indirect gap material. The valence band top shows little dispersion indicating heavy 
localized holes. We find two energy maxima in the valence band separated by only 8meV. The 
top of the valence band (shifted to 0eV) occurs along the Γ to K line. The bottom of the 
conduction band is at the Γ-point, and shows a free electron character with the anisotropic 
effective mass. Fitting the bottom of the conduction band at Γ to a second order polynomial we 
calculate the effective electron mass tensor 

 ( ) [ ] edkdk
Ed mm ×

⎟
⎟
⎟

⎠

⎞

⎜
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⎝

⎛

−−
−−
−−

==
−
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01.001.061.0

12* 2

βααβ . (6) 

The principal values are 0.48, 0.60 and 0.62 in units of the electron mass. The indirect band gap 
is 5.23eV. The direct transitions at the top of the valence band and at the Γ point are at 5.46 eV 
and 5.28 eV, respectively. Another interesting feature is the flat region in both the valence and 
conduction bands along the M to K line. With the excitation energy of 5.75eV this feature should 
noticeable in optical adsorption. Unfortunately, no experimental data is available. When 
comparing our results with the band structure calculated by Rulis et. al. [15] in Fig. 10 we notice 
slight differences. The most notable one is the energy gap. Rulis calculates 4.5eV versus our 
5.3eV. We attribute the discrepancy to a different basis (Rulis uses the linear combination of 
atomic orbitals). The overall band structure, and near parabolic dispersion at the bottom of the 
conduction band agree well with their results. 

D. Phonon eigenmodes at the Γ-point 

Experimental studies of hydroxyapatite vibrational properties remain scarce. The most 
recent papers are those of Fowler et. al. [41] and Markovic et. al. [42] reporting the infrared (IR) 
and Raman active vibrational modes, respectively. Theoretical studies of the HA vibrational 
spectra are quite difficult due to the crystal’s complexity, and are typically limited to classical 
shell models [43]. However, the results strongly depend on the model potentials that have to be 
fitted to match the experimental data (a comparison of different sets of parameters is given by 
Calderin [43]). Therefore, a more general and transferrable approach of calculating the phonon 
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spectrum is desirable. We use DFT to calculate the vibrational eigenmodes of hexagonal HA at 
the Γ-point. We analyze the influence of the ionic nature (long range Coulomb interactions) of 
the crystal on the eigenmodes and identify the vibrational modes mostly affected by the long 
range effects. 

To calculate the short-range force constant matrix we take the numerical derivative of the 
Hellmann-Feynman forces with respect to small ionic displacements [e.g. 44]. The lattice Fourier 
transform of the force constant matrix yields the dynamical matrix [44,45]: 

 ( ) ( ) ( ) ( )[ ]{ }∑ −⋅⋅=
m

m,RRkim,B
MM

kD νμπνμνμ
νμ

,02exp,;01,; . (7) 

The ( )μ,0R  is the position of atom μ in the 0-th primitive cell within the supercell. ( )νm,R  is 

the position of atom ν in the m-th unit cell. ( )νμ ,;0 m,B  are the force constants relating atoms 

( )μ,0  and ( )νm, . μM  and νM  are the masses of atoms ν and μ. In 3-dimensional space the 

dimension of the dynamical matrix is 3N×3N, where N is the number of atoms in the primitive 
cell. Since we are interested in phonons at the Γ-point we only calculate the forces in a single 
hexagonal primitive cell. In covalent systems the range of interaction is assumed to be finite and 
the dynamical matrix can be directly calculated using the Hellmann-Feynman forces acting on 
the ions in the supercell when displacing one atom from its equilibrium position. In the ionic 
system one has to worry about long-ranged dipole-dipole interactions. This is accomplished by 
adding a long-range correction to the dynamical matrix given by [44] 

 ( ) ( )[ ] ( )[ ]
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−×=

∞
2

2

2

**

0

2
long exp,;αβ ρ

νμ
εε

νμ βα k

k

ZkZk
V

ekD , (8) 

here we use SI units. ( )μ*Z  is the Born effective charge tensor of atom μ, and V is the volume of 
the primitive cell. The long-range contribution only affects the phonon modes close to the Γ–
point. The Born effective charge tensors introduce a directional dependence in equation (8). The 
total dynamical matrix is given by a sum of (7) and (8).  

