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Quantum phases provide us with important information for understanding the fundamental prop-
erties of a system. However, the observation of quantum phases, such as Berry’s phase and the
sign of the matrix element of the Hamiltonian between two non-equivalent localized orbitals in a
tight-binding formalism, has been challenged by the presence of other factors, e. g. , dynamic phases
and spin/valley degeneracy, and the absence of methodology. Here, we report a new way to directly
access these quantum phases, through polarization-dependent angle-resolved photoemission spec-
troscopy, using graphene as a prototypical two-dimensional material. We show that the momentum-
and polarization-dependent spectral intensity provides direct measurements of (i) the Berry’s phase
and (ii) the sign of matrix elements for non-equivalent orbitals. Upon rotating light polarization by
π/2, we found that graphene with a Berry’s phase of nπ (n=1 for single- and n=2 for double-layer
graphene) exhibits the rotation of ARPES intensity by π/n and that ARPES signals reveal the
signs of the matrix elements in both single- and double-layer graphene. The method provides a new
technique to directly extract fundamental quantum electronic information on a variety of materials.

PACS numbers: 79.60.Jv, 03.65.Vf, 31.15.aq, 81.05.ue, 73.22.Pr

I. INTRODUCTION

Quantum phases are the most beautiful example of quantum physics and essential to understand physics in any
material. For example, Berry’s phase, the accumulated phase in the eigenfunction acquired by evolving the quantum
system adiabatically around a closed loop in the parameter space of the Hamiltonian1, has been shown to be responsible
for the Aharonov-Bohm effect2, the half-integer quantum Hall effect3–5, etc. Another important example is the sign of
the hopping matrix element (or hopping integral) 〈φ1|H |φ2〉 of the Hamiltonian between two non-equivalent localized
orbitals φ1 and φ2 in a tight-binding formalism. This phase, a fundamental quantity in determining the electronic
structure of a system, is dictated by the characteristics of the atomistic interaction, e. g. , whether it is attractive or
repulsive. Both of them are important to directly extract fundamental quantum electronic information on a variety
of materials6–8.
In graphene, the Berry’s phase is theoretically extracted from the spinor eigenstate, which are π for single- and

2π for double-layer graphene3. These values have been measured through magneto-transport experiments4,5 that are
typically neither capable of measuring Berry’s phase of a specific electron bandstructure nor free from spin/valley
degeneracy of the electron bandstructure of a system under study. Additionally, this method requires strong magnetic
field, which breaks time-reversal symmetry in graphene. Meanwhile, the signs of hopping integrals between non-
equivalent orbitals for graphene/graphite have only been determined by ab initio calculations9, e. g. , using maximally
localized Wannier functions10. Since the sign of hopping integral depends on the characteristics of the localized orbitals
and the interaction between them, it is crucial in determining the electron bandstructure within a tight-binding
formalism. However, the absence of methodology has led to use the signs following the well-known Slonczewski-Weiss-
McClure model11,12 without experimental verification for the past few decades. Additionally, the sign of hopping
integral between non-equivalent orbitals has never been determined experimentally for any material.
Given the high momentum-resolving power of angle-resolved photoemission spectroscopy (ARPES), ARPES is an

ideal candidate to solve above issues on the determination of quantum phases. For example, the phase difference
between the matrix elements describing two different optical transitions at the (110) surface of plat-
inum was extracted from a combined study of a spin-resolved ARPES experiment and a theoretical
model13. Also, ARPES has been employed to study the characteristics of the spinor eigenstates in graphite14 and
graphene15, which revealed an interference effect between photo-excited electrons14,15. However, these theoretical
studies, within a tight-binding formalism, have incorrectly treated the interaction Hamiltonian, which is the key part
in the photoemission process as it describes the interaction between photons and electrons. Moreover, it has not been
clear how Berry’s phase enters in ARPES intensity and the sign of hopping integral has only been speculated without
any comparison with experiments15, which naturally leads incorrect values.
Here we report that ARPES can indeed provide information on these quantum phases, e. g. , the Berry’s phase and

the sign of hopping integral between non-equivalent orbitals. The phase factor in the spinor eigenstate of graphene3
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gives rise to strong intensity variation around a constant energy contour. Upon rotating light polarization by π/2,
we found that graphene with a Berry’s phase of nπ (n=1 for single- and n=2 for double-layer graphene) exhibits
the rotation of ARPES intensity maxima by π/n, which gives important advantages compared to the conventional
magneto-transport method4,5. Additionally, we found that full polarization-dependence of ARPES signal reveals the
sign of hopping integrals in both single- and double-layer graphene (graphite can also be understood), e. g. , γ′0 > 0,
γ′1 > 0 , γ′3 > 0, and γ′4 > 0, which is the first experimental determination of the sign of hopping integral between
non-equivalent orbitals for any material by any method.

