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We theoretically investigate negative differential resistance (NDR) for ballistic transport in semi-
conducting armchair graphene nanoribbon (aGNR) superlattices (5 to 20 barriers) at low bias volt-
ages VSD < 500 mV. We combine the graphene Dirac hamiltonian with the Landauer-Büttiker
formalism to calculate the current ISD through the system. We find three distinct transport regimes
in which NDR occurs: (i) a “classical” regime for wide layers, through which the transport across
bandgaps is strongly suppressed, leading to alternating regions of nearly unity and zero transmission
probabilities as a function of VSD due to crossing of bandgaps from different layers. (ii) a quantum
regime dominated by superlattice miniband conduction, with current suppression arising from the
misalignment of miniband states with increasing VSD; and (iii) a Wannier-Stark ladder regime with
current peaks occurring at the crossings of Wannier-Stark rungs from distinct ladders. We observe
NDR at voltage biases as low as 10 mV with a high current density, making the aGNR superlattices
attractive for device applications.

PACS numbers: 72.80.Vp, 73.22.Pr, 73.21.Cd, 68.65.Cd

I. INTRODUCTION

Graphene1–3 has attracted much attention due to the
possibility of new devices which may surpass its semi-
conductor counterparts in both speed and reduced power
consumption4. This is expected due to the unique prop-
erties of graphene, e.g., the high mobility of carriers,
which can lead to high current densities, and the tun-
ability of the bandgap. Additionally, building devices
on the surface could facilitate optical absorption and
emission. Particularly, negative differential resistance
(NDR) is essential for many applications5–8. In semi-
conductor resonant tunneling diodes9–11 and superlattice
structures12,13, NDR is based on Fabry-Pérot type inter-
ferences arising from the impedance mismatch between
the various layers. These semiconductor NDR systems
can also show interesting phenomena, such as intrinsic
bistability due to charge accumulation14. Pursuing the
recent interest in graphene superlattices transport and
thermal properties15–24, it is a natural question to ask
whether a graphene superlattice could exhibit similar fea-
tures.

The occurrence of Klein tunneling in graphene2 should
be an obstacle to the NDR effect, as it gives a mono-
tonically increasing contribution to the current. Narrow
graphene nanoribbons overcome this limitation as the
lateral confinement quantizes the Dirac cone into few-
eV-wide bands. Tight-binding calculations show that it
is possible to find NDR in these narrow nanoribbons at
high bias voltages, 1 to 2 V29,30. However, for integrated
circuits a low bias mV regime is desirable to reduce power
consumption46. Low bias NDR can also be achieved in
other graphene and bilayer graphene systems31–33.

In this work we consider an N -barrier superlattice po-
tential on a semiconducting armchair graphene nanorib-
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FIG. 1: [Color online] (a) Metal–aGNR junctions and the
modulated chemical shift ∆εF of the Dirac point across the
aGNR25–28. ∆0 (shaded regions) denotes the barrier and val-
ley bandgaps. Here we consider square potentials, solid line.
The dashed line shows the numerical results of Ref. 27. (b)
Additional electrodes modulate the Dirac cone shift into a su-
perlattice potential. The bias voltage VSD is also shown. (c)
Doped layers of a semiconductor superlattice can also modu-
late the local potential. (d) Schematic of the ε−VSD diagram
of the source–drain transmission coefficient showing crossings
of the bandgaps ∆0 (black lines). The shaded regions delimit
the energy range between the source µS = ∆εF and drain
µD = µS − eVSD chemical potentials.

bon (aGNR), Fig. 1. The electronic structure of the
aGNR is a quantized Dirac cone, due to the quantiza-
tion of the transversal momentum kn, and can be metal-
lic, kn0 = 0, or semiconducting, kn0 6= 0, depending
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FIG. 2: [Color online] (a) Energy-voltage diagram of TSD for
N = 5 barriers showing the evolution of the N − 1 hybridized
modes [panels (b)-(d)] into Wannier-Stark ladders. Labels A,
B, and C show the zero-bias hybridized modes in panels (a)
and (c). Crossings of ladders’ rungs from distinct minibands
increases TSD near VSD = 30 and 50 mV. (b) Schematic of the
modulated Dirac point (dashed line), bandgaps ∆0 ∼ 28 meV
(gray area), and confined mode B′. In the transmission coeffi-
cient TSD across two barriers (a = b = 50 nm) (c), the confined
mode B′ shows up as a resonant spike near 230 meV. For (d)
N = 5, and (e) N = 20 barriers the confined modes hybridize
into N−1 spikes, building up a miniband. Similar resonances
lead to minibands at energies away from the bandgap region
∆0.