First, we calculate the phonon eigenmodes in HA at the Γ–point without the long-range 
correction. We use a single primitive hexagonal cell. There are 132 eigenmodes including 
Raman and IR active vibrations. We use our calculated eigenmodes to approximate the phonon 
density of states (PDOS) at the Γ–point given by 

 ( ) ( )fNff
f i

i ≡−=
Δ ∑δEigenmodesof#

, (9) 

The DOS is a sum of delta-functions positioned at the calculated eigenmodes at each k-point. We 
represent these peaks by a Gaussian, and apply a Gauss broadening of σ = 15cm-1. In Figure 11 
we compare our results with the DOS constructed using experimental IR and Raman active 
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modes as reported by Fowler [41] and Markovic [42]. The calcium ions contribute 
predominantly to the low frequency modes. In the ranges from 350cm-1 to 650cm-1 and from 
850cm-1 to 1100cm-1 mainly the PO4 molecules contribute to the spectrum. The OH-modes are at 
693cm-1 and 3660cm-1 corresponding to the OH’s libration and stretching modes, respectively. 
Comparing with the experimental work we find good qualitative agreement. The frequencies 
corresponding to the phosphate eigenmodes are underestimated by ~5-10%. This is consistent 
with the observation that the theoretical PO bond length is 0.02-0.03Å longer than the 
experimental value. On the other hand, theoretical eigenmodes of the OH groups at 693cm-1 
(libration mode in x and y directions) and 3660cm-1 (OH stretching mode) are overestimated by 
~5-10% compared with experiment. 

Having found reasonable agreement with experiment without considering the long-range 
interactions, we now include the long-range correction (8). We approach the Γ point along the M 
to Γ, K to Γ and A to Γ directions. These directions correspond to approaching Γ from the face 
center, corner and top of the hexagonal Brillouin zone. Experimentally, the high frequency 
dielectric constant is sensitive to the Ca/P ratio of the crystal [e.g. 46]. The values for ε∞ in the 
literature for stoichiometric HA with the Ca/P ratio 1.67 vary between ε∞=5 and ε∞=20 [46-50]. 
This is in part to the variation in porosity, and water content of the samples, and in part to too 
low a frequency of measurement. In this work we use ε∞=5 and cross-check with ε∞=7 to see the 
qualitative dependency of the eigenmodes on ε∞. The calculated Born effective charge tensors are 
summarized in Table 2. For the Gaussian smearing in (8) we use ρ=0.02Å-2. We plot our results 
in Figure 12 a) along with the experimentally measured modes. We find that including the long-
range correction has little effect on most of the vibration modes in good agreement with 
Calderin’s work [43] where a shell-model was used to calculate the phonons when approaching 
the Γ-point from the (100) and the (001) direction. In Figure 12 b) we show the difference 
between the long-range corrected spectrum and un-corrected spectrum below 1200cm-1 at the Γ-
point. Positive Δf means the long-range corrected modes are higher in frequency. The frequency 
shifts are very similar when approaching along the (100) direction and the (110) direction (M to 
Γ and K to Γ) ranging from 1cm-1 to 25cm-1. When approaching along the (001) direction (A to 
Γ) somewhat different eigenmodes shift compared to approaching along (100) and (110), and the 
peak at 318cm-1 virtually disappears. While in the modes between 97cm-1 and 318cm-1 all atoms 
in the cell are vibrating, the 318cm-1 mode is a pure OH libration mode in the x-y-plane. The 
remaining shifted modes close to 600cm-1 and around 1000cm-1 are pure PO4 vibration modes. 
The change in frequency due to the long-range correction is most notable for the OH mode at 
318cm-1 which moves up to 343cm-1 when approaching Γ from the M point. Using ε∞=7 in the 
long-range correction, this OH mode moves up to 335cm-1, being the only mode substantially 
affected by using ε∞=5. Overall, we find good agreement between our phonon spectra and 
experimental results. 
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E. Elastic constants of HA 

The anisotropy of the elastic properties of bones is governed by their main constituents, 
HA, the collagen chains and water. The theoretical determination of the elastic properties of 
composite materials is often done by averaging the elastic properties of the separate materials. 
Although, the quality of the results fluctuates depending on the material in question, upper and 
lower bounds of the effective moduli of composites can be found rigorously [51]. Previously, 
Katz and Ukraincik [52] calculated a set of pseudo-single crystal elastic constants extracted from 
the measured elastic constants of fluorapatite. The validity of such a calculation is somewhat 
justified by a strong similarity of the crystal structures of these two materials. Mustafa et. al. use 
a force field approach to obtain the elastic constants of HA [53]. Here, we calculate the elastic 
constants of hexagonal HA from first-principles. 

