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We have systematically studied the optimal real-space sampling of atomic pair distribution (PDF)
data by comparing refinement results from oversampled and resampled data. Based on nickel and
a complex perovskite system, we show that not only is the optimal sampling bounded by the
Nyquist interval described by the Nyquist-Shannon (NS) sampling theorem as expected, but near
this sampling interval, the data points in the PDF are minimally correlated, which results in more
reliable uncertainty estimates in the modelling. Surprisingly, we find that PDF refinements quickly
become unstable for data on coarser grids. Although the Nyquist-Shannon sampling theorem is well
known, it has not been applied to PDF refinements, despite the growing popularity of the PDF
method and its adoption in a growing number of communities. Here we give explicit expressions
for the application of NS sampling theorem to the PDF case, and establish through modeling that
it is working in practice, which lays the groundwork for this to become more widely adopted. This
has implications for the speed and complexity of possible refinements that can be carried out many
times faster than currently with no loss of information, and it establishes a theoretically sound limit
on the amount of information contained in the PDF that will prevent over-parametrization during
modeling.

I. INTRODUCTION

Atomic pair distribution function (PDF) analysis of
x-ray and neutron powder diffraction data is becoming
prominent in structure analysis of complex materials due
to an increasing interest in studying nanoscale structural
order.1 Details of the atomic arrangement play a crucial
role in determining the physical properties of materials
and for crystalline materials we have powerful crystal-
lographic methods for solving the structure with high
precision.2,3 Equivalent methods are lacking for nanoma-
terials such as nanoparticles and nanoporous materials,1

which limits our ability to optimize and fully exploit their
interesting properties. Furthermore, it is becoming in-
creasingly apparent that nanoscale fluctuations exist in
many bulk materials and that these also are important
factors in the properties of those materials.4–7 The PDF
technique has emerged as a powerful tool for extract-
ing quantitative information from these materials when

high-performance, modern sources of high energy x-rays
and neutrons are coupled with emerging data modeling
software.8–10 For example, details of nanoparticle struc-
ture, defects, size and strain state can be quantitatively
extracted from the smallest nanoparticles,11 nanosized
domains can be studied in melt-quenched pharmaceuti-
cal drugs,12 species intercalated into nanoporous hosts
can be characterized13,14 and hidden symmetry break-
ing nanodomains can be detected in technologically im-
portant bulk materials.6,7 As the community of users
grows, dedicated experimental facilities are appearing
for PDF studies15,16 as well as specialized software.17–22

As the PDF is becoming a recognized tool for struc-
ture characterization in a growing number of scientific
communities,7,12,23–25 it is important to reevaluate and
strengthen our analysis techniques.

The PDF is a sine Fourier transform of properly cor-
rected and normalized x-ray or neutron powder diffrac-
tion data. One of the user-specified parameters in the
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Fourier transform step is the grid of points on which the
PDF is calculated. Currently, the sampling grid for PDFs
is typically chosen in an ad-hoc way, for example, to give
a visually smooth PDF. The information content in the
PDF does not increase for grid intervals above a critical
value given by the Nyquist-Shannon (NS) sampling the-
orem. If the data are oversampled, not only is no new
information introduced, the points in the PDF become
statistically correlated,26,27 which leads to improper es-
timates of uncertainties in refinement parameters as well
as slowing down structural refinements.28 Despite this, in
practice the NS theorem is rarely, if ever, taken into ac-
count in PDF modeling. There is no examination in the
literature of how it applies explicitly to the PDF. Such a
treatment for the EXAFS case29 has had a large impact
on how modeling is practiced in that field and we hope
that this treatment will similarly influence practices in
the growing PDF community.
We have systematically studied through modeling the

optimal PDF sampling interval for PDF data and demon-
strate that it is consistent with the value predicted by the
NS sampling theorem.30 This gives the minimum amount
of information we need to completely specify a PDF from
a given measurable scattering function. When this op-
timal sampling is enforced, we see significant speed-up
in our PDF refinements accompanied by a small increase
in estimated uncertainties due to the reduction of sta-
tistical correlations among the PDF points. When the
data are made sparser than the optimal sampling inter-
val the refinement results rapidly become unreliable due
to aliasing.