II. SAMPLE PREPARATION

Single- and double-layer graphene samples were grown epitaxially on n-doped 6H-SiC(0001) surfaces by electron-
beam heating, as detailed elsewhere16. An SiC sample was mounted in a prep-chamber with a base pressure of
5×10−10 Torr to remove a thick oxide layer from the sample by heating at 600 ◦C for a few hours. The clean sample
was then transferred to a custom-designed chamber equipped with low-energy-electron microscopy (LEEM) with a
base pressure of 2×10−11 Torr and heated to 1000 ◦C under Si flux to improve the surface conditions for graphene
growth. The sample temperature was raised to 1400 ◦C or 1600 ◦C (determined by an optical pyrometer) to make
single- or double-layer graphene, respectively.
The surface morphology was monitored in situ during the sample growth by LEEM at the National Center for

Electron Microscopy at Lawrence Berkeley National Laboratory. The thickness of fabricated graphene samples was
determined by LEEM measurements performed at room temperature following the standard procedure17,18. In par-
ticular, the electron reflectivity versus kinetic energy curve varies significantly with the number of graphene layers
providing position-dependent measurements on the number of graphene layers. A typical bright field image for double
layer graphene is shown in Fig. 1(a) over 4 µm×4 µm range, recorded with electron beam of kinetic energy 3.5 eV
denoted as the dashed line in Fig. 1(b). In order to determine the number of graphene layers at each position, the
electron reflectivity is plotted as a function of electron kinetic energy, as shown in Fig. 1(b), where the number of dips
is the same as the number of graphene layers. Regions 1, 2, and 3 in Fig. 1(a) show 1, 2, and 3 dips, respectively,
corresponding to single-, double-, or triple-layer graphene, respectively. These regions are painted in black, white,
and grey, respectively, in Fig. 1(c). The fractions of regions in the sample covered by different numbers of graphene
layers were determined from the areal fractions of differently colored regions in Fig. 1(c). In particular, we find that
the double-layer graphene sample contains ∼74 % of double-layer and ∼22 % of single-layer graphene.

III. EXPERIMENT

We have performed polarization-dependent ARPES experiments on single- and double-layer graphene at 10 K using
a photon energy of 50 eV at beam-lines 10.0.1 and 12.0.1 of Advanced Light Source at Lawrence Berkeley National
Laboratory. In Figs. 2(a) and 2(b), we show the typical geometry of ARPES experiments: a beam of monochromatized
light with energy ~ω and polarization vector ~ε is incident on a sample, resulting in the emission of photoelectrons in
all directions. The polarization vector of light is referenced with respect to the sample normal. In the experiment
presented here, two different geometries were employed as shown in Figs. 2(a) and 2(b). In one geometry shown in
Fig. 2(a), the polarization of light is almost parallel to the x axis, while in the other shown in Fig. 2(b) to the y axis;
hence, we define these two geometries as X- and Y-polarization, respectively. These geometries have the advantage
with respect to the conventional s- and p-polarizations used in previous studies 19,20, to measure the whole two-
dimensional variation of the intensity maps around a singular (Dirac) point and not just the intensity distributions
along two characteristic lines in momentum space. This aspect becomes particularly relevant for some experimental
conditions, e. g. , photon energy and sample orientation (i. e. , the mixture of light polarizations), when the intensity
maps (or initial electronic states) are neither symmetric nor anti-symmetric with respect to the reflection plane.
Under this condition in fact, the conventional notations would not give appropriate information on the symmetry of
the initial states.
Figures 2(c) and 2(d) show the experimental photoelectron intensity maps at the Fermi level, EF, versus the two-

dimensional wavevector k for single-layer graphene, for the two polarization geometries. Here, EF is 0.4 eV above
the Dirac point energy, ED

17,21,22. The main feature in the intensity maps of both geometries is an almost circular
Fermi surface centered at the K point as shown in Figs. 2(c) and 2(d), as expected for a conical dispersion. This is
in good agreement with a recent polarization-dependent ARPES study on single-layer graphene when using photons
with energy lower than 52 eV23. Surprisingly we find that the the angular intensity distribution is quite different for
the two polarizations: for the X-polarization geometry, the minimum intensity position is in the first Brillouin zone,
whereas for the Y-polarization geometry, the maximum intensity position is in the first Brillouin zone, suggesting a
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π rotation of the maximum intensity in the kx-ky plane around the K point upon rotating the light polarization by
π/2, from X to Y (see the white arrows).
The exact rotation angle is extracted from the direct comparison between the raw momentum distribution curves

(MDCs) in Fig. 2(e) and the angular dependence of the photoelectron intensity maps integrated over the radial
direction around the K point in Fig. 2(f). There is an overall shift of the intensity maxima (minima) by ∼ π upon
changing the light polarization from X (black solid line) to Y (black dashed line), although the latter appears to be
slightly shifted by ∼ π/10 with respect to π. As we will show later, this is due to the presence of a finite polarization
component along the kx direction in our experimental geometry.
We note that not only the angular position of the intensity maximum, but also the absolute value

of it changes upon changing light polarization. The maximum intensity ratio from experiments is X-
pol./Y-pol.=21.4. However, this number itself is not very meaningful, because the measured ARPES
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FIG. 1: (a) A LEEM image using an electron energy of 3.5 eV over 4µm×4µm range. (b) Reflectivity spectra for the three
regions (1, 2, and 3) specified in (a). (c) Post-processed image of (a) showing the regions covered by single-, double-, and
triple-layer graphene. (d) A histogram showing the fractions of single-, double-, and triple-layer graphene in our sample used
for double-layer graphene measurements.



