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ABSTRACT: We report electrical transport measurements on a suspended ultra-low-disorder 

graphene nanoribbon (GNR) with nearly atomically smooth edges that reveal a high mobility 

exceeding 3000 cm2 V-1 s-1 and an intrinsic bandgap. The experimentally derived bandgap is in 

quantitative agreement with the results of our electronic-structure calculations on chiral GNRs 

with comparable width taking into account the electron-electron interactions, indicating that the 

origin of the bandgap in non-armchair GNRs is partially due to the magnetic zigzag edges.  
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Introduction 
 

Graphene is a single atomic layer of three-fold coordinated π-bonded carbon atoms that 

exhibits exceptionally high carrier-mobility, offering the tantalizing possibility of all-carbon 

electronics1. As an infinite two-dimensional solid, graphene is a zero-gap semiconductor with 

finite minimum conductivity, which poses a major problem for conventional digital logic 

applications. To overcome this bottleneck, many theoretical and experimental studies have 

focused on engineering an energy gap in graphene. A tunable band gap up to 250 meV can be 

induced by a perpendicular electric field in bilayer graphene2.  A band gap can also be created by 

strain3 or by chemical modification of graphene4. More generally, a band gap can be created by 

spatial confinement and edge effects5. Louie et al.6 showed theoretically that grapheme 

nanoribbons (GNRs) with pure armchair or zigzag shaped edges always have a nonzero and direct 

bandgap, the value of which depends on the ribbon crystallographic orientation and edge 

structure. In lithographically patterned GNRs with varying widths and crystallographic 

orientations, electrical transport studies established the presence of a width-dependent transport 

gap7, 8. Several possible mechanisms have been proposed to explain the transport gap observed in 

GNR-based field-effect transistors (GNR-FETs), including re-normalized lateral confinement due 

to localized edge states7, 8, percolation driven metal-insulator-transition caused by charged 

impurities9, quasi-one-dimensional Anderson localization10, and Coulomb blockade due to edge-

roughness11. More recent experimental studies on disordered GNRs further indicate that charge 

transport in the conduction gap of GNRs is likely dominated by hopping through localized 

states12 or isolated charge puddles acting as quantum dots13. A significant increase in mobility has 

been observed in high-quality GNRs with nearly atomically smooth edges partially due to 

reduced edge scattering14. However, a large discrepancy remains between the bandgap extracted 

from these high-quality GNRs and that observed in other reports15, even though the GNRs were 

synthesized using a similar approach. This discrepancy may be attributed to different edge 
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structures, but could also be due to extrinsic conduction through defects and impurity states 

within the bandgap2, 16. 

In this paper, we report the first variable-temperature electrical-transport study of 

suspended ultra-low-disorder GNRs with nearly atomically smooth edges. Suspension of the 

GNRs not only removes the substrate influence but also allows a thorough removal of impurities, 

including those trapped at the interface between the GNR and the substrate, leading to a 

substantial increase of the carrier mobility. We observe high mobility values exceeding 3000 cm2 

V-1 s-1 in GNRs of width~20 nm, the highest mobility value reported to date on GNRs of similar 

dimensions. Furthermore, we demonstrate that the activation gap extracted from the simple 

activation behavior of the minimum conductance and residual carrier density at the charge 

neutrality point approaches the intrinsic bandgap in ultra-low-disorder GNRs. In contrast to the 

results reported here, in typical transport measurements in GNRs the presence of non-negligible 

amount of disorder obscures the observation of the intrinsic bandgap. Moreover, the size of the 

bandgap derived from the transport measurements is in quantitative agreement with the results of 

our complementary tight-binding calculations for a wide range of chiral angles characterizing the 

GNR structure, supporting our proposed explanation, namely that the underlying electronic origin 

of bandgap enhancement is the magnetic nature of electronic states associated with zigzag edges.  