Generally, the energy of a strained system can be written as a second order Taylor expansion in 
the distortion parameters αi,j: 

 ( ) ( ) ∑+=
dcba

cdababcdC
V

VEVE
,,,

0
0 2

0,, ααα . (10) 

The first order term drops out as the expansion is about the ground state. The second order term 
is described by the adiabatic elastic constants Cabcd. However, the Cabcd and αab are not all 
independent, and using the Voigt notation, equation (10) can be written as 

 ( ) ( ) ∑+=
ji

jjiiijCVVEVE
,

0
0 2

0,, ξαξαα . (11) 

The introduced factors  account for the symmetry of the α‘s, αab=αba , i.e. for b ≠ a both αab and 

αba are labeled with the same Voigt index. Therefore, we get 1=iξ  if the Voigt index is 1, 2 or 3 

and 2=iξ  if the Voigt index is 4, 5 or 6 [54]. 

There are five independent elastic constants in a hexagonal crystal: C11, C12, C13, C33, C44=C55. 
In order to determine these constants, five independent stresses must be applied to the system 
(see appendix). Distortions (I), (III) and (V) keep hexagonal symmetry in the strained cell. 
Distortion (II) creates a monoclinic cell and distortion (IV) creates a cell with triclinic symmetry. 
Equation (2) is valid for small distortions. To have a measure of “small” we compare the volume 
changes after applying a specific distortion. Distortions (I) and (V) yield the largest change in 
volume. Thus, for (I) we use the parameters α = -0.01, -0.005, 0.00, 0.005, 0.01 and for (V) we 
apply α = -0.005, -0.0025, 0.00, 0.0025, 0.005. For distortions (II)-(IV) we use α = -0.02, -0.01, 
0.00, 0.01, 0.02. These choices of α ensure that the change in volume relative to the equilibrium 
volume V0 is smaller than 15Å3 or ~2.8% of V0. For all distortions we use a quadratic fit to 
extract the elastic constants Cij. Our results are summarized in table 3. For C11, C33 and the bulk 
modulus B we find agreement within ~6% of the values previously reported by Katz and Mostafa 
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[52,53]. Our C12, C13 and C44 are within ~21% of Katz’s and Mostafa’s results indicating overall 
good qualitative agreement. 

IV. Conclusions 

Using density functional theory we find that the ground state of hydroxyapatite is monoclinic in 
agreement with previous calculations [13] and recent experiments [35,37]. The hexagonal phase 
is only 22 meV higher in energy than the monoclinic ground state. The structural transition path 
from the monoclinic to the hexagonal crystal phase and vice versa most likely involves the 
rotation of hydroxyl groups as suggested by Hitmi [35]. The activation energy for such a 
transition is 0.33eV per OH molecule and the transition time at room temperature is ~26ms. We 
find close similarity in the electronic structure of both phases suggesting similar chemical 
properties. For the hexagonal phase in agreement with previous theoretical results we find the 
indirect band gap 5.23eV. The bottom of the conduction band mainly consists of Ca s-states and 
shows free electron like behavior with the anisotropic mass at the Γ point. Our results for the 
vibrational eigenmodes at the Γ point are within ±10% of available experiment [41,42], and 
calculated elastic constants agree well with the experimental results reported by Katz [52] and 
Mostafa [53]. 
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I. Appendix 

Following the approach described by Fast et. al [55], we use five independent distortions to 
obtain the elastic constants of the hexagonal cell. Their action on the crystal structure and 
symmetry are explained in the section E. The small parameter α describes the deviation of the 
distorted crystal from the original one. 
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Table 1: Comparison of fully relaxed theoretical bond lengths and bond angles in HA with 
experimental values.  

 theory Exp. [ref. 7] 

P-OI 1.56Å 1.54Å 

P-OII 1.57Å 1.55Å 

P-OIII 1.55Å 1.53Å 

O-H 0.977Å 0.957Å 

OI-P-OII 111.1° 111.0 ° 

OI-P-OIII 111.6° 111.5° 

OII-P-OIII 107.5° 107.5° 
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Table 2: Born effective charge tensors for the different atomic sites. 

 

 Born effective charge 

H 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

28.000
037.001.0
001.037.0

 

P 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

08.300
017.301.0
004.017.3

 

CaI 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

51.200
041.208.0
008.041.2

 

CaII 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

46.200
045.201.0
002.045.2

 

OI 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

41.100
093.102.0
003.093.1

 

OII 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

30.100
091.10
0092.1

 

OIII 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−−

13.200
047.102.0
002.047.1

 

OH 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−

94.000
071.104.0
004.071.1
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Table 3: Calculated elastic constants and bulk modulus compared to other theoretical 
calculations and corresponding experimental values. The bulk modulus is related to 
the elastic constants by the formula ( )22 331312119

2 CCCCB +++= . 

 

constant 
[1011 dyn/cm2] this work Ref. [53] pseudo-exp. [52] 

C11 12.90 15.75 13.70 
C12 3.70 5.74 4.25 
C13 6.70 5.97 5.49 
C33 17.30 14.73 17.20 
C44 4.40 4.39 3.96 
B 8.60 9.07 8.90 
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Fig. 1: Schematic of the HA crystallization during bone formation. Experiments suggest that the 
c-axes of both the tropocollagen and HA platelets are aligned [8]. The formation of 
bone tissue happens in several steps. After the tropocollagen helices are aligned, 
constituents of the HA crystal accumulate in the spaces between the tropocollagen and 
crystallize in the (001) orientation. The final HA mineral within the spaces consists of 
many separate HA platelets. 