4

Κ

X-polarization geometry

zx εεε ˆ42.0ˆ91.0~ +
r

(a) 

kz

ћω

e  
_

Κ

(b)

ћω

e  
_

zyx
εεεε ˆ10.0ˆ99.0ˆ07.0~ ++

r

Y-polarization geometry

(c) (d)
ED+0.4 eV

kx

ky

kz

kx

ky Y-polarization

kx - K

EFX-polarization EF

k
y

(e) 

0 2ππ

θ (rad.)

In
te
n
s
it
y
 (
A
rb
. 
U
n
it
s
)

Γ Κ
kx

ky

θ

X-polarization

Y-polarization

(f) 

Min.

Max.

FIG. 2: (Color online) (a) X-polarization geometry. (b) Y-polarization geometry. A beam of monochromatic lights with energy
~ω =50 eV and polarization vector ~ε is incident on a sample. The light polarizations in X- and Y-polarization geometries are
almost parallel to the x and y axes, respectively. (c, d) Measured intensity maps of single-layer graphene at energy E = EF

with X- and Y-polarized lights, respectively. Intensity maxima are denoted by white arrows and the electronic band structure
of single-layer graphene is drawn in the cartoon. (e) Constant-energy ARPES intensity maps for single-layer graphene at EF

with X- and Y-polarized light. (f) The angle-dependent intensity profiles of single-layer graphene are obtained by integrating
the constant-energy intensity map along the radial direction from the Dirac point, in which the solid and dashed lines denote
the experimental data for X- and Y-polarized lights, respectively. The angle θ is measured from the +kx direction. The plotted
quantities are with respect to the intensity minimum.
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FIG. 3: (Color online) (a, b) Measured intensity maps of double-layer graphene at energies E = ED + 0.25 eV (= EF) and
E = ED − 0.95 eV. Intensity maxima are denoted by white arrows and the electronic band structure of double-layer graphene
is drawn in the cartoon. (c) Measured intensity maps of double-layer graphene at energy E = EF. (d) The angle-dependent
intensity profiles of double-layer graphene at energy E = EF, in which the solid and dashed lines denote the experimental data
for X- and Y-polarized lights, respectively. The plotted quantities are with respect to the intensity minimum.

intensity is affected by the difference in the experimental geometries for X- and Y-polarized lights (the
difference in the out-of-plane component of light polarization, photon flux per unit area, etc., which
are the factors that cannot be controlled to be the same in different experimental geometries). On
the other hand, the ratio from our theory that will be discussed later provides X-pol./Y-pol.=0.83,
assuming that the experimental parameters for two geometries are the same except for the in-plane
light polarization.
A similar study on Bernal stacked double-layer graphene reveals a strong and complicated momentum-, band-,

and polarization-dependence as shown in Fig. 3(a) and 3(b), that is qualitatively different from that of single-layer
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FIG. 4: (Color online) (a) Schematic of single- and double-layer graphene. (b) The Brillouin zone. Here, b1 = b (0, 1),
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)
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, respectively.

graphene. Like single-layer graphene, the double-layer sample is slightly n-doped22, therefore only three of the four π
bands are occupied and hence detectable with ARPES as shown in the cartoon of Fig. 3. The most prominent feature
is that, when the light polarization is changed from X to Y, the maximum intensity positions around the K point in
the kx-ky plane are rotated by ∼ π/2 (see white arrows at EF). This is in striking contrast with the single-layer case
where the rotation is ∼ π as seen from the raw MDCs in Fig. 3(c) and the photoelectron intensity maps integrated
over the radial direction around the K point shown in Fig. 3(d). Due to trigonal warping effects24, however, the
rotation for higher-energy states is not exactly π/2 as shown in Figs. 3(a) and 3(b).

IV. THEORETICAL ANALYSIS

To the best of our knowledge, the only models in the literature describing the polarization-dependence of the
ARPES intensity in graphite14 and graphene15 are substantially different from our results. Previous studies, in
fact, predict a small polarization-dependence and no polarization-dependence of the photoelectron intensity maps,
respectively. Therefore, to be able to reproduce our experimental findings and understand what lies behind this
nontrivial polarization dependence, we have developed a new model. In particular, we first consider the Hamiltonian
using the tight-binding model based on the pz orbital of each carbon atom using two parameters: t0 and t1 for
the in-plane nearest-neighbor (A-B or A′-B′) and the inter-layer vertical (B-A′) hopping integrals, respectively, as
schematically drawn in Fig. 4(a). The parameters t0 and t1 correspond to −γ′0 and γ′1 in the well-known Slonczewski-
Weiss-McClure (SWMc) model11,12, respectively. In our calculation, we have used |t0| = 3.16 eV and |t1| = 0.39 eV,
which are the values in Table II of Grüneis et al.9, but we do not fixed the signs of them. Note that all four possible
choices of the signs give exactly the same electron energy bandstructure within this two-parameter tight-binding
model.
With this setup, the tight-binding Hamiltonian of a double-layer graphene for two-dimensional wavevector k =

(kx, ky) using a basis set composed of Bloch sums of localized orbitals on each of the four sublattices (A, B, A′, and
B′) reads

H0
double(k) =



















0 t0 g(k) 0 0

t0 g
∗(k) 0 t1 e

−i kz d 0

0 t1 e
i kz d 0 t0 g(k)