 

Experimental details 
 

The GNRs were produced by sonicating mildly-oxidized multiwall carbon nanotubes 

(MWNT) in a 1,2-dichloroethane (DCE) solution of poly(m-phenylenevinylene-co 2, 5-diy 

octocy- p-phenylenevinglene) (PmPV), where the PmPV is used as a surfactant to stabilize the 

unzipped GNRs in solution14. The solution was then centrifuged at 15000 rpm (Fisher Scientific 

Marathon 26kmr centrifuge) for 1 hr to remove aggregates and some of the remaining MWNTs, 

and a supernatant containing nanoribbons and remaining MWCTs was obtained. Next, the GNR 

samples from the supernatant were deposited on degenerately doped Si subtracts with 290 nm of 
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thermal oxide.  Non-contact mode AFM (Park System XE-70) measurements were used to locate 

individual GNRs with respect to the prefabricated Au alignment marks and to characterize their 

thickness, width and length. The GNRs produced from this method mostly consist of 1-3 layers. 

To determine the width, we have taken into account the AFM tip dilation effect (leading to 

artificial width increase) based on the estimated tip radius provided by the tip manufacturer.  

 FET devices consisting of individual GNRs are fabricated on Si substrates with 290 nm 

of thermal oxide using standard electron beam lithography and thermal deposition of 0.5 nm of Cr 

and 50 nm of Au, where the Si substrate is used as a back gate. Suspension of the GNRs in FET 

devices is achieved by placing a small drop of 1:6 buffered hydrofluoric acid (HF) on top of the 

GNR device for 90 s to etch way approximately 150 nm of the SiO2 underneath the ribbons17, 18. 

The devices are annealed in vacuum at 600 oC for 10 minutes to clean the suspended ribbons and 

improve the electrical contacts before transferred to a Lakeshore Cryogenics vacuum probe 

station for further removing adsorbed impurities by current annealing and subsequent transport 

measurements in high vacuum (~10-6 torr). The residual impurities on GNRs are gradually 

removed by repeatedly passing a large current through the ribbon; the final amount of impurities 

of the GNRs depends both on initial amount and the degree of current annealing.  

A semiconductor parameter analyzer (Keithley 4200) was used to apply the annealing 

current and to measure the device characteristics for 4.3 < T < 300 K. We repeatedly applied 

gradually increasing annealing current and subsequently carry out the electrical measurements in 

situ after every consecutive step. The degenerately doped Si substrate was used as a back gate. To 

avoid possible collapsing of the suspended GNRs, the back-gate voltage Vg was limited to the 

range – 15 V <Vg < +15 V during the electrical measurements. 

 

Results and discussions  

We have fabricated over 20 suspended GNR-FET devices from GNRs synthesized by 

unzipping high quality multiwall carbon nanotubes14. A schematic diagram and an atomic force 
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microscopy (AFM) image of a typical suspended GNR device are shown in the right and left 

insets of Fig. 1, respectively. As most of the devices were eventually damaged during the in situ 

current annealing (likely caused by structural reconstruction at the defect sites), we report detailed 

electrical transport results on three high quality samples (samples A, C and D) characterized by 

extremely low disorder and compare them with those of a sample that contains a non-negligible 

amount of defects (sample B).  

In Fig.1 we show the resistance (R) as a function of gate voltage (Vg) at different 

temperatures for two devices fabricated from a single uniform GNR. The GNR channels in these 

two devices have similar length (~600 nm), and nearly identical width (~20 nm) and thickness 

(1.4 nm corresponding to about 2layers14) as determined by AFM before suspension19. Although 

both devices show characteristic ambipolar behavior arising from the electron-hole symmetry of 

graphene, they also exhibit remarkable differences. First, the resistance peaks at the charge 

neutrality point (CNP) in sample A are substantially sharper [Fig. 1(a)] than in sample B [Fig. 

1(b)]. The full-width at half-maximum (FWHM) for sample A is more than an order of magnitude 

smaller than that for sample B at 160 K. Second, the maximum resistance at the CNP in sample A 

increases more rapidly with decreasing temperature than in sample B. These differences can be 

attributed to lower degree of disorder in sample A than in sample B. Defects, such as adsorbed 

charged impurities and structural imperfection, are expected to generate random potential 

fluctuations in the GNRs, which induce electron-hole puddles close to the CNP17, 18. As a result, 

the effect of gate voltage near the CNP is largely limited to the redistribution of charge carriers 

between electrons and holes without changing the overall carrier density. Therefore, a higher 

tunability of charge carriers near the CNP (and hence a much sharper resistance peak) is expected 

in samples with lower disorder. Similarly, the effect of thermally excited electron-hole pairs is 

also significantly enhanced with lower disorder, leading to a stronger temperature dependence of 

the maximum resistance.  