on the width W of the nanoribbon; kn0 is the closest
to zero transverse momenta. We choose W = 346a0,
such that the aGNR is semiconducting with a bandgap
∆0 = 28 meV; a0 = 0.142 nm is the C-C distance. We
use the transfer matrix formalism to calculate the source–
drain transmission coefficient TSD across the superlattice
potential along the aGNR, considering a finite bias volt-
age VSD, revealing the electronic structure of the system,
Fig. 2. The potential drop from source to drain follows a
piecewise constant profile layer by layer, Fig. 1(b). The
current is calculated within the usual Landauer-Büttiker
formalism.

We find low bias NDR at zero and room temperatures
within three distinct physical regimes. (i) For wide lay-
ers, the transmission across the bandgaps ∆0 is strongly
suppressed, and nearly unity for energies away from the
bandgaps. With increasing voltage, both barrier and
valley bandgaps split and cross as shown schematically
in Fig. 1(d), showing, at the coincidence region, a pat-
tern of diamond shaped structures with alternating re-
gions of finite and suppressed transmission, thus leading
to NDR. For narrow barriers resonant tunneling across
layers become relevant. (ii) At zero bias, hybridization
of resonant modes leads to minibands with finite, nearly
unity, transmission, Fig. 2(b)-(e). At very low voltages
eVSD ∼ 10 meV (of the order of the miniband energy
width) the resonant states misalign, thus breaking the
minibands into off-resonance Wannier-Stark ladders with
suppressed transmission. This gives rise to a single cur-
rent spike near eVSD ∼ 10 meV. (iii) With increasing
eVSD, rungs of ladders from distinct minibands cross and
hybridize, showing a new set of resonant spikes in TSD,
Fig. 2(a), thus leading to current spikes and NDR.

II. PROPOSED SYSTEM & MODEL

The modulation of the Dirac cone into a superlattice
potential can be achieved by different setups. It was
shown that local charge transfer effects between graphene
and some metals (e.g.: Al, Cu, Ag, Au, Pt) rigidly shifts
the Dirac cone25–28, Fig. 1(a). A series of metallic stripes
over graphene can create the proposed superlattice po-
tential, Fig. 1(b). Equivalently, the same structure can
be obtained by selectively doping graphene regions in
an alternate fashion. Additionally, the aGNR could be
arranged along the doped/non–doped layers of a clived
semiconductor heterostructure34, Fig. 1(c). Narrow sys-
tems (. 400 nm) are desirable to keep transport ballistic
at room temperatures.

We consider low–energy excitations of graphene
within the envelope function approximation3,35, i.e.,
the graphene Dirac hamiltonian. The finite size of
the nanoribbon requires vanishing wave-functions at the
edges, where for aGNR both A and B sublattices of the
honeycomb lattice are present. This leads to vanish-
ing boundary conditions for the envelope functions at
these edges3. The validity of these boundary conditions
is discussed in Ref. 36. Within this description, the elec-
tronic structure of an aGNR is a quantized Dirac-cone,
ε = s~vf

√

k2x + k2n . Here s = ±1 for the conduction
and valence bands, vf ≈ 1015 nm/s is the Fermi veloc-
ity, kx is the momentum in the longitudinal direction x̂,
kn = nπ/W − 4π/3a0 is the quantized transverse mo-
mentum with integer n, and W = 346a0 ∼ 50 nm. The
fundamental gap is given by ∆0 = 2~vf|kn0 | = 28 meV,
with kn0 ∼ −0.021 nm−1.