II. THE PDF METHOD

The PDF method is a total scattering technique for
determining local order in nanostructured materials.27

The technique does not require periodicity, so it is well
suited for studying nanoscale features in a variety of
materials.8,9 The experimental PDF, denoted G(r), is
the truncated Fourier transform of the total scattering
structure function, F (Q) = Q[S(Q)− 1]:31

G(r) =
2

π

∫ Qmax

Qmin

F (Q) sin(Qr) dQ, (1)

where Q is the magnitude of the scattering momen-
tum. The structure function, S(Q), is extracted from the
Bragg and diffuse components of x-ray, neutron or elec-
tron powder diffraction intensity. For elastic scattering,
Q = 4π sin(θ)/λ, where λ is the scattering wavelength
and 2θ is the scattering angle. In practice, values of Qmin

and Qmax are determined by the experimental setup and
Qmax is often reduced below the experimental maximum
to eliminate noisy data from the PDF since the signal to
noise ratio becomes unfavorable in the high-Q region.
The PDF gives the scaled probability of finding two

atoms in a material a distance r apart and is related to

the density of atom pairs in the material.27 For a macro-
scopic scatterer, G(r) can be calculated from a known
structure model according to

G(r) = 4πr [ρ(r)− ρ0] , (2)

ρ(r) =
1

4πr2N

∑

i

∑

j 6=i

bibj
〈b〉2

δ(r − rij).

Here, ρ0 is the atomic number density of the material
and ρ(r) is the atomic pair density, which is the mean
weighted density of neighbor atoms at distance r from
an atom at the origin. The sums in ρ(r) run over all
atoms in the sample, bi is the scattering factor of atom i,
〈b〉 is the average scattering factor and rij is the distance
between atoms i and j.
In practice, we use Eqs. 2 to fit the PDF generated

from a structure model to a PDF determined from ex-
periment. For this purpose, the delta functions in Eqs. 2
are Gaussian-broadened and the equation is modified
to account for experimental effects. PDF modeling is
performed by adjusting the parameters of the struc-
ture model, such as the lattice constants, atom posi-
tions and anisotropic atomic displacement parameters,
to maximize the agreement between the theoretical and
an experimental PDF. This procedure is implemented
in PDFgui,17 which is the program used in this study.
PDFgui uses the Levenberg-Marquardt algorithm32,33

to locally optimize the model structure. The algorithm
also provides estimates of uncertainties on those param-
eters upon convergence, though strictly the estimates
are only accurate if the data are independent and the
statistical errors are Gaussian distributed and properly
determined.28

III. THE NYQUIST-SHANNON SAMPLING

THEOREM

The Nyquist-Shannon sampling theorem specifies an
upper bound on the sampling interval of a discretized
signal in the time domain such that the sample contains
all the available frequency information from the signal.
This upper bound is π/∆ω, where ∆ω is the angular fre-
quency bandwidth of the signal.30 The quantity π/∆ω
is commonly referred to as the Nyquist interval. A con-
tinuous or discrete signal sampled on a grid finer than
the Nyquist interval can be, in principle, perfectly recon-
structed via interpolation, since the sampling does not
compromise the information content of the signal.
In relation to the PDF, the angular frequency domain

is Q-space and we are interested in sampling in r-space,
the analogue of the time domain. The frequency infor-
mation is specified by F (Q) (see Eq. 1), which has band-
width Qmax.

34 This gives a Nyquist interval of

drN = π/Qmax. (3)

The sampling theorem states that the PDF can be sam-
pled on any grid with intervals shorter than this without
losing any information from F (Q).
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Whittaker35 and Shannon30 describe an interpolation
formula for reconstructing a signal from samples taken on
a grid with interval, dr, less than the Nyquist interval.
In terms of the PDF, the reconstruction formula is

G′(r) =
∑

n

G(ndr)
sin(π(r/dr − n))

π(r/dr − n)
, (4)

where n iterates over the points of the sample. Later
we will demonstrate the benefits of modeling the PDF
on an optimally sampled grid. This formula allows us
to interpolate a model PDF onto a denser grid, e.g. for
convenient visual inspection. In practice, the sampled
data must extend beyond the desired range to avoid re-
construction errors in the high-r region.