6 
 

We next focus on the influence of disorder on the carrier mobility and bandgap of GNRs. 

To extract accurate values for these quantities, we subtract the contact resistance from the total 

resistance using the following model to fit the R(Vg) data: ܴ௧௧ ൌ ܴ௧௧+ܴ=ܴ௧௧+/ௐఓ    (1) 

Here, ܴ௧௧ and ܴ are the metal/GNR contact resistance and GNR channel resistance, 

respectively20; L and W are the channel length and width, respectively; μ is the carrier mobility, 

and the carrier concentration n, can in turn be determined by the expression, 

n = ට݊ଶ  ሺܥ ܸ െ CܸNPሻଶ  ,            (2) 

with no being the residual carrier concentration at the maximum resistance, Cg the back-gate 

capacitance (estimated to be ~ 3×10-8 F/cm2 based on the capacitance of GNR-FET devices with 

similar ribbon width and taking into account the reduced dielectric constant due to the removal of 

~150 nm of thermal oxide underneath the ribbon21, 22), and VCNP is the gate voltage at the charge 

neutrality point20, 23. As shown in Fig. 1, this model fits our experimental data reasonably well, 

especially in the hole-branch (Vg<VCNP). The slightly lower conductance and minor deviation 

from the fitting at the electron side is likely due to the residual surface impurities and/or electrode 

metal doping18, 21, 24. From the fitting, a contact resistance of 30 ~ 70 kΩ is extracted, which is 

comparable to the value determined by 4-terminal measurements of similar GNRs devices (data 

not shown). Although this model assumes a gate-independent contact resistance, we believe this 

is a reasonable assumption for our devices given the nearly ohmic contact (except at low 

temperatures and near the CNP) and reasonably good fit of the data to the model, which is also 

consistent with the findings of Russo et al.25.  

Fig. 2 shows the mobility values derived from the fit as a function of temperature for 

samples A and B. The mobility of sample B has relatively weak temperature dependence and 

reaches ~ 1500 cm2 V-1 s-1, in excellent agreement with that derived from substrate-supported 

GNRs synthesized using the same method14. Remarkably, the mobility of sample A increases 
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from ~ 2000 cm2 V-1 s-1 to over 3000 cm2 V-1 s-1 as the temperature is lowered from 295 K to 150 

K, suggesting that the mobility in this temperature range is largely limited by acoustic phonon 

scattering26. The peak mobility in sample A is the highest reported to date for GNRs of 

comparable widths14, which can be attributed to the nearly atomically smooth edges and 

extremely low disorder. Below 150K, the mobility decreases with decreasing temperature, 

suggesting that the presence of a small amount of remaining disorder can play an increasingly 

important role at low carrier density (see detailed discussion below). Equally high mobility is also 

observed in sample C (data not shown). From the transfer characteristics, the field effect mobility 

of sample A in the hole region can be estimated as:  

µ= [ΔG×(L/W])/(CgΔVg),          (3)  

where G is the low-bias conductance of the sample27 and the other parameters are defined in 

Eqs.(1) and (2).  The field-effect hole mobility as a function of temperature for sample A is 

shown as “hollow squares” in Fig. 2, in reasonable agreement with the mobility values derived 

from the other method. 

 In an ideal intrinsic semiconductor without impurities, the conductance at the CNP, Gmin 

is expected to be dominated by thermally activated carriers and to vary with temperature as ܩ୫୧୬ ן exp ሺെܧ/2kBT), where kB is the Boltzmann constant and Eg is the activation energy for 

electron excitation that corresponds to the bandgap. However, other mechanisms such as one-

dimensional (1D) nearest neighbor hoping (NNH) through localized states in disordered GNRs 

may also lead to simple activated behavior of Gmin
12. To confirm that the activation energy 

derived from the temperature dependence of Gmin is indeed the intrinsic bandgap, it is necessary 

to show the same simple activation temperature dependence of the minimum carrier density (n0) 

at the CNP (to first order approximation): ݊ ן exp ሺെܧ/2kBT). As shown in the Arrhenius plots 

in Fig. 3 (a) and (b), the Gmin and n0 data from samples A and C (the latter being yet another low-

disorder  sample with W ~37 nm, d ~ 2 nm, and L ~ 700 nm) fit the simple activation model fairly 
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well with a consistent activation energy gap of Eg (A) =  ~ 99 meV (from Gmin) and ~106 meV 

