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A large class of spin transfer oscillators use the free layer with a strong easy plane anisotropy,
which forces its magnetization to move close to the plane. We show that in this situation the effective
planar approximation provides a fast and accurate way of calculating the oscillator frequency.
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I. INTRODUCTION

Spin transfer devices exhibit regimes in which
their magnetic moments perform perpetual precessional
motions.1,2 In this case they are also called spin torque
oscillators (STO). Magnetic oscillations induced by di-
rect current are intensively studied experimentally3–11

and theoretically.12–22 In the STO regime the energy is
constantly supplied to the device from the current source
through the spin transfer mechanism. At the same time
it is lost through the usual dissipation mechanisms, ac-
counted for by the Gilbert damping constant. In a state
of steady precession the energy gain and loss are balanced
on average. In the limit of small damping one observes
the following general picture of STO operation.14 The
magnetic moment moves close to the trajectory which it
would follow in the absence of damping and spin trans-
fer. The actual trajectory is a perturbation of the zero-
damping trajectory, chosen so as to balance the small
dissipation with the equally small energy gain. The main
difficulty in describing the precession states is the lack of
knowledge about the unperturbed trajectory which is a
solution of the complicated non-linear Landau-Lifshitz-
Gilbert (LLG) equation. Unless one considers a small
radius precession near an equilibrium point, the ana-
lytic form of such a trajectory is usually unknown and
one is forced to use numeric methods. In this paper we
will consider a special class of spin transfer devices with
dominating easy plane anisotropy. This anisotropy often
arises from the thin disk shape of the magnetic layers
found in the majority of experimental structures. Due to
the dominating easy plane anisotropy the LLG equation
can be approximated by an effective planar equation23–25

that is less complex and easier to treat analytically. Here
we give a short derivation26 of the planar approximation
analytic expressions for the STO oscillation periods and
compare them with the numeric results obtained without
approximations.

II. MODEL

We will consider a macrospin description of a spin
transfer device with one fixed and one free layer. The

moments of the fixed and free layers are given by unit
vectors s and n with constant magnetization Ms. Mag-
netic dynamics of the free layer is governed by the LLG
equation with a spin transfer term (see, e.g., Ref. 27)

ṅ =

[

− δε

δn
× n

]

+ u[n× [s× n]] + α[n× ṅ] , (1)

where the rescaled energy ε = γE/Ms is expressed
through the total magnetic energy E of the free layer, γ is
the (positive) gyromagnetic ratio, α is the Gilbert damp-
ing. The rescaled energy has dimensions of frequency and
is directly related to the ferromagnetic resonance frequen-
cies of the layer.
The spin-transfer magnitude u in the second term is

given by

u = g(~n)
γ(h̄/2)

VMs

I

e
, (2)

where V is the free layer volume, I is the electric cur-
rent, and e is the electron charge. A frequently used
approximation g = const will be used for the effi-
ciency factor. The rescaled current u has dimensions
of frequency which facilitates its comparison with the
anisotropy terms in LLG. Spin-transfer devices normally
operate in the regime of u ∼ αε ≪ ε.
We assume the standard nanopillar anisotropy, i.e., an

(x, y) easy plane with a constant Kp and an easy axis
along x with a constant Ka. Magnetic field is applied
along x as well. The rescaled energy function is

ε(n) =
ωp

2
n2
z −

ωa

2
n2
x − hnx ,

where the new constants ωp = γKp/Ms, ωa = γKa/Ms,
and h = γH have the dimensions of frequency. The fixed
layer magnetization is assumed to be pointing along the
easy axis, s = +x̂.

III. EFFECTIVE PLANAR DESCRIPTION

It was shown24 that when the inequalities ωp ≫ ωa and
ωp ≫ h hold, vector n moves close to the easy plane and
its magnetic dynamics can be described by an effective
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planar equation governing the behavior of the in-plane
(azimuthal) angle φ(t). The equation reads

φ̈

ωp

+ αeff (φ) φ̇ = −dεeff
dφ

, (3)

with effective energy and friction24

εeff = −ωa

2
cos2 φ− h cosφ ,

αeff = α+
2u cosφ

ωp

. (4)

The analogy between Eq. (3) and the Newton equation
of motion for a particle in a one-dimensional potential
profile was employed in Ref. 24 to find the stabilization
and destabilization currents of static and dynamic mag-
netic states in a nanopillar. Dynamic states correspond
to the oscillations of the “effective particle” in the poten-
tial profile. They were treated analytically in the limit
α ≪

√

ωa/ωp where the total energy εtot = φ̇2/2ωp+εeff
of the particle is approximately conserved during one pe-
riod of oscillations. In this case one can approximately
express the fast-changing particle velocity as a function
of its position and slow-changing εtot(t)

φ̇(t) ≈ ±
√

2ωp(εtot − εeff (φ)) = f(φ, εtot) . (5)

During one period of oscillation T the total energy
changes by a small amount

∆ = −
∫ T

0

αeff φ̇
2dt ≪ εtot .