A. Aliasing

Sampling G(r) at or coarser than the Nyquist interval
results in aliasing. This term refers to how, in undersam-
pled data, high Q information in F (Q) can masquerade
as intensity at lowerQ. This is demonstrated for the PDF
by considering its Fourier series over −rmax ≤ r ≤ rmax.
We choose this range because it lets us consider the sine-
Fourier series (G(r) is odd) and because the PDF over
this range contains the same information as the PDF over
0 ≤ r ≤ rmax. Now,

G(r) =

mmax
∑

m=1

bm sin(Qm r),

where Qm = mπ/rmax. Since G(r) contains no frequency
components greater than Qmax, Qm ≤ Qmax, and thus
mmax ≤ Qmaxrmax/π.
Consider the mth term of the series sampled on the

interval dr = π/Q′, where Q′ and m are chosen such
that Q′ ≤ Qm ≤ Qmax. For the nth sample, the
contribution to the Fourier series is bm sin(ndr Qm).
Given the relationship between Qm and Q′, ndrQm ≥
n(π/Q′)Q′ = nπ. Thus, we can represent the argument
as nπ+ (Qm −Q′)ndr = 2nπ+ (Qm − 2Q′)ndr, so that
the mth frequency component of the sample looks like
−bm sin((2Q′ − Qm)ndr) for all n. The contribution to
G(r) from F (Q) at Q = Qm therefore appears in G(r) as
if it came from Q = 2Q′−Qm in F (Q). In F (Q), the sig-
nal above Q′ gets “folded” back to lower Q and overlaps
with the signal in the range 2Q′−Qmax ≤ Q ≤ 2Q′. This
explains how information in F (Q) is progressively lost in
G(r) if it is calculated on grids that are too coarse. The
more undersampled the data, the greater the Q-range
that is folded back and the greater the loss of informa-
tion in G(r) due to overlapping signals from different
Q-values. The effect is illustrated in Fig. 1.
We note that the case where the data are sampled pre-

cisely on a grid with the Nyquist interval, dr = drN , then
Q′ = Qm = Qmax and there is no folding. However, there
is still loss of information since sin(Qmndr) = 0, and so

FIG. 1. Demonstration of aliasing in F (Q). (Top) Experimen-

tal nickel F (Q) with Qmax = 29.9 Å
−1

featuring regions above

and below Q′ = 20.9 Å
−1

. (Center) Experimental nickel F (Q)
with the region above Q′ “folded” over to lower Q. (Bottom)
Aliased F (Q) obtained by sampling the PDF from the exper-
imental F (Q) on a grid with interval dr = 0.15 Å and Fourier
transforming back to F (Q) (solid line). This sampling inter-
val is larger than the Nyquist interval (drN = 0.105 Å) and

corresponds to Q′ = π/dr = 20.9 Å
−1

. Overlaid is the F (Q)
obtained by adding the unfolded and folded segments of the
experimental F (Q) (dashed line). Note that the Q-axis starts

at 10 Å
−1

.

the mth Fourier amplitude, bm, can take on any value.
This is why a strict inequality between the sampling in-
terval and the Nyquist interval is required to avoid alias-
ing: dr < drN .
Aliasing implies that the sampled signal does not

uniquely identify its source. Since some frequency com-
ponents alias others, the PDF could represent the aliased
F (Q) just as well as the unaliased one. When back-
Fourier transforming a sparsely sampled G(r) into Q
space, the aliased F (Q) will result. The sampling the-
orem states that aliasing does not occur when sampling
at an interval smaller than the Nyquist interval.

B. Structural Information in the PDF

The sampling theorem determines the number of data
points required to reconstruct a PDF signal from sam-
ples, which is

N = ∆r/drN =
∆rQmax

π
, (5)

where ∆r is the extent of the PDF in r-space. What is
more relevant to PDF modeling is the amount of struc-
tural information in the PDF. N is an upper bound on
this since we cannot extract more independent obser-
vations of the structure than raw information from the
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signal. Given perfect data and the proper model, one
can meaningfully extract N structural parameters from
a PDF signal.
Factors such as noise and peak overlap can obscure

the structural information in the PDF and therefore de-
termine whether N is a good estimate of the amount of
structural information in the PDF. For example, consider
a situation where the PDF contains a single peak, but
has a very large Qmax. In this case, a complete structure
model cannot be obtained from fitting this single peak,
no matter how largeN is. In another extreme case, imag-
ine that the majority of PDF peaks have a single point
or no points due to a small Qmax. In this situation the
position and shape of the peaks cannot be determined
with certainty.
In practice, the amount of structural information in the