(from n0) for sample A, and Eg(C)= ~ 55 meV (from n0)  and ~ 58 meV (from Gmin ) for sample C, 

respectively. Simple activation behavior is also observed in the residual carrier density of sample 

D (W ~ 23 nm and d ~ 1.6 nm), yielding a gap of 96 meV (data not shown). Furthermore, 

comparison of the ܧvalues of samples A, C, and D demonstrates that the bandgap in our ultra-

low-disorder samples is approximately inversely proportional to the ribbon width, consistent with 

theoretical predictions6. These consistent results on multiple ultra-low-disorder GNR-FET 

devices strongly suggest that the intrinsic bandgap is approached.  

 On the other hand, Gmin and ݊ in sample B exhibit a much weaker temperature 

dependence than in samples A or C; forcing the simple activation law fit through the data of 

sample B yields a much smaller activation energy and corresponding bandgap of Eg ~ 10 meV 

from both the Gmin and ݊ data. The large discrepancy between samples A and B is quite 

puzzling, since they are simply two different regions of the same GNR with highly uniform width 

and thickness and likely having the same nominal edge structure. The primary known difference 

between them is that sample A has lower disorder than sample B due to the spatial variation of 

disorder (such as remaining adsorbed impurities and structural defects which could be inherent in 

the original carbon nanotubes and/or introduced during the conversion from carbon nanotubes to 

GNRs). Given the small dimensions of the devices, even a small amount of disorder may play a 

significant role in their transport properties. Additionally, Au-contact doping may also vary from 

device to device. However, electrode doping is unlikely to be the dominant mechanism given that 

samples A and B not only have nominally identical contact structure and layout but also share a 

common electrode.  Therefore, the weaker temperature dependence of Gmin and ݊ observed in 

sample B is likely to be due to extrinsic conduction through defects and carrier doping from 

charged impurities, similar to the bilayer graphene2, 16. An alternative explanation is that the 

presence of disorder weakens the on-site Coulomb interaction, which is largely responsible for 
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the opening of a gap in the band structure of GNRs with zigzag edges28. Zigzag edges have 

indeed been observed by scanning tunneling microscopy (STM) in GNRs synthesized using the 

same method29; the smaller values of the bandgap found in these studies can be attributed to the 

reduced on-site Coulomb repulsion due to screening from the gold substrate29. It is also worth 

noting that the data for samples A, C (Fig. 3) and D (data not shown) start to deviate from the 

simple activation behavior below 100 K and the fit eventually breaks down below 77 K. The 

break-down of the simple activated behavior at low temperatures can be attributed to the 

extremely low residual carrier density: the value n0 ~7×109 cm-2 at 77 K observed in sample A 

corresponds to only “one electron” in the device channel. Therefore, the residual carrier density 

(thus also the minimum conductivity) below 77 K is no longer determined by thermal activation.  

 In order to further verify that the simple activation gap observed in our ultraclean GNRs 

is the intrinsic bandgap (due to the extended states carrying current via thermal activation across 

the intrinsic bandgap), we compare the activation gap energy with the energy associated with the 

transport gap (∆ ܸሻ. The transport gap is correlated to an energy gap in the single particle 

spectrum given by: 

∆ൌ ଶగ ிටଶగ∆ݒ  ,      (4) 

where ݒி= 106 m/s is the Fermi velocity of graphene and ܥ is the capacitive coupling of the 

GNR to the back gate. In disordered GNRs, where the electrical transport is dominated by the 

hopping between localized states, ∆ is expected to be substantially larger than Eg
12. In contrast, 

in highly ordered GNRs with very low impurity concentration ∆should be comparable to the 

intrinsic bandgap15.  ∆ ܸin this study is defined as the width of the back gate voltage region 

determined by a sudden increase of the slop in the G(Vg) curve close to the CNP.As shown in Fig. 

4(a), the G(Vg) curve for sample A measured at 30 K yields a ∆ ܸ ~ 1.6 V and hence ∆~ 90meV, 

in reasonable agreement with the values of Eg obtained from Gmin and n0, indicating that the 

transport gap is associated with the large intrinsic bandgap. The linear dependence of G on gate 
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voltage Vg at high temperatures [Fig. 4 (a) , where the contact resistance is excluded] suggest that 

the field-effect mobility remains nearly constant as the carrier density changes and that the charge 

transport is limited by long-range scattering30.  