Using (5) one can express ∆ and oscillations period as

∆ ≈ −
∮

αeff (φ)f(φ) dφ , (6)

T =

∫ T

0

dt =

∮

dφ

φ̇
≈

∮

dφ

f(φ)
,

where the integrals are taken along a closed trajectory
corresponding to one period of frictionless motion. The
total energy obeys an approximate equation

dεtot
dt

≈ ∆(εtot)

T (εtot)
. (7)

In the regime of persistent oscillations the total energy
is constant, which implies ∆(εtot) = 0. At a given u this
equation determines the value of εtot and the endpoints
of the integration contour in the first equation of the sys-
tem (6). Knowing them, we can calculate T from the
second equation in (6) and find the function T (u). We
perform the calculations for u < 0 which corresponds to
the current-induced destabilization of the φ = 0 equilib-
rium, or “parallel state”. Results for u > 0 can be then
obtained using the symmetry of the switching diagram

with the respect to the simultaneous reflections u → −u,
h → −h.
It was found24 that presistent oscillations of the ef-

fective particle happen differently in the regimes of high
h > ωa and low |h| < ωa fields. In the former case finite
amplitude oscillations exist for −u2 < u < −u1 and full
rotation motion is observed for u < −u2. In the latter
case finite amplitude oscillations exist for −u2 < u < −u1

and full rotation motion is observed for u < −u3: There
is a gap between the finite oscillations and full rotations
regimes where there are no stable oscillating states.
At h > ωa, we find that the current and period of

finite oscillations can be expressed through the oscillation
amplitude φa as

u(φa) = −αωp

2

K1(φa)

K2(φa)
, (8)

T (φa) =
2K3(φa)

Ω
, (9)

were Ω =
√
ωaωp and

K1(φa) =

∫ φa

−φa

√

R(φ) dφ ,

K2(φa) =

∫ φa

−φa

cosφ
√

R(φ) dφ ,

K3(φa) =

∫ φa

−φa

dφ
√

R(φ)

R(φ, φa, h) = cos2 φ− cos2 φa +
2h

ωa

(cosφ− cosφa) .

Using (8) and (9) one can draw a parametric plot of the
function T (u) by varying φa from zero to π.
The boundary between the finite oscillations and the

full rotations is given24 by the condition φa = π

−u2(h) = −αωp

2

K1(π, h)

K2(π, h)
(h > ωa) , (10)

where we have explicitly indicated the dependence of the
integrals on h. Note that (10) corrects formula (8) from
Ref. 24 which is valid only for h− ωa ≪ ωa.
For u < −u2 the periods of full rotations are given by

an analogous pair of equations

u(δ) = −αωp

2

L1(δ)

L2(δ)
(11)

T (δ) =
L3(δ)

Ω
(12)

where δ = 2ωp(εtot − εeff (π))/Ω > 0 parameterizes the

trajectories. With notation R̃ = R(φ, π, h)

L1(δ) =

∫ π

−π

√

R̃(φ) + δ dφ ,

L2(δ) =

∫ π

−π

cosφ

√

R̃(φ) + δ dφ ,

L3(δ) =

∫ π

−π

dφ
√

R̃(φ) + δ
.
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FIG. 1: Large field case. Comparison between the no-
approximation numeric results (dots) and planar approxi-
mation expressions (lines) for the oscillations periods. Here
ωp = 100 ωa, h = 1.4 ωa, α = 0.01. The oscillation period
diverges at u = −u2

In the regime of small field, |h| < ωa calculations for
finite oscillations (−u2 < u < −u1) turn out to be iden-
tical with those performed in the previous section. Ex-
pressions (8) and (9) can be used to draw a parametric
plot T (u). The only difference is that now the oscillation
amplitude φa changes form zero to the angle φm of the
energy maximum, given by cosφm = −h/ωa.