0 0 t0 g
∗(k) 0



















. (1)
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Here,

g(k) =

3
∑

i=1

exp(ik · bi) (2)

with bi’s defined as in Fig. 4(a), and







1
0
0
0







k

=
1√
N

∑

RA

eik·RAφ(r−RA) , (3)







0
1
0
0







k

=
1√
N

∑

RB

eik·RBφ(r −RB) , (4)

etc. We note that often the k-dependence of the basis function is suppressed in the spinor notation for simplicity. In
Eq. (1), we have considered a phase difference e±i kz d arising from the finite inter-layer distance d and
the perpendicular component of electron wavevector kz. Here, kz is not part of the Bloch momentum,
but the z component of the photoelectron wavevector, which is determined by the photon energy. This
quantity plays a crucial role in determining the ARPES intensity of double-layer graphene as will be
discussed later and also of multi-layer graphene as previously reported25.
The additional interaction Hamiltonian coupling to electromagnetic waves of wavevector Q for a double-layer

graphene Ĥ int
double can be obtained by using the velocity operator v̂ =

[

r̂, Ĥ0
double

]

/i~, where r̂ = i~ (∇k, ∂kz
) in the

k-representation and ~ is the Planck’s constant, as − e
c Â · v̂26 [e is the charge of an electron, c is the speed of light,

and the external vector potential is given by A(r, t) = AQe
i(Q·r−ωt)]28 , i. e. ,

H int
double(k,Q) = − e

~ c
AQ ·



















0 t0 ∇kg(k) 0 0

t0 ∇kg
∗(k) 0 −i d t1 e−ikzd ẑ 0

0 i d t1 e
ikzd ẑ 0 t0 ∇kg(k)

0 0 t0 ∇kg
∗(k) 0



















. (5)

The transition matrix elements in Eq. (5) are those taken between basis functions of Bloch sums of pz orbitals of
wavevectors k + Q and k. Equation (5) is valid when 1/|Q| is much larger than the distance between the nearest-
neighbor atoms b, i. e. , when the variation in A(r, t) over a length scale of b is much smaller than A(r, t) itself. We
shall eventually take the Q → 0 limit in our discussion because the momentum of light is negligible for photon energies
considered.
For single-layer graphene, performing a similar type of analysis, we obtain

H0
single(k) =





0 t0g(k)

t0 g
∗(k) 0



 , (6)

and

H int
single(k,Q) = − e

~ c
AQ ·





0 t0 ∇kg(k)

t0 ∇kg
∗(k) 0



 . (7)

H int is critical to explain the polarization dependence of Ik, because it describes the interaction between electrons
and photons. The lack of polarization dependence in previous studies14,15 is indeed due to the way in which H int is
incorrectly treated. In one case15, the light interaction is completely neglected by setting H int = 1, while in the earlier
study on graphite14, the velocity operator v is replaced by the momentum p/m0 = −i~∇/m0, where ~ is the Planck’s
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FIG. 5: (Color online) (a, b) Calculated intensity maps of single-layer graphene for X- and Y-polarized lights, respectively.
The insets are the results of calculations14 using the simplified momentum operator instead of the correct velocity operator.
An arbitrary energy broadening of 0.10 eV has been used. Intensity maxima are denoted by white arrows. (c, d) The angle-
dependent intensity map of single-layer graphene for X- and Y-polarized lights, respectively, in which the solid black, solid red,
and dashed blue lines denote the experimental data, the calculated results obtained by assuming the actual light polarization
used in the experiment, and the calculated results obtained by assuming perfectly Y-polarized light, respectively. The theory
results shown in (a) and (b) have adopted the light polarization used in the actual experiment shown in Figs. 2(a) and 2(b)).
The plotted quantities are with respect to the intensity minimum.

constant and m0 the free-electron mass. This replacement works27,28 only when the Hamiltonian is local, whereas a
tight-binding Hamiltonian, which has been used in the previous studies14,15 as well as our study, is intrinsically non
local. The experimental finding of a strong polarization dependence of Ik in Figs. 2 and 3 clearly shows the need for a
more complete theoretical treatment. We have developed a theory using the widely adopted tight binding model with
one pz-like localized orbital per carbon atom, but employing the appropriate interaction Hamiltonian with the velocity
operator. A very good agreement between our model and the experimental results is obtained for all polarizations
and for both single- and double-layer graphene, when we compare Fig. 2 with Fig. 5 and Fig. 3 with Fig. 6 as will be
discussed later.
In order to understand what lies behind the observed non-trivial and unexpected wavevector-dependent pho-

toelectron intensity Ik, we need to calculate the absolute square of the transition matrix element Msk =
〈fk+Q|H int(k,Q) |ψsk〉, where |ψsk〉 is a single- or double-layer graphene eigenstate with s = ±1 the band index,
|fk+Q〉 is the plane-wave final state projected onto the pz orbitals of graphene [both |ψsk〉 and |fk+Q〉 are expressed
using the basis set of Bloch sums of localized pz orbitals at sublattices A and B in Fig. 5(a)] and H int = − e

cA · v26,

which should not be neglected in photoemission process15. The use of a projection of the final plane-wave state onto
the Bloch sum, which – when using plane-waves basis – is effectively composed of multiple plane-waves29, allow to
explain the non-trivial polarization dependence of the ARPES intensity distribution in Figs. 2(c) and 2(d). Since the
polarization of A is in the x-y plane, the projection of |fk〉 onto the σ-states of graphene will result in zero contribution
to the transition matrix elements and hence are neglected in this analysis. For simplicity of notation, and without
any loss of generality, in the rest of this section, we shall take the limit of Q → 0 and denote H int(k) = H int(k,Q)
and |fk〉 = |fk+Q〉. For single-layer graphene, we may use

|fk〉 =
1√
2

(

1
1

)

k

(8)

and for double-layer graphene

|fk〉 =
1

2







1
1
1
1







k

. (9)