 The transport gap can be alternatively probed by measuring the current-voltage (I-V) 

characteristics at various gate voltages. Fig. 4(b) shows representative I-V curves of sample A 

measured at 4.3 K. At gate voltages away from the CNP, the I-V curves are essentially linear. 

Near the CNP (Vg = 1V), however, the I-V characteristic becomes strongly non-linear when the 

chemical potential of the GNR is within the transport gap. A nonlinear gap can be defined by the 

distances between two interception points made by fitting straight lines to both the low 

conductance region at low bias voltage and the high conductance region at high bias voltage, as 

shown in Fig. 4(b). The nonlinear gap (eΔVds) for sample A is approximately 60 meV, slightly 

smaller than the activation gap or the energy associated with the transport gap, which can be 

attributed to the fact that the gate voltage at which the nonlinear gap is measured slightly differs 

from the exact CNP. Unlike in highly disordered GNRs, where the presence of localized states 

and the formation of isolated charge puddles (which act as quantum dots) complicates the 

interpretation of the nonlinear gap in their I-V characteristics12, 13, the nonlinear gap in our low-

disorder GNRs may be approximated as the intrinsic bandgap for Vg = VCNP
7. 

 In order to elucidate the underlying electronic origin of the high bandgap value in ultra-

low-disorder GNRs, we carried out tight-binding (TB) calculations in model GNRs of 

comparable width (~20nm).  Ultraclean GNRs with ultrasmooth edges are expected to be highly 

crystallographic and the measured intrinsic bandgap should be comparable to the theoretical 

values that assume periodicity. Because of the lack of information on the chirality ሺ݊, ݉ሻ of our 

ribbons, we calculated GNRs of a wide range of chiral anglesሺߠሻ, varied from ߠ ൌ 0° (zigzag 

GNR) to ߠ ൌ 30° (armchair GNR) as shown in Fig. 5(a); GNRs with intermediate chirality 

exhibit mixed edges (zigzag/armchair) with dominant zigzag or armchair character as ߠ ՜ 0° or ߠ ՜ 30°, respectively.  
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As seen in Fig. 5(a), the GNRs structures used in the calculations are derived from 

unzipping a CNT along the chiral unit-cell translational vector ܱܣሬሬሬሬሬԦ ൌ ሺ݊, ݉ሻ that determines the 

chiral angle ߠ. The translational vector in turn restricts the width of the ribbons to discrete values 

that are the multiples of |ܱܤሬሬሬሬሬԦ|, which is the minimum circumference of a ሺ݊, ݉ሻ-type CNT. The 

electronic-structure calculations employ the single-band Hubbard model: ܪ ൌ  െݐ ∑ ൫ܿ̂ఙற ܿ̂ఙ  ݄. ܿ. ൯ۃ,ۄ,ఙ   ܷ ∑ ො݊՛ ො݊՝  (5) 

treated within the mean-field approximation. Here, ݐ is the hopping matrix element between 

nearest-neighbor sites i and j, ො݊ఙ ൌ ܿ̂ఙற ܿ̂ఙ is the number operator on atom i with spin ߪ ൌ ՛, ՝, 

and U is the on-site Coulomb interaction. The choice of the ݐ and U parameters is crucial to 

making comparisons between experimental and theoretical values for the bandgap which is 

proportional to ሺܷ ൗݐ ሻ. Furthermore, the values of U and ݐ depend on the choice of the exchange-

correlation functional used in the density functional theory (DFT) calculations. We have used the 

ab-initio parameters (3.2 =ݐ eV and U = 2ݐ) reported by Pisaniet al.31, derived from fitting the 

antiferromagnetic band structure of zigzag GNRs using the fully-nonlocal “hybrid” functional 

(B3LYP) of DFT calculations, which includes a contribution of Hartree-Fock exchange that 

compensates for the electronic self-interaction. Previous studies have shown that B3LYP is better 

suited than local, nonlocal or even other hybrid functionals to account for molecular magnetism32. 

These values are somewhat larger than those commonly employed in literature33, 34, which are 

derived from DFT calculations employing local or nonlocal functionals. These values are also 

more appropriate to our suspended GNR samples that interact neither with a metallic substrate29, 

which reduces U through screening with the conduction electrons, nor with oxide substrates 

(SiO2), which have much higher dielectric constant than air. 