To calculate the transmission TSD ≡ TSD(ε, kn, VSD)
we use the transfer matrix formalism37, which relates the
coefficients of the incoming and outgoing plane waves at
the source and drain leads across the superlattice lay-
ers (See Appendix for details). We consider a piece-
wise constant superlattice potential along the x direc-
tion, Figs. 1(b), through which the electronic structure
of each layer is shifted by the local potential. In Figs. 2-
4 we show TSD only for kn0 , as it contains the major
contribution for the current in all investigated cases.

The current density of Dirac electrons in graphene is
given by ~(r) = 4evfψ

†(r)~σψ(r), where the factor of 4
accounts for the valley and spin degeneracies, ψ(r) is the
envelope function spinor for the K or K ′ valley, and ~σ =
(σx, σy) are the Pauli matrices. Within the Landauer-
Büttiker formalism37,38, the current reads

ISD =
e

h

∑

n

∫ ∞

−∞

TSD(ε, kn, VSD) [fS(ε)− fD(ε)] dε, (1)

where fS(ε) = {1 + exp[(ε − µS)/kBT ]}
−1 and fD(ε) =

fS(ε + VSD) are the Fermi-Dirac distributions at the
source and drain, and µS is the source chemical potential.
We truncate the sum over n to a few kn near kn0 .
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FIG. 3: [Color online] Current and energy-voltage diagram
of the transmission coefficient for 5 barriers superlattice with
a = b = 100 nm [(a) & (b)] and a = b = 50 nm [(c) & (d)].
The current-voltage characteristics are shown for T = 300 K
and 0 K. For wide barriers (a)-(b) the current follows closely
the limiting “classical” case of TSD either 0 across bandgaps,
or 1 otherwise (dashed line).

III. RESULTS

In Fig. 2(b) we consider a narrow graphene well with
a = 50 nm and b → ∞. The solution of the graphene
Dirac equation within the bandgap ∆0 region shows a
confined state39. This state corresponds to the resonant
spike within the ∆0 region in Fig. 2(b) for 2 barriers.
For N barriers the confined states hybridizes into N − 1
states, leading to minibands for large N , Figs. 2(c) and
(d). The minibands away from the ∆0 region occur due
to reflections at each interface. For finite bias the mini-
bands break into single resonant levels, Wannier-Stark
ladders, as the confined modes from each layer misalign,
Fig. 2(e). At the crossings of Wannier-Stark ladders from
distinct minibands the transmission increases due to res-
onant tunneling.

NDR regimes

To contrast distinct NDR regimes in our system, we
discuss the current-voltage characteristics I–VSD and the
energy–voltage TSD diagram for the following three cases.
We compare 5-barrier superlattices with (i) wide layers
[Fig. 3(a)-(b)] and (ii) narrow layers [Fig. 3(c)-(d)]. We
then discuss (iii) a 20-barrier superlattice with narrow
layers, Fig. 4. The dashed lines in the TSD diagrams
delimit the zero temperature window of integration for
ISD, defined between the source µS = 230 meV and drain
µD = µS − VSD chemical potentials.

1. “Classical” regime

For wide layers, a = b = 100 nm, tunneling
across bandgaps is strongly suppressed and the TSD di-
agram, Fig. 3(b), follows closely the diamond pattern in
Fig. 1(d). For eVSD . ∆εF = 230 meV the current in-
creases monotonically as the barriers bandgaps misalign.
At the coincidence region, eVSD & ∆εF = 230 meV,
crossings of barrier and valley bandgaps lead to the dia-
mond pattern of finite and suppressed TSD. This alter-
nation leads to the NDR near VSD = 350 and 450 mV,
in Fig. 3(a). The intensity of the NDR in this regime
increases with the layers width, as the tunneling across
bandgaps becomes more suppressed. The dashed curve
in Fig. 3(a) is calculated with the limiting case where
tunneling is completely suppressed across bandgaps, i.e.:
T classical
SD = 0 across a bandgap, and 1 otherwise. Note

the similarity of the dashed “classical” line with the exact
ISD calculations in Fig. 3(a).