For photons (with energy ≈ 50 eV) used in the experiment, kz of the planewave final state is much larger than the
variation of two-dimensional Bloch wavevector k around a single Dirac point, leading to only a small variation in
kz with any change in k around a single Dirac point. For light with a nonzero polarization component along the z

direction, it will only give rise to an additive isotropic term to the photoelectron intensity that is independent of the
in-plane polarization of the light.
Now, let us consider the case where k is very close to the Dirac point K as shown in Fig. 4(b), and define q = k−K

(|q| ≪ |K|). According to Eq. (2),

g(q+K) ≈ −
√
3

2
a (qx − iqy) , (10)
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where a is the lattice parameter. For single-layer graphene, therefore,

H0
single(q+K) ≈ −

√
3

2
at0 (qx σx + qy σy) , (11)

and

H int
single(q+K) ≈

√
3e

2~c
at0 (A0x σx +A0 y σy) , (12)

where σx and σy are the Pauli matrices. The energy eigenvalue and wavefunction of Eq. (11) are given by Esk =√
3
2 a|t0| s |q| and

|ψsk〉 =
1√
2

(

e−iθq/2

−sgn(t0) s e
iθq/2

)

, (13)

respectively, when θq is the angle between q and the +kx direction. Using Eqs. (8), (12), and (13), the transition
matrix element is given for light polarized along the x direction by

Mx−pol
sk ∼ exp(−iθq/2)− sgn(t0) s exp(iθq/2) . (14)

It follows that for s = +1 (states above the Dirac point energy),

|Mx−pol
+1k |2 ∼ sin2(θq/2) (15)

and

|Mx−pol
+1k |2 ∼ cos2(θq/2) (16)

with t0 > 0 and t0 < 0, respectively.
Similarly, for light polarized along the y direction, the transition matrix element is given by

My−pol
sk ∼ exp(−iθq/2) + sgn(t0) s exp(iθq/2) . (17)

It follows that for s = +1 (states above the Dirac point energy),

|My−pol
+1k |2 ∼ cos2(θq/2) (18)

and

|My−pol
+1k |2 ∼ sin2(θq/2) (19)

with t0 > 0 and t0 < 0, respectively.
In both cases, we can explain the rotation of the intensity maximum in the photoelectron intensity map around the

K point by π upon the change from X- to Y-polarized light. Comparing Eqs. (15) and (16) with Eqs. (18) and (19),
irrespective of the sign of t0, the maxima of the photoemission intensity map of single-layer graphene is rotated by π
when the light polarization is rotated by π/2, in agreement with experiment shown in Fig. 2. Moreover, the theoretical
results with t0 < 0 shown in Figs. 5(a) and 5(b) agree with the measured angular spectral intensity shown in Figs. 2(c)
and 2(d); especially, the choice of |t0| = 3.16 eV (fitted to previous experiments9) reproduces quite well the salient
features in the experimentally measured intensity maps.
This is even more clear from the angular dependence of theoretical photoelectron intensity drawn with the red solid

lines compared to experimental results drawn with the black solid lines in Fig. 5(c) and 5(d) . Note that experimental
intensity maximum for Y-polarized light shows additional shift by ∼ π/10 in Fig. 2(f). This additional shift is well
understood by a finite polarization component along the kx direction. When we assume the actual light polarization
used in the experiment shown in Fig. 2(b), the theoretical intensity exactly matches with the experimental result. On
the other hand, when we assume the ideal Y-polarization, the intensity maximum appears at π as shown with the
blue dashed line in in Fig. 5(d). Therefore, we determine through experiment that the inter-orbital hopping matrix
element t0 between two in-plane nearest-neighbor carbon pz orbitals is negative; we will come back to this point later.
Recent theoretical study on the matrix element in single-layer graphene23 has found that, in order to describe

the matrix element for Y-polarized light from first-principles calculations using plane-wave basis, one needs multiple
plane-wave components for the final photo-emitted electron state. Since we consider a projection of the final state
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FIG. 6: (Color online) (a, b) Calculated intensity maps of double-layer graphene for X- and Y-polarized lights, respectively.
An arbitrary energy broadening of 0.10, 0.10, and 0.15 eV have been used for bands 1, 2, and 3, respectively. Panels denoted
by ‘Ideal DG’ show results obtained by considering a double-layer graphene alone and those denoted by ’SG+DG’ show results
considering the contribution from some single-layer fraction of the sample as well (see text). Intensity maxima are denoted by
white arrows. (c, d) The angle-dependent intensity map of single-layer graphene for X- and Y-polarized lights, respectively,
in which the solid black, solid red, and dashed green lines denote the experimental data, the calculated results obtained by
considering the contribution from single-layer graphene portion of the sample, and the calculated results for ideal double-
layer graphene, respectively. The theory results shown in (a) and (b) have adopted the light polarization used in the actual
experiment as shown in Figs. 2(a) and 2(b). The plotted quantities are with respect to the intensity minimum.