In the absence of electron-electron correlations (U = 0eV in Eq. (5)) the systems are non-

magnetic. Interestingly, we find that the carbon atoms in the zigzag chains in the mixed-edge 

GNRs (even a single one per unit-cell in the limit when ߠ ื 30°) introduce non-bonding states 
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whose origin is topological frustration35. These non-bonding states form dispersionless “flat” 

bands at the Fermi level and render the systems gapless or metallic. For U =0 eV, the band 

structure and density of states for all our systems follow the same pattern as for the ሺ݊, ݉ሻ= (4,2) 

GNR shown in Figs. 6(a) and 6(b) (red curves). This is analogous to the predicted presence of 

non-bonding states in randomly shaped 0-D graphene dots that contain combined zigzag/armchair 

edges36. Therefore, only “pure” armchair ribbons could sustain an energy bandgap which is not of 

magnetic origin. When electron-electron correlations are introduced (U> 0eV) local magnetism 

arises along the edges of the ribbon, as seen in Fig. 5(b). Noticeably, the magnetization is 

predominantly higher on the zigzag sites than on armchair sites, where magnetism is quenched; 

this trend for mixed-edge GNRs has been corroborated using ab-initio calculations (with the 

local-density-approximation (LDA)) 37. Also, the flat bands split, opening an energy gap at the 

Fermi level (blue curves in Fig. 6). 

Fig. 6(c) shows the energy bandgap and maximum spin magnetization for~20nm-wide 

GNRs with crystallographic orientations given by 30° ,23.41° ,19.11° ,8.95° ,6.59° ,0° =ߠ, 

corresponding to ሺ݊, ݉ሻ = (6,0), (7,1), (5,1), (4,2), (3,2), (3,3), respectively. Magnetic pure zigzag 

and non-magnetic pure armchair GNRs exhibit similar bandgaps of ~71meV. Interestingly, for all 

the mixed-edge GNRs (with 0° ൏ ߠ ൏ 30°)  the bandgap varies between 71meV and 128 meV, in 

agreement with the experimentally determined bandgap for sample A, suggesting that the origin 

of the bandgap for mixed-edge GNRs is associated with the magnetism of the zigzag edges. The 

increase of bandgap in the zigzag-rich region (0° ~ ߠ) of Fig. 6(c) is consistent with an increasing 

insulating character caused by gradually breaking the zigzag π-network as the crystallographic 

orientation departs fromߠ ൌ 0°. As the chirality approaches the armchair-rich region (30° ~ ߠ) 

the spin magnetization quenches monotonically and the splitting induced by the second term of 

Eq. (5) becomes weaker, leading to a decreasing bandgap. 
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To compare our experimental and tight-binding results with existing theoretical results, 

bandgap values from ab-initio DFT calculations of narrow spin-polarized zigzag ribbons reported 

in the literature are extrapolated, when possible, to the widths of our samples. For instance, LDA 

predicts a gap of 44 meV6,38 for a ~20 nm wide GNR. Furthermore, the accurate screened-

exchanged hybrid functional (s-X LDA), which corrects the lack of nonlocal exchange 

responsible for the typical 50-75% gap underestimations of LDA for narrow GNRs 39, predicts a 

gap of 116 meV for a ~20 nm wide GNR, in good agreement with our experiments. Moreover, 

the highly accurate quasiparticle GW method yields a larger bandgap for zigzag GNRs compared 

to the values employing  the s-X LDA 39, 40, although a direct extrapolation is lacking. These ab-

initio results corroborate our relatively large experimental bandgap. 

For the armchair case, extrapolated LDA results predict a maximum bandgap of 80 

meV40 while the screened-exchange hybrid functional (Heyd-Scuseria-ErnzerhofHSE41) and GW 

predict gaps of 14 meV42 and 22 meV40, respectively, for a ~20 nm wide GNR. Although these 

values are smaller than our armchair tight-binding results, they support our primary hypothesis 

that a measured bandgap of ~ 100 meV for a ~20 nm wide GNR is likely due to the presence of 

spin-polarized zigzag edges and not due to the semiconducting nature (finite gap) of armchair 

edges. 