For the currents exceeding the third threshold, u <
−u3, parametric expressions for current and period turn
out to be identical to Eqs. (11) and (12), except that the

meaning of R̃ changes to R̃ = R(φ, φm, h) = (cosφ +
h/ωa)

2 in the definitions of the integrals L1,2,3 and δ =
2ωp(ε(φ)− ε(φm))/Ω > 0.
Overall, equation pairs (8, 9) and (11, 12) give the

planar approximation formulae for the periods of all spin
transfer oscillations possible in our system. For the small
amplitude oscillations regime with current just above the
u1 threshold the results (9) and (12) give the frequencies

converging to
√

(ωa + h)ωp, i.e., to the Kittel’s formula
with a substitution ωp + h → ωp in accord with our ap-
proximation h ≪ ωp. For other current values we will
present the results of the theory as graphs (Figs. 1 and
2) for the periods T (u, h) rather than for the frequencies
since oscillations periods are more directly interpreted in
terms of effective particle analogy.

IV. COMPARISON WITH THE

NO-APPROXIMATION NUMERIC RESULTS

Oscillation periods can be found numerically by solving
the LLG equation without approximations.
Fig. 1 compares the numeric LLG results with the pla-

nar approximation formula for the high field case, h > ωa.
One observes a very good correspondence. Near the crit-
ical current u = −u2 the periods of oscillations become
infinite and their frequencies drop to zero.14 This is easy
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FIG. 2: (Color online) Small field case. Comparison between
the no-approximation numeric results (dots) and planar ap-
proximation expressions (line) for the oscillations periods for
ωp = 100 ωa, h = 0.5 ωa. The oscillation period diverges at
u = −u2 and u = −u3 with no oscillations between the two
thresholds. Top panel (A) gives results for α = 0.001, where
the agreement is very good. The bottom panel (B) shows a
comparison for α = 0.01. Planar approximation works well
for finite precession, but the full rotations regime requires cur-
rents which are too large for the small friction approximation
(11, 12) to be accurate. The exact solution of the planar equa-
tion (red (grey) dots) is still in very good agreement with the
numeric solution of the LLG equation (black dots).

to understand from the effective particle analogy: at the
critical current the particle travels between the two max-
ima of the energy profile that have the same height with
the particle energy being equal to the potential energy
at the maximum point. The motion near the maximum
is infinitely slow and the period is infinite.

In the low field case, 0 < h < ωa, the comparison of
numeric and approximate results is shown in Fig. 2. In
the top panel (Fig. 2A) the Gilbert damping is set to

α = 0.001, and the condition |αeff | ≪
√

ωa/ωp is well
satisfied for all current magnitudes on the graph. The
correspondence between the numeric LLG results and the
small damping approximation to the planar equation is
very good. As expected, the oscillations period diverges
at u = −u2 and u = −u3, with no oscillations between
the two thresholds.

Fig. 2B shows results for α = 0.01. We observe good
correspondence between the LLG numeric results and
our theory for finite oscillations, but the full rotations
regime shows appreciable differences which become very
large near the critical current. Their origin is the break-
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down of the small damping approximation: for α = 0.01
the currents in the full rotation regime are so large that
the strong inequality |αeff | ≪

√

ωa/ωp is not well satis-
fied. To prove that the small damping approximation is
the source of the discrepancy we have solved the planar
equation (3) numerically. The results (red (gray) dots in
Fig. 2B) correspond very well to those obtained directly
from LLG (black dots in Fig. 2B).
It is also instructive to compare the cases of large

and small fields with the same value of Gilbert damp-
ing α = 0.01 (Fig. 1 and Fig. 2B). One can see that the
validity region of the small damping approximation ex-
tends at least to u ≈ −2 in the case of large field. At the
same time in the case of small fields this approximation is
visibly violated for u ≈ −2. The relative fragility of the
small damping approximation in the full rotation regime
in small fields can be traced to the presence of two en-
ergy maxima, φ = ±φm, instead of just one maximum,
φ = π, in the large fields. The situation calls for more
work on the approximate solutions of the effective planar
equation (3) with variable damping.

V. CONCLUSIONS

We have shown that the planar approximation23,24

gives good results for the frequencies of spin transfer os-
cillators with dominating easy plane anisotropy. Ana-
lytic expressions for the oscillation periods were derived
in the limit of small Gilbert damping. The mechanical
analogy, associated with the effective planar equation,
naturally explains the singular behavior of the preces-
sion frequency near the transition between in-plane and
out-of-plane precessions.
A crucial advantage of the planar approximation is

the resolution of the unperturbed trajectory problem.
All one-dimensional trajectories are straight lines com-
pletely characterized by their endpoints. This simplifica-
tion should help to develop theories of the large-angle
precession regimes of planar spin torque oscillators in
the presence of temperature fluctuations or other noise
sources.
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