onto the Bloch sum, which – when using the plane-waves basis – is effectively composed of multiple plane-waves29,
our approach can explain the non-trivial polarization dependence of the ARPES intensity distribution in Figs. 2(c)
and 2(d). Additionally, our result obtained by using photons with energy 50 eV is in good agreement
with the recent study23 based on first-principles calculations using photons with energy lower than
52 eV. This suggests that, at photon energy below 52 eV and only when the correct interaction
Hamiltonian is employed, the projection of the final state onto the tight-binding Bloch sum may
describe the true final state qualitatively. However, since our theoretical framework is within tight-
binding formulation, and not from first-principles calculations with plane-wave basis, convergence tests
with respect to the number of plane-waves and the character of the true final state are beyond the
scope of the present work and in fact has been done in a recent study23.
In the case of double-layer graphene, for simplicity of the analysis, we confine our discussion to the inner parabolic

bands (bands 1 and 2 in the cartoon in Fig. 3), although we considered all the four bands in our theoretical calculations
shown in Figs. 6(a) and 6(b). In double-layer graphene, for electronic states with energy |E| ≪ |t1| of the Hamiltonian
in Eq. (1), the energy and wavefunction are given by Esk ≈ s~2q2/2m∗ where m∗ = ~

2|t1|/2t20 and

|ψsk〉 ≈
1√
2









e−iθq

0
0

−sgn(t1) s e
iθq+ikzd









, (20)

respectively30. The phase difference eikzd between the two graphene layers in Eq. (1) appears here as well. Using
Eqs. (5), (9), and (20), the transition matrix element is given for light polarized along the x direction by

Mx−pol
sk ∼ exp(−iθq)− sgn(t1) s exp(iθq + ikzd) . (21)

It follows that for s = +1 (states above the Dirac point energy),

|Mx−pol
+1k |2 ∼ sin2(θq + kzd/2) (22)

and

|Mx−pol
+1k |2 ∼ cos2(θq + kzd/2) (23)
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with t1 > 0 and t1 < 0, respectively. The perpendicular component of the wavevector kz reads31,

kz =
√

2me(EKE + Vinner)/~2 − k2 (24)

where EKE is the kinetic energy of the photo-electron and Vinner the inner potential. Note here that k is a two-
dimensional Bloch wavevector, i, e. , it has no out-of-plane component. The inner potential has been measured for
graphite by analyzing the energy dispersion at normal emission (i. e. , k = 0)31. According to Eq. (24), kzd ≈ 3.9 π.
Similarly, for light polarized in the y direction, the transition matrix element for a double-layer graphene is given

by

My−pol
sk ∼ exp(−iθq) + sgn(t1) s exp(iθq + ikzd) . (25)

It follows that for s = +1 (states above the Dirac point energy),

|My−pol
+1k |2 ∼ cos2(θq + kzd/2) (26)

and

|My−pol
+1k |2 ∼ sin2(θq + kzd/2) (27)

with t1 > 0 and t1 < 0, respectively.
In both cases, we can explain the rotation of the intensity maximum in the photoelectron intensity map around

the K point by π/2 upon the change from X- to Y-polarized light. Comparing Eqs. (22) and (23) with Eqs. (26)
and (27), irrespective of the sign of t1, the maxima of the photoemission intensity map of a double-layer graphene
is rotated by π/2 when the light polarization is rotated by π/2, in agreement with experiment shown in Fig. 3. If

we assume that t1 > 0, which is qualitatively in agreement with experiment shown in Figs. 3(a) and 3(b), Ix−pol
+1k ∝

|Mx−pol
+1k |2 ∼ sin2(θq + kzd/2) and I

y−pol
+1k ∝ |Mx−pol

+1k |2 ∼ cos2(θq + kzd/2) for the upper band (s = +1). Therefore,
we have determined that the vertical inter-layer hopping matrix element t1 between two carbon pz orbitals sitting on
top of each other is positive; we will come back to this point later.
Although this model can overall account for the experimental data of double-layer graphene, there is a discrepancy:

the measured photoemission intensity at E = ED + 0.25 eV along the +kx direction for the X-polarization geometry
is finite, whereas the theory predicts this value to vanish as shown in the ED + 0.25 eV map of the Ideal DG in
Fig. 6(a). We believe that this discrepancy arises from the finite size of the light beam spot (∼80×40 µm2) which
covers not only the double-layer graphene portion but also some single-layer graphene, as discussed in Fig. 1. In
fact, double-layer graphene samples inevitably contain a finite amount of single-layer graphene17,18. The fraction
of single-layer coverage can be obtained by LEEM measurements17,18: from this analysis shown in Fig. 1, we find
that the double-layer graphene sample used here contains ∼74% double-layer and ∼22% single-layer graphene. When
the theoretical photoelectron intensity maps of single- and double-layer graphene are correspondingly weighted and
averaged, the results denoted by SG+DG in Figs. 6(a) and 6(b) are in excellent agreement with the experimental data
shown in Figs. 3(a) and 3(b). This is even more clear from the angular dependence of the photoelectron intensity
maps shown in the red solid lines in Fig. 6(c) and 6(d). Note that the presence of single-layer graphene does not
affect the results for the Y-polarization, which is obvious when we compare the red solid and green dashed lines in
Fig. 6(d), because both the intensity maxima of single- and double-layer graphene occur near θ = π.