PDF cannot be precisely known. To perform a reliable
refinement, the signal-to-noise ratio must be favorable,27

the PDF peaks must be apparent, and the fit range must
be such that the structural features one is seeking to
model are accessible. In addition to this, we recommend
using Rietveld refinement guidelines when refining the
PDF, which advise that the ratio of independent obser-
vations to the number of refinement parameters should
be around three to five, preferring the latter.36

IV. EXPERIMENTAL VERIFICATION

Powder diffraction data were collected from nickel (Ni)
and LaMnO3 (LMO) samples. The nickel data were col-
lected using the rapid acquisition pair distribution func-
tion (RaPDF) technique37 with synchrotron x-rays on
beamline 6-ID-D at the Advanced Photon Source at Ar-
gonne National Laboratory. The sample was purchased
from Alfa Aesar. The powdered sample was packed in
a flat plate holder with thickness of 1.0 mm and sealed
between Kapton tapes. Data were collected at room tem-
perature in transmission geometry with an x-ray energy
of 98.001 keV (λ = 0.12651 Å). An image plate camera
(Mar345) with diameter of 345 mm was mounted orthog-
onally to the beam with a sample to detector distance of
178.4 mm.
The raw 2D data were reduced to 1D integrated in-

tensity profiles using the Fit2D program.38 Correc-
tions for environmental scattering, incoherent and mul-
tiple scattering, polarization and absorption were per-
formed according to the standard procedures27 using

PDFgetX2
18 to obtain the PDF with Qmax = 29.9 Å

−1
.

This corresponds to drN = 0.105 Å.
The LMO data were collected using time-of-flight neu-

tron diffraction at the NPDF instrument at the Los
Alamos Neutron Scattering Center at Los Alamos Na-
tional Laboratory. The LMO sample preparation and
data collection have been described in detail elsewhere.39

The LMO PDFs were produced with PDFgetN
20 using

Qmax = 32.0 Å
−1

. This corresponds to drN = 0.0982 Å.
Note that PDF sampling intervals coming from the NS

theorem are around drN = 0.1 Å, which is ten times
larger than the value of dr = 0.01 Å that is default in
PDFgetN

20 and PDFgetX2.18

In each case, experimental PDFs were generated with
rmax = 20 Å using dr = 0.01 Å. PDF data on sparser
grids were created by removing points from this PDF in
order to get the desired sampling interval. Pruning the
data in this way is equivalent to recalculating the PDF
from F (Q) on the sparser grid. We produced 31 data-sets
with varying dr against which models were refined.

We took as a reference data-set the PDF generated on
the default grid of dr = 0.01 Å and structural models
were refined to the data. We then refined the same mod-
els to data-sets on sparser grids. We define as ∆p(dr)
for a parameter p as the absolute difference between the
value of the parameter p refined for the data-set sampled
at interval dr and that refined for the reference data-
set. The accuracy of the refined parameters becomes
unacceptable when ∆p(dr) exceeds the statistical uncer-
tainty on the difference, σ(∆p(dr)). This is given by

σ(∆p(dr)) =
√

σ2(p(dr)) + σ2(p(0.01)), where σ(p(dr))
and σ(p(0.01)) are the estimated uncertainties on param-
eter p taken from the refinement for the data-set sampled
at interval dr and the reference data-set, respectively. To
determine if a refined parameter extracted from a sparse
data set is accurate, we define a parameter quality fac-
tor, Qp(dr) = ∆p(dr)/σ(∆p(dr)). If Qp(dr) is less than
or equal to one, the parameter value refined from the
data-set sampled at interval dr is within the expected un-
certainty of the best estimate and is considered accurate.
If Qp(i) is greater than one, the change in the parame-
ter’s value is greater than the expected uncertainty, and
the result is considered unreliable.