Fig. 2: HA primitive cells as described in references 6 and 7. The cell dimensions are 
a=b=9.432Å, c=6.881Å. The main difference between the two structures is the location 
of the oxygen atoms from the OH pairs as indicated in the figure. Following our 
notation (see text) we call the shown orientation of the OH pairs the (↓↓) orientation. 

Fig. 3: Top-view on the hexagonal primitive cell. In the figure we shifted the original primitive 
cell in the x and y directions so that the OH column is in the center of the depicted 
cell. The darker colored CaII atoms and PO4 molecules are centered at z=0.25c and 
the lighter ones are centered at z=0.75c. The OH column is surrounded by six CaII 
atoms and six PO4 molecules. The CaI atoms are now in the corners of the cell. Below 
both of the two visible CaI atoms there is a second CaI atom at the distance 0.5c. 
Here, the lighter CaI atom is close to the top face and the darker CaI atom is at ~0.5c. 

Fig. 4: The calculated structures are listed in ascending order according to the binding energy per 
single cell and the minimum energy is shifted to zero. We find the lowest binding 
energy for the monoclinic (↓↓)(↑↑) configuration followed by the hexagonal (↓↓) 
structure. The energy difference these two is ~22meV/cell. The binding energies of 
structures 2-4 are identical. Structures with flipped OH pairs within the same column 
generally yield higher binding energy. 

Fig. 5: a) OH positions with respect to the surrounding CaII-triangles in the (↓↓) and (↑↑) 
configurations. 
b) The figures show two paths of the hydrogen atoms from one equilibrium position to 
another symmetry related equilibrium position thus flipping from (↓↓) to (↑↑). 

Fig. 6: Top-view along the OH column surrounded by CaII and PO4. The dark Ca atoms are at 
z=1/4 and the light ones at z=3/4c. The OH pairs are in the center. There are three 
equivalent trajectories to flip the top OH-pair rotationally. One of them is indicated by 
projection 1. Once path 1 is selected there are 2 inequivalent ways to flip the bottom 
OH-pair as indicated by the dashed lines. 

Fig. 7: The energy barriers corresponding to the translational (1) and rotational (2 and 3) 
hydrogen trajectories. The energy barrier for a translational displacement of the 



20 
 

hydrogen atoms along the z-axis is approximately 3 times higher than that of the 
rotational transition. 

Fig. 8: The total DOS (a) and site-projected DOS in the near-gap region (b) of hexagonal and 
monoclinic HA. The DOS is normalized to a hexagonal cell. The Fermi level is at zero 
energy. The band gap is 5.23 eV.  

Fig. 9: The electronic band structure of hexagonal HA in the near gap region. The energy range 
in the gap region and is not shown for clarity. The band structure suggests that HA is an 
indirect band material. The lowest energy optical excitations are indicated. The dashed 
lines between M and K indicate nearly constant energy optical excitations. 

Fig. 10: The band structure of hexagonal HA from Ref. 15 (left) compared to our band structure 
(right).  

Fig. 11: The theoretical phonon density of states at the Γ-point compared with the experimental 
IR and Raman active modes. Our Ca and PO4 peaks are underestimated by ~10%, while 
the OH modes are overestimated by ~10%. 

Fig. 12: a) The phonon frequencies at the Γ-point with and without the long-range correction. 
When applying the long-range correction we consider approaching the Γ-point from the 
M-point, the K-point and the A-point, corresponding to the directions (100), (110) and 
(001). We use the experimental values from Fowler and Markovic [41,42]. The 
direction of approach has little influence on the eigenmodes. The deviation from the 
experimental values is about 10%. 

 b) The change in the phonon frequency when applying the long-range correction. We 
find almost identical changes when approaching along the (100) and the (110) direction 
(M to Γ and K to Γ, respectively). The largest change occurs for the mode at 318cm-1 
which corresponds to a pure OH libration mode. In the (001) direction (A→Γ) this 
mode is nearly unaffected by the long-range correction. 

 

 

 
