V. DISCUSSION

A. Berry’s phase

We have shown that, when the light polarization is rotated by π/2, the maximum intensity position in Ik in the
kx-ky plane of single- and double-layer graphene is rotated by π/n, where n = 1 and n = 2 for single- and double-layer
graphene, respectively. The physical meaning of these rotations, whose origins rests on the phase factor exp (±i n θq/2)
of the sublattice amplitude of the wavefunctions24, becomes clear upon a complete circulation of q around the Dirac
point K (θq → θq + 2π), which directly gives a Berry’s phase β = n∆θq/2 = nπ24. Recently the Berry’s phase
interpretation of n3–5 has been challenged by a different interpretation in terms of pseudospin winding number32.
The fact that n θq/2 enters in Ik in the form of either sin2 (n θq/2 + ϕ) or cos2 (n θq/2 + ϕ) with some constant ϕ,

demonstrates that the matrix elements directly contain information on the Berry’s phase. The rotation of light polar-
ization gives an additional phase π/2 to the phase factor, i. e. , exp (±i n θq/2) → exp (±i n θq/2 + i π/2). Thus, the

photoelectron intensity Ik is modified accordingly from sin2 (n θq/2 + ϕ) → cos2 (n θq/2 + ϕ) or cos2 (n θq/2 + ϕ) →
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sin2 (n θq/2 + ϕ) upon the rotation of light polarization by π/2, i. e. , the π/n rotation of Ik. This prediction is exactly
realized in our experimental results.
The power of our method is that it can be extended in a straightforward way to other materials with Berry’s phase

β = nπ (not necessarily π or 2π). In this case, the photoemission intensities for X- and Y-polarization geometries

are given by Ix−pol
k ∝ sin2 (n θq/2 + ϕ) and Iy−pol

k ∝ cos2 (n θq/2 + ϕ), where ϕ is a system-dependent constant. The
important feature is that the rotation of light polarization by π/2 results in a rotation of intensity maxima by π/n
for a system with β = nπ regardless of the constant ϕ. In other words, the results for single polarization geometry15

do not provide information on Berry’s phase. Thus, we have demonstrated here that the Berry’s phase can directly
be measured from polarization-dependent ARPES.
Unlike methods based on magneto-transport experiments4,5, our new method have three important advantages.

(i) The Berry’s phase of a specific electronic band can be measured, because ARPES has the angle-resolving power
and also because one can set up a tight-binding Hamiltonian focussing on only the electronic states of interest: those
two results can directly be compared with each other. (ii) Due to the angle-resolving power, the measured result is
free from valley/spin degeneracy for the case of graphene. (iii) Our method does not need electric gating, which is
essential for the transport measurements.

B. The sign of inter-orbital hopping integrals

Another important finding of our study is that we can directly extract, for the first time, the sign and the absolute
magnitude of the inter-orbital hopping integrals (IOHIs) between non-equivalent localized orbitals of a tight-binding
Hamiltonian from experiment. Until now, in fact, the sign determination of an IOHI has resorted no to any ex-
perimental method, but to ab initio calculations, e. g. , using maximally localized Wannier functions10. In order to
understand an ambiguity related with the experimental sign determination, we take the simplest one-dimensional
example, and extend the discussion to a more complicated tight-binding model of graphitic systems than the one de-
scribed previously. We consider simple tight-binding models having s-like localized states whose values are all positive
in real space (we can arbitrarily set this gauge without losing generality.) If there is only one localized orbital per unit
cell in a one-dimensional tight-binding model as drawn in Fig. 7(a), the energy bandstructure varies with the sign
of the IOHI t′ as shown in Fig. 7(b). Hence, the sign of IOHIs between “equivalent” orbitals can always be trivially
determined33.
However, if we consider the case where there are two non-equivalent localized orbitals φs and φ′s whose value in

real space is positive and if we denote the IOHI between the nearest neighboring orbitals by t′′ as drawn in Fig. 7(c),
the actual band structure is invariant when we change the sign of t′′ as shown in Fig. 7(d). Therefore, even when
the actual electronic band structure is empirically determined, the sign of t′′ cannot be determined. In general, an
empirical tight-binding model with more than one orbital per unit cell has this sign ambiguity problem for IOHIs
between “non-equivalent” orbitals, thus preventing an experimental measurement of IOHI from just the energy band
dispersions.
We could understand this degeneracy as follows. If we denote the Bloch sums of the two localized orbitals by φ1(k)

and φ2(k), the tight-binding Hamiltonian H using this basis set reads

H(k) =

(

〈φ1(k)|H |φ1(k)〉 〈φ1(k)|H |φ2(k)〉
〈φ2(k)|H |φ1(k)〉 〈φ2(k)|H |φ2(k)〉

)