Our calculations were performed on single layer GNRs while the GNRs used in our 

experiment may consist of more than one layer. Nevertheless, the experimental and the 

theoretical bandgaps are still in good quantitative agreement. A likely scenario is that the 

experimentally derived bandgap is an average of the contributions from individual layers that 

have comparable bandgap values, which can be attributed to the combined effects of the 

relatively weak interlayer-interactions between non-AB (Bernal)-stacked layers43 and the weak 

chirality dependence of the bandgap. Furthermore, moderate tensile strain may be present in our 

suspended GRNs as indicated by the lack of sagging (Fig. 1 inset), which is expected to slightly 

modify the size of the bandgap44. For the case of zigzag GNRs, a moderate strain leads to slight 
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increase of the edge spin polarization, thus increasing the bandgap44. Therefore, the bandgap in 

our suspended chiral GNRs may be further enhanced by tensile strain. 

  

Summary  

 In summary, we have fabricated GNRs with very low disorder by: (i) unzipping high 

quality CNTs with very low concentration of structural defects known to produce GNRs with 

nearly atomically smooth edges14; (ii) suspending the GNR from the substrate; and (iii) removing 

the remaining impurities by in situ current annealing. These ultraclean and ultra-smooth-edged 

GNRs not only exhibit high mobility exceeding 3000 cm2 V-1 s-1, but also reveal the intrinsic 

electronic structure (bandgap) of GNRs. The good quantitative agreement between the 

experiment and theory suggests that the underlying mechanism responsible for the large bandgap 

in ultraclean suspended GNRs is most likely the magnetism associated with the zigzag edge 

components, which is strongly enhanced by the absence of either metallic or insulating substrates. 

The possible strain in the suspended GNRs may further augment the bandgap. Additional studies 

are underway to explore the tuning of the electronic and magnetic properties of such ultraclean 

GNRs via external electric and magnetic fields. 
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Fig 1  Resistance versus gate voltage for: (a) sample A (lower-disorder), and (b) sample B, 
measured at various temperatures. The solid lines are the model fitting. The two samples belong 
to a single GNR with uniform width (W~ 20 nm) and thickness (d ~1.4 nm), and both have the 
same length L ~ 600 nm. Insets: schematic illustration of a GNR-FET consisting of a suspended 
GNR (right) and the contact electrodes, and AFM image of a GNR suspended by Au electrodes 
(left).  

Fig. 2Mobility as a function of temperature for samples A and B. The solid squares and solid 
circles are the mobility extracted from the model fitting in Fig. 1; the hollow squares are the field 
effect mobility. The dashed lines are a guide to the eye.  

Fig. 3 (a) Temperature dependence of the minimum conductance for samples A, B and C. (b) 
Temperature dependence of the residual carrier density extracted from the model fitting in Fig. 1 
for samples A, B and C. The solid lines are fits to the simple activated behavior.  

Fig. 4 (a) Conductance versus gate voltage measured at various temperatures for sample A. (b) I-
V characteristics measured at different gate voltages and at T = 4. 3Kfor sample A.  

Fig. 5 (a) Unrolled projection of a ሺ݊, ݉ሻ-CNT of minimum circumference (|ܱܤሬሬሬሬሬԦ|). The chiral 
angle ߠ is determined by the translational vector ܱܣሬሬሬሬሬԦ ൌ ሺ݊, ݉ሻ ൌ ሺ3,2ሻ ൌ 3ܽଵሬሬሬሬԦ  2ܽଶሬሬሬሬԦ. (b) Cross-
section of a (3,2)-GNR with ~20nm width. The periodic unit-cell used in the calculation is shown 
shaded in green. The zoom-in regions show the spatial distribution of spin-up (cyan) and spin-
down (red) magnetization. The magnitude of the magnetization is given by the radius size, with 
the largest radius corresponding to spin magnetization 0.13 ߤ. 

Fig. 6 (a) Electronic band structure, and (b) density of states of a (3,2)-GNR; results in the 
absence (U = 0 eV) and presence (U = 6.4 eV) of electron-electron correlation are shown in red 
and blue, respectively. (c) Calculated bandgaps (black) and maximum spin magnetization (red) 
for GNRs of ሺ݊, ݉ሻ-type (6,0), (7,1), (5,1), (4,2), (3,2), and (3,3), corresponding to chiral angles ߠ in ascending order. 
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