For narrow layers, a = b = 50 nm in Fig. 3(c)-(d), the
NDR due to “classical” regime is absent as it requires
strong tunneling suppression. Interestingly, however, the
TSD diagram of a few narrow layers clearly shows the evo-
lution of the zero-bias minibands into Wannier-Stark lad-
ders with increasing VSD, Fig. 2(e). The Wannier-Stark
ladders remain as individual transmission spikes while
there is an overlap of barriers (or valley) bandgaps. For
eVSD > (N − 1/2)∆0 this condition is violated, and the
tunneling across individual bandgaps dominate. At the
crossings of barrier and valley bandgaps, resonant effects
are still visible in the TSD diagram as stripes, correspond-
ing to confined states between the overlapping bandgaps,
see Fig. 3(d) near ε = −50 meV and VSD = 400 mV.

2. Miniband regime

Considering a larger number of barriers, N = 20 in
Fig. 4, the aligned resonant modes hybridize into super-
lattice minibands, Fig. 2. If µS is located within the
miniband, at low biases the current is dominated by the
transmission across these resonant modes. As the bias
increases, the modes misalign breaking up the miniband
into Wannier-Stark ladders. For 5 barriers, Fig. 2(a),
the rungs of the ladders shows non-resonant transmis-
sion peaks, and enhanced resonant transmission at cross-
ings of the rungs [see Wannier-Stark ladder regime be-
low]. For 20 barriers, transmission through non-resonant
rungs is strongly suppressed due to the larger number of
bandgaps. At very low voltages, Fig. 4, the current ini-
tially increases with VSD as the transport occurs through
the miniband. Near eVSD ∼ 10 meV (of the order of the
miniband width) the miniband breaks up into the non-
resonant rungs suppressing the current, thus resulting in
a pronounced current peak.



4

(b)

0 100 200 300 400 500 600

Bias Voltage (mV)

-300

-200

-100

0

100

200

300

E
n
e

rg
y
 (

m
e
V

)

0

1

T
ra

n
s
m

is
s
io

n
 T

S
D

(b)

C
u

rr
e
n

t 
(�

A
)

(a)

0

1

2

3

4

5

6

x6

x10

(a)

20 barriers

a=b=50 nm

300 K

0 K

FIG. 4: [Color online] (a) Current-voltage characteristics and
(b) TSD diagram of a 20-barrier aGNR superlattice with
a = b = 50 nm. In (a) the currents for 0 and 300 K in
the range 0 ≤ VSD ≤ 125 mV are multiplied by 6 and 10, re-
spectively, for clarity. As the voltage increases the miniband
near 230 meV, Fig. 2(e), breaks up as the resonant levels mis-
align, leading to the pronounced spike near 10 mV for 0 K.
Near 50 mV the resonant levels return as resonant crossings
of Wannier-Stark ladder rungs [see also Fig. 2(a)]. At the
crossings TSD increases, showing current spikes at both 0 and
300 K for VSD < 230 mV. For VSD > 230 mV the current
spikes arise from crossings of rungs at the coincidence region.

3. Wannier-Stark ladder regime

With increasing bias, rungs from Wannier-Stark lad-
ders of distinct minibands cross, Fig. 2(a), creating
new resonances through the superlattice layers. For 20
barriers, where transmission from non-resonant rungs
is strongly suppressed, the crossings show sharp TSD
stripes, e.g., at VSD = 75, 110, 150, and 210 mV,
Fig. 4(b). Each of these stripes, and others with lower
contrast at smaller voltages, leads to current spikes in
Fig. 4(a). The spikes broaden with increasing bias as
the bandgaps misalign. For eVSD > ∆εF = 230 meV,
the crossings of broadened Wannier-Stark ladders from
minibands near the barrier and valley bandgaps show
diamond-shaped structures in the TSD diagram, thus
leading to a series of NDR spikes similar to the classi-
cal regime.