. (28)

Note here that the matrix elements 〈φi(k)|H |φj(k)〉, in which i, j ∈ {1, 2}, involve not only the on-site or nearest-
neighbor hopping processes but also all the other possible hopping processes. Now, it is obvious that the following
Hamiltonian H ′(k) has exactly the same eigenvalues as H(k):

H ′(k) =

(

〈φ1(k)|H |φ1(k)〉 − 〈φ1(k)|H |φ2(k)〉
− 〈φ2(k)|H |φ1(k)〉 〈φ2(k)|H |φ2(k)〉

)

. (29)

What we have done by going from H(k) to H ′(k) is to change the sign of the IOHI between the two non-equivalent
localized orbitals. In fact, the two matrices H(k) and H ′(k) are related by a unitary transform, which does not change
the eigenvalues of a matrix, H ′(k) = U †H(k)U with

U =

(

1 0
0 −1

)

. (30)

On the other hand, if we change the signs of the diagonal matrix elements 〈φi(k)|H |φi(k)〉, in which i ∈ {1, 2}, we
get a different eigenvalue spectrum. Thus, there is no ambiguity in the sign of the IOHI between equivalent orbitals.
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FIG. 7: (Color online) (a) Schematic of a one-dimensional crystal having one s-type orbital per unit cell. The nearest neighbor
hopping integral is t′. (b) Calculated electron energy bandstructure of the system depicted in (a) with different choices for
the sign of t′. (c) Schematic of a one-dimensional crystal having two non-equivalent s-type orbitals per unit cell (i. e. , having
different on-site energies). We assume that all the distances between the centers of the nearest neighbor orbitals are the same
and hence the corresponding hopping integrals, denoted by t′′. (d) Calculated electronic bandstructure of the system depicted
in c with different choices for the sign of t′′.
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FIG. 8: (Color online) (a-d) Calculated intensity maps for four different choices of the signs of nearest-neighbor in-plane and
vertical inter-layer hopping integrals, t0 and t1, respectively. Case (c) agrees with the experimental results.

This simple example illustrates that one cannot determine the signs of the IOHIs between non-equivalent orbitals just
by looking at the measured electron energy bandstructure.
The tight-binding model for double-layer graphene that we used in our calculations is based on the pz orbitals of

carbon atoms with two parameters: t0 and t1 for the nearest-neighbor in-plane and the vertical inter-layer hopping
integrals, respectively. The parameters t0 and t1 correspond to −γ′0 and γ′1 in the well-known Slonczewski-Weiss-
McClure model, respectively11,12, and we have used |t0| = 3.16 eV and |t1| = 0.39 eV9. The photoemission intensity
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map in the kx-ky plane is strongly dependent on the signs of both t0 and t1 as shown in Fig. 8. Because the
four different choices of the signs produce exactly the same electronic band structure, it has not been known from
experiments which choice of the signs of the IOHIs is physically correct, although the absolute values have been
experimentally estimated34,35.
This sign-ambiguity problem still exists even when we include more complicated hopping processes in the model,

especially the non-vertical inter-layer hopping integrals γ′3 and γ′4, there still exist unitary transforms that leave the
energy eigenvalues unchanged. In a tight-binding model having four hopping integrals (γ′0, γ

′
1, γ

′
3, and γ′4), the

following four different sets of parameters give exactly the same electron energy bandstructure: (γ′0, γ
′
1, γ

′
3, γ

′
4), (γ

′
0,

−γ′1, −γ′3, −γ′4), (−γ′0, γ′1, γ′3, −γ′4), and (−γ′0, −γ′1, −γ′3, γ′4), assuming that the first set is composed of the values
currently accepted and used when the SWMc model is considered. In principle, there should be eight different sets of
parameters giving the same energy bandstructure; however, from our knowledge that the nearest-neighbor intralayer
hopping integrals in different graphene layers are the same, we have reduced the number of candidates to four. This
is also the reason why we considered only the four cases in Fig. 8.
We have shown that the choice of t0 < 0 and t1 > 0, i. e. , γ′0 > 0 and γ′1 > 0 in Fig. 8(c), reproduces the

experimental results shown in Figs. 3(a) and 3(b), thus experimentally determined the signs of these IOHIs. The
signs of the IOHIs used for graphite in the conventional model11,12 is indeed correct. Previous theoretical study
has also tried to determine the signs15, but inappropriate theoretical approaches (as previously mentioned) and the
lack of full polarization-dependent experimental data have led to incorrect speculations, which do not agree with
the conventional model11,12 as well as our results. Our method can generally be used to determine the sign of the
hopping integrals in complicated materials such as cuprates as well as in simple materials such as gallium arsenide
and one-dimensional crystals having two atoms per unit cell.

VI. SUMMARY

We have shown that ARPES can be used as a powerful tool to directly measure quantum phases such as the Berry’s
phase of a specific electronic band with advantages compared to the interference type of measurements36–38 which
do not give any information on the band-specific Berry’s phase, and the sign of the hopping integral between non-
equivalent orbitals, never measured for any material before. The experimental and theoretical procedures developed
here can be applied in studying the electronic, transport, and quantum interference properties of a huge variety of
materials.
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