The parameter quality measure, Qp(i), is biased due to
a couple of assumptions. First, by comparing all results
with the refinement of the undiluted data we assume that
this refinement gives the best estimate for each param-
eter. The validity of this assumption is dependent on
the systematic bias of the refinement results due to the
quality of the data and the suitability of the refinement
model. Since this bias is present in the diluted data as
well, its effects should be negligible. Second, we assume
that the uncertainty value derived from the refinement
results is accurate. We discuss later that the uncertainty
values derived from refinements of oversampled data-sets
are too small. This inflates the estimated quality factor
when the data are oversampled, but does not invalidate
the accompanying results.

The refinements from unaltered and sampled data-sets
were performed identically over a range from rmin =
0.01 Å to rmax = 20.0 Å using the program PDFgui.17

For the Ni data, the lattice parameter, isotropic atomic
displacement parameter (ADP), dynamic correlation fac-
tor, scale factor and resolution factor were varied in the
refinements. In the LMO fits, three lattice parameters,
four isotropic ADPs (one each for the La, Mn and axial
and planar oxygen atoms), and seven fractional coordi-
nates were varied along with the scale and correlation
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TABLE I. Parameters from Ni refinements using data with
various dr. The Nyquist interval, drN , is 0.105 Å. Here, a
denotes the lattice parameter, Uiso the isotropic ADP, δ2 the
vibrational correlation parameter, scale the data scale and
Qdamp the experimental resolution factor.

dr(Å) 0.01 0.10 0.12 0.30

Rw 0.112 0.120 0.119 0.084

a(Å) 3.53159(2) 3.53158(6) 3.53158(6) 3.53186(10)

Uiso(Å
2

) 0.005446(7) 0.00545(2) 0.00543(2) 0.00570(4)

δ2(Å
2

) 2.25(2) 2.20(5) 2.15(5) 2.2(2)

scale 0.7324(7) 0.733(2) 0.734(3) 0.761(4)

Qdamp(Å
−1

)0.06307(11) 0.0632(4) 0.0634(4) 0.0653(7)

factors (see Ref 40). From Eq. 5 we get that refine-
ments over this range, ∆r = 19.99 Å, yield NNi = 191
and NLMO = 203. For the Ni data set, we have an
observation-to-parameter ratio (OPR) greater than 30
and for LMO the OPR is greater than 10. The refine-
ments are therefore comfortably overconstrained and the
optimization problem is well conditioned.
Various refinements were timed to measure the speed-

up in the program execution due to sampling.

V. RESULTS

When the Ni and LMO data are made sparser, the
PDF profiles appear less smooth and the detailed shape
of the peak profiles becomes less apparent. This is shown
in Figs. 2 and 3. The data in panel (a) in both figures
are on the reference grid (dr = 0.01 Å) and are both
smooth and have well-defined Gaussian-like peaks.27 The
data in panel (b) are sampled with dr = 0.1 Å, close
to the Nyquist interval, and are not nearly as smooth,
though the peaks are still well defined. Lastly, the data
in panel (c) are sampled with dr = 0.3 Å, where there
is apparent loss of information. The refined parameters
from these fits are given in Table I and Table II. Note
that the uncertainty in the refined parameters increases
from dr = 0.01 Å to dr = 0.1 Å, although each of these
data-sets produce acceptable results.
In Fig. 4 we show the parameter quality values, Qp(i),

plotted against the sampling interval. The quality fac-
tor is satisfactory for data-sets that are sampled with
grids close to the reference data-set. This indicates that
these refinements are producing the same parameter val-
ues. As the Nyquist interval is crossed (indicated in each
case by the vertical dashed line), various quality factors
rapidly become unacceptable. The figures dramatically
show how well the NS theorem is obeyed. Identical refine-
ments (within the uncertainties) are obtained on all sam-
pling grids finer than drN , but the refinements rapidly
degrade on coarser grids. The computation time of the
refinements decreases rapidly with increasing sampling
interval following a 1/dr law, as evident by the green
line in the figure.