IV. CONCLUSIONS

We have found that three distinct regimes can lead to
NDR in semiconducting aGNR superlattices. (i) In the
“classical” regime the NDR occurs as the bandgaps of dif-
ferent layers cross with increasing VSD. (ii) For narrow
layers and very low biases, eVSD ∼ 10 meV, the trans-
port is dominated by the resonant tunneling through the

miniband, and the NDR occurs as the miniband breaks
into Wannier-Stark ladders with increasing bias. (iii) For
higher bias rungs of distinct ladders cross originating new
resonances and current peaks. Interestingly, due to the
high mobility of the carriers, we obtain low bias NDR
peaks with high current densities.

Final remarks

The predicted NDR effects reported here are strictly
valid for ballistic electronic transport through ideal
aGNR superlattices. For relatively clean systems, how-
ever, we expect detrimental effects such as those induced
by disorder, impurities and structural defects23,24,40,41 to
broaden the resonances in the I-V curves, thus possibly
reducing the peak-to-valley current ratios. Interestingly,
a recent calculation for the electronic transport through
a single-barrier defined on a zigzag-terminated graphene
nanoribbon shows evidence for a transport gap despite
the gapless spectrum of the edge states of the system42.
Therefore, we expect that a superlattice defined on a
zigzag graphene nanoribbon should exhibit transport fea-
tures similar to those of the armchair case investigated
here. The effects of edge irregularities, strong disorder
and interactions (even at the Hartree level) lie beyond
the scope of the present work and deserve further study.
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Appendix A: Transfer Matrix

In this Appendix we detail the calculation of the trans-
mission coefficient TSD through the nanoribbon super-
lattice via the transfer matrix approach. We describe
the potential across the system as piecewise constant,
Fig.1(b). In each layer the potential is a constant Vj =
V SL
j − eVSDxj/L. The superlattice potential V

SL
j is 0 for

valleys, and Vb = 230 mV for barriers (typical value ob-
tained from Refs. 25–28). The second term is the poten-
tial energy drop across the jth layers due to the electric
field, where xj is the coordinate of the center of the layer
j, and L is the distance between the source and drain.
The solution of the Dirac equation in each layer j (j =

S and D for the source and drain, and an integer for the
intermediate layers) is given by the plane waves spinors2,3
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ψj,n(x, y) = eiknyϕj(x). For convenience we write the x-
component in a matrix form ϕj(x) = Mj(x)φj , where
the components of the spinor φTj = (αj βj)

T denote the
coefficients of the outgoing and incoming plane waves.
The matrix Mj(x) is

Mj(x) =

(

eik
(j)
x x e−ik(j)

x x

sje
ik(j)

x x+iθj,n −sje
−ik(j)

x x−iθj,n

)

. (A1)

The eigenenergies in each layer are εj,n = Vj +

sj~vf

√

(k
(j)
x )2 + k2n , with sj = +1 for the conduction

band and sj = −1 for the valence band, k
(j)
x is the

longitudinal momentum in layer j, kn is the quantized
transversal momentum (conserved through the system),

and θj,n = tan−1(kn/k
(j)
x ).

The continuity of the spinors at the interfaces yields
ϕj(xj,j+1) = ϕj+1(xj,j+1), where xj,j+1 is the position
of the interface between the layers j and j+1. Applying
this matching throughout the system, we obtain a 2× 2
matrix equation connecting the coefficients from source
and drain φS = TMφD, where TM is the transfer matrix
given by

TM =
∏

j

M−1
j (xj,j+1)Mj+1(xj,j+1). (A2)

The definition of the reflected and transmited waves
depends on the sign of the electron energy at source sS
and drain sD, such that the source and drain coefficients
are given by

φTS =

{

(1 r), if sS = +1,
(r 1), if sS = −1,

(A3)

φTD =

{

(t 0), if sD = +1,
(0 t), if sD = −1.

(A4)

From the graphene Dirac hamiltonian, the current den-

sity reads J
(j)
x = 4evfϕ

†
j(x)σxϕj(x). At the stationary

regime the current flow at source and drain is the same,
requiring the match JS

x = JD
x , from which we identify the

transmission coefficient TSD,

TSD(ε, kn, VSD) = |t|2
cos θD
cos θS

. (A5)

This transmission coefficient as a function of the energy
reveals the electronic structure of the system, in which
the confined modes in between the layers show up as
resonant spikes and minibands, Fig. 2.
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