FIG. 2. Fits to sampled Ni PDFs. (a) Unaltered data with
dr = 0.01 Å. (b) Sampled data with dr = 0.1 Å. (c) Sampled
data with dr = 0.3 Å. The data are shown as circles, the
fits are the lines through the data and the difference is shown
offset below. All fits are of similar quality, despite the poor
visual quality of the data in panels (b) and (c). The data
shown in panel (c) is undersampled and produced unaccept-
ably uncertain results, though this is not apparent from the
difference curve.

VI. DISCUSSION

Figure 4 verifies that the onset of unreliable refine-
ments coincides with the Nyquist interval. The refined
parameter values are all acceptable, and largely indepen-
dent of the sampling interval in the oversampling region
(dr < drN ). Figures 2, 3 and 4 indicate that visual
appearance alone is not a good indicator of data qual-
ity. From Tables I and II we see a decrease in Rw, the
goodness of fit parameter, for the largest sampling in-
terval. This apparent improvement in fit quality is a
consequence of having fewer points to fit with the same
number of fitting parameters. It is important to note that
even at the extreme sampling interval of dr = 0.3 Å the
refinements are evidently overconstrained, with an OPR
near 11 for the Ni refinement and near 4 for the LMO
refinement. These subtle contradictions emphasize the
importance of observing the Shannon-Nyquist sampling
theorem in PDF analysis.

The sampling theorem tells us that the information
content in the data does not change as long as we sam-
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FIG. 3. Fits to sampled LaMnO3 PDFs. (a) Unaltered data
with dr = 0.01 Å. (b) Sampled data with dr = 0.1 Å. (c)
Sampled data with dr = 0.3 Å. The data are shown as circles,
the fits are the lines through the data and the difference is
shown offset below. All fits are of similar quality, despite the
poor visual quality of the data in panels (b) and (c). The data
shown in panel (b) and (c) are undersampled, and the data
in panel (c) produced unacceptably uncertain results. Note
that in panel (c) several peaks are not resolved.

ple on a grid finer than the Nyquist interval. We expect
to and do refine the same parameters from such sam-
ples. As the data are sampled onto grids coarser than
the Nyquist interval, we expect to lose structural infor-
mation gradually. In contrast, refined values of the pa-
rameters become unreliable quickly as the Nyquist inter-
val is exceeded. This is somewhat surprising since the
refinements are overconstrained even when sampled at 3
times the Nyquist interval. In Fig. 4 we see the quality
of the refined parameters diverge well before this point.
Intuition would tell us that it is possible to lose a consid-
erable quantity of information by under-sampling before
refinements become unstable. This is not observed. The
degradation of the refinements is not caused solely by
information loss, but by information corruption due to
aliasing and the current results show that this has a dra-
matic effect on the quality of the refined parameters.

Aliasing has two effects on a PDF signal, as described
in Section IIIA. Foremost, aliasing lowers the effective
maximum Q-value in F (Q) from Qmax to Q′ = π/dr.
This creates the obvious effect of lower resolution in the

TABLE II. Parameters from LaMnO3 refinements using data
with various dr. The Nyquist interval, drN , is 0.0982 Å. Here,
a, b and c denote the lattice parameters, Uiso the isotropic
ADP (one for each primitive atom), x, y and z the fractional
atomic coordinates, δ2 the vibrational correlation parameter
and scale the data scale.

dr(Å) 0.01 0.10 0.12 0.30

Rw 0.135 0.138 0.143 0.103

a(Å) 5.5394(2) 5.5394(6) 5.5393(7) 5.5362(14)

b(Å) 5.7441(2) 5.7443(7) 5.7442(8) 5.7536(13)

c(Å) 7.7059(2) 7.7059(9) 7.7054(10) 7.697(2)

δ2(Å
2

) 2.44(3) 2.38(9) 2.35(9) 2.49(14)

scale 0.7941(11) 0.794(3) 0.795(4) 0.803(6)

La

x 0.99234(10) 0.9923(3) 0.9926(4) 0.9917(6)

y 0.04828(8) 0.0482(2) 0.0481(3) 0.0469(5)

Uiso(Å
2

) 0.00508(4) 0.00506(13) 0.0052(2) 0.0055(2)

Mn

Uiso(Å
2

) 0.00376(7) 0.0038(2) 0.0038(2) 0.0024(3)

O1

x 0.07300(11) 0.0730(4) 0.0730(4) 0.0739(7)

y 0.48625(10) 0.4862(3) 0.4864(4) 0.4874(7)

Uiso(Å
2

) 0.00682(8) 0.0067(3) 0.0068(3) 0.0075(3)

O2

x 0.72515(8) 0.7251(2) 0.7252(3) 0.7247(5)

y 0.30682(8) 0.3068(3) 0.3069(3) 0.3072(5)

z 0.03876(6) 0.0388(2) 0.0389(2) 0.0399(3)

Uiso(Å
2

) 0.00689(4) 0.0069(2) 0.0068(2) 0.0062(2)

PDF, as seen in Figs. 2 and 3. In extreme cases, this will
lead to poorly defined peaks in the PDF. Less obviously,
sampling on a grid coarser than the Nyquist interval al-
lows for the possibility that the PDF has originated from
a different, aliased, F (Q) as shown in Fig. 1. When cal-
culating the model PDF, we enforce F (Q > Qmax) = 0.
When there is aliasing the structure function resulting
from G(r) has F (Q > π/dr) = 0, and extra intensity
below π/dr. Thus, aliasing results in finding biased pa-
rameters that describe the corrupted structural informa-
tion. This is true regardless of the optimization algorithm
used.

The estimated uncertainties on the fitting parameters
for dr in the region of stable refinements are dependent on
the sampling interval. We see from Tables I and II that
the uncertainties on the parameters increase when esti-
mated from the data sampled near the Nyquist interval
compared to the reference data. The sampling theorem
gives the number of data points necessary to fully rep-
resent the PDF. Any data sampled on a grid finer than
the Nyquist interval are necessarily redundant. If a set of
fitting parameters reproduces a particular set of points
well on an optimal grid, those parameters will also repro-
duce the associated redundant points well. By not tak-
ing into account the statistical correlations between data
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FIG. 4. Refined parameter quality (open symbols) and refine-
ment times (solid circles) measured using sampled Ni (top)
and LaMnO3 (bottom) data. The dotted horizontal line
shows the cutoff between acceptable and unacceptable pa-
rameter quality. The dashed vertical line shows the value of
drN predicted by the sampling theorem. For dr values larger
than this the quality of some parameters transition into the
unacceptable region. The time values demonstrate the de-
crease in refinement time with increasing dr, with more than
a seven-fold speed up near drN . The solid curve through the
time values is fit to the form a+ b/dr.

points,26 as in this study, this results in the fitting pro-
gram under-estimating uncertainty values on parameters.
In principle, this can be overcome by propagating a full
N × N variance-covariance matrix through the Fourier
transform26, accounting for the statistical correlations
between all points. This is computationally expensive
and is not generally done. As the sampling interval in-
creases (or equivalently as Qmax increases for a given
sampling grid) the variance-covariance matrix becomes
more banded around the diagonal, with significant corre-
lations appearing only between points near to each other
in the PDF. A larger sampling grid therefore reduces the
statistical correlations between points in the PDF. Refin-
ing optimally sampled data at just below drN therefore
not only results in correctly refined parameters, but also
the best uncertainty estimates possible, in the absence of
a full treatment of the covariances.
A fortunate side-effect of refining optimally sampled

data is a decreased refinement time. Shown in Fig. 4 is a
plot of refinement times for some chosen sampling inter-
vals. The trend in the plot shows that refinement time

is proportional to the inverse of dr (shown as the broad
solid line), or directly proportional to the number of data
points, with a constant offset. This trend reflects the fact
that the calculation of the PDF grows linearly with the
number of sample points. Carrying out refinements on
optimally sampled data gives a significant speed increase
compared to the reference data; in this case the speed
increases by more than a factor of seven.
These observations indicate that PDF refinements

should be performed on the sparsest grid possible with
sampling interval less than the Nyquist interval. To pro-
duce an esthetically pleasing presentation of the PDF,
one can always interpolate onto a finer grid using the
Whittaker-Shannon interpolation formula (Eq. 4).

VII. CONCLUSIONS

The purpose of this research was to demonstrate the
consequences of the Nyquist-Shannon sampling theorem
as they apply to the PDF. We show that the quality of
refined parameters diverges when sampling the PDF at
intervals larger than the Nyquist interval, which is the
result of aliasing. Furthermore, we show that the esti-
mated uncertainties of refined parameters are more reli-
able when the PDF is optimally sampled. Statistically
reliable uncertainties on refined parameters can be ob-
tained by taking into account the correlations between
all the points in G(r),26 but this comes at the computa-
tional expense of inverting a large error matrix. By opti-
mally sampling the PDF, the correlations among points
in the PDF are minimized while preserving all the avail-
able structural information. This gives improved uncer-
tainty estimates without costly computation, and may
expedite refinements when the PDF can be computed
over fewer points.
The Nyquist-Shannon sampling theorem gives an up-

per bound on the amount of structural information con-
tained in an experimental PDF. This determines the Q-
and r-extent that are required for a model refinement to
be overconstrained. Oversampling the PDF does not add
more information to a refinement, and therefore provides
no benefit other than an esthetically pleasing visualiza-
tion. This result emphasizes the importance of collecting
diffraction data to high Q when it is to be used for PDF
modeling, since a larger Qmax decreases the Nyquist in-
terval, and makes accessible more structural details.
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J. Bloch, T. Proffen, and S. J. L. Billinge, J. Phys: Con-
dens. Mat. 19, 335219 (2007).

18 X. Qiu, J. W. Thompson, and S. J. L. Billinge, J. Appl.
Crystallogr. 37, 678 (2004).

19 M. G. Tucker, M. T. Dove, and D. A. Keen, J. Appl. Crys-
tallogr. 34, 630 (2001).

20 P. F. Peterson, M. Gutmann, T. Proffen, and S. J. L.
Billinge, J. Appl. Crystallogr. 33, 1192 (2000).

21 A. K. Soper, Chem. Phys. 202, 295 (1996).
22 T. Proffen and S. J. L. Billinge, J. Appl. Crystallogr. 32,

572 (1999).
23 B. Gilbert, F. Huang, H. Zhang, G. A. Waychunas, and

J. F. Banfield, Science 305, 651 (2004).
24 N. J. Tosca, S. M. McLennan, M. D. Dyar, E. C. Sklute,

and F. M. Michel, J. Geophys. Res. 113, E05005 (2008).
25 C. A. Simpson, C. L. Farrow, P. Tian, S. J. L. Billinge,

B. J. Huffman, K. M. Harkness, and D. E. Cliffel, Inorg.
Chem. 49, 10858 (2010).

26 B. H. Toby and S. J. L. Billinge, Acta Crystallogr. A 60,
315 (2004).

27 T. Egami and S. J. L. Billinge, Underneath the Bragg peaks:

structural analysis of complex materials (Pergamon Press,
Elsevier, Oxford, England, 2003).

28 D. Schwarzenbach, S. C. Abrahams, H. D. Flack, W. Gon-
schorek, Th. Hahn, K. Huml, R. E. Marsh, E. Prince, B. E.
Robertson, J. S. Rollett, et al., Acta Crystallogr. A 45, 63
(1989).

29 E. A. Stern, Phys. Rev. B 48, 9825 (1993).
30 C. E. Shannon, Proc. IRE 37, 10 (1949).
31 C. L. Farrow and S. J. L. Billinge, Acta Crystallogr. A 65,

232 (2009).
32 K. Levenberg, Q. Appl. Math 2, 164 (1944).
33 D. Marquardt, SIAM J. Appl. Math 11, 431 (1963).
34 The sampling theorem as presented in Shannon’s paper

deals with signals having positive and negative frequency
components. The bandwidth is defined as the maximum
absolute frequency value. Mathematically, F (Q) is an odd
function (see Eq. 15 in31), a fact we use when transform-
ing F (Q) to G(r) (Eq. 1). The “full” spectrum of F (Q)
that includes the negative-frequency branch can be calcu-
lated from the positive-frequency branch, and spans the
range [−Qmax, Qmax]. Qmin does not enter into this since
we enforce F (Q < Qmin) = 0 during modeling.31.

35 E. Whittaker, Proc. R. Soc. Edinb. A 35, 181 (1915).
36 L. B. McCusker, R. B. V. Dreele, D. E. Cox, D. Louër, and
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