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We propose a new approach toward excitons in carbon nanotubes whereby the matrix elements of

the electron-hole Coulomb interaction are expanded into a series over the nanotube’s one-dimensional

reciprocal lattice vectors. We show that only a few terms of this expansion give a non-vanishing

contribution to the Coulomb matrix elements. The proposed approach allows one to single out

Fourier components of the Coulomb potential responsible for the intervalley coupling and formation

of the exciton fine structure for each particular nanotube chirality.

PACS numbers: 78.67.Ch,78.67.-n,71.35.Cc

Optical properties of single-walled carbon nanotubes (CNTs) are known to be dominated by the excitonic effects1–10.

The high spin and subband (valley) degeneracy of the electron-hole (e-h) pair ground state in the absence of the

Coulomb interaction leads to a fine structure of excitonic levels when this interaction is taken into account. It has

been realized1 that both the long-range and the short-range parts of the e-h Coulomb interaction are essential for a

description of the exciton fine structure in CNTs. It is believed4–6 that the best way to account for the short-range

part of the Coulomb interaction in CNTs within the tight-binding method is to replace the Coulomb potential between

the π-electrons of CNTs by the phenomenological Ohno potential of the form V (r) = U√
(rU/e2)2+1

, where U is the

energy cost to place two electrons on a single site. However, approaches based on the Ohno potential4–6 systematically

over-estimate the experimentally measured energy splittings between the exciton singlet dark and bright states7–10.

In this paper we show that the e-h Coulomb interaction in CNTs can be treated per se thus allowing one to avoid

uncontrollable approximations. We present an approach whereby the matrix elements of the Coulomb potential are

expanded into a series over CNT’s one-dimensional reciprocal lattice vectors, gn = 2πn/|T|, where T is the CNT

translational vector11. In this formulation the long-range part of the Coulomb potential is accounted for by the

term with n = 0 while the rest of the expansion corresponds to the short-range part of the Coulomb interaction.

We show that, in order to make a non-vanishing contribution to this expansion, the reciprocal lattice vector gn

must satisfy the condition |n| < N/M, where N and M are the chirality-specific integers relating the chiral, Ch,

symmetry, R, and translational, T, vectors of the CNT [shown in Fig. 1 for a (4,2) CNT] by N R = Ch + MT11

(N has the meaning of the number of hexagons within the CNT unit cell). We obtain analytical expressions for the

Coulomb matrix elements which provide an insight into exciton physics which cannot be gained using a formalism

based upon the phenomenological Ohno potential. In particular, for each CNT chirality it is possible to single out

Fourier components of the e-h Coulomb interaction responsible for the intervalley coupling and lifting of the subband

degeneracy leading to the formation of the exciton fine structure.

While the formalism based on the Ohno potential originates from the description of organic π-conjugated polymer

systems4, here we put the problem of the exciton in CNTs into the context of the solid state physics and adopt the
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FIG. 1: (Color online) The chiral, Ch, translational, T, and symmetry, R, vectors of a (4,2) CNT. The vectors are related by

N R = Ch +MT with N = 28, M = 6. For a (10,5) CNT T and R are the same while Ch, N , and M should be multiplied

by a factor of 2.5.

concepts widely used in the theory of semiconductors12.

We will first formulate our approach for a CNT of arbitrary chirality and then consider an example of the (10, 5)

CNT as one featured in most experimental studies7–9. Although our numerical calculation also overestimates the

experimentally observed energy splitting between the exciton singlet dark and bright states, the calculated value is

only 2 to 8 times larger than the experimental ones.

Taking into account the cylindrical geometry of the CNT the Coulomb matrix element between a conduction-band

and a valence-band electrons can be written as1,13

〈c, µ′
c, q

′
c; v, µ

′
v, q

′
v|VC |c, µc, qc; v, µv, qv〉 =

e2

κπ

∞
∑

m=−∞

∞
∫

−∞

dkKm (|k|R) Im (|k|R) (1)

×〈c, µ′
c, q

′
c|eimϕ eikz |c, µc, qc〉 〈v, µ′

v, q
′
v|e−imϕ e−ikz |v, µv, qv〉 ,

where the indices µs, µ
′
s enumerate subbands within the band s = c, v and the one-dimensional wave vectors qs, q

′
s

from the interval [− π
|T| ,

π
|T|) enumerate the electron one-particle states within these subbands; κ is the static dielectric

constant describing the screening effect of the core states, σ-bands and polarization of the surrounding material; Km(x)

and Im(x) are the modified Bessel functions; R is the nanotube radius; and z and ϕ are the longitudinal and the

azimuthal cylindrical coördinates. The matrix elements in the right-hand side of Eq. (1) are calculated on the wave
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functions

〈r|s, µs, qs〉 =
1√
N

∑

b=A,B

Cb(s, µs, qs)
∑

Rb

eiµsϕb eiqszb Φb(r−Rb) ≡ ei qs z us,µs,qs(r) , (2)

where r ≡ (ϕ, z), N is the number of unit cells of graphene in the structure, the index b = A,B accounts for

the two atoms within the unit cell of graphene, Rb = (ϕb, zb) is a position of an atomic site, Φb(r − Rb) is the

pz-atomic orbital forming the π-bond. The coefficients CA(c, µ, q) = eiϕc(µ,q)/
√
2, CA(v, µ, q) = −eiϕv(µ,q)/

√
2,

CB(c, µ, q) = CB(v, µ, q) = 1/
√
2 with the phases ϕs(µ, q) given in14 are obtained by diagonalization of the nearest-

neighbor tight-binding Hamiltonian for graphene11. us,µs,qs(r) is the periodic in z (with the period |T|) Bloch

amplitude. Due to this periodicity the product u∗s′,µ′,q′(r)us,µ,q(r) can be expanded into a Fourier series over the

one-dimensional reciprocal lattice vectors gn = 2 πn/|T|, and we obtain

〈s′, µ′, q′|eimϕ eikz |s, µ, q〉 = L
∑

n

〈s′, µ′, q′|Bn(m)|s, µ, q〉 δk,q′−q−gn ,

where L is the length of the CNT. The coefficients of this expansion are given by

〈s′, µ′, q′|Bn(m)|s, µ, q〉 = 1

N L

∑

b′

C∗
b′(s

′, µ′, q′)
∑

R
b′

e−iµ′ϕ
b′ e−iq′z

b′

×
∑

b

Cb(s, µ, q)
∑

Rb

eiµϕb eiqzb J(Rb,Rb′) ,

where

J(Rb,Rb′) =

2π
∫

0

dϕ

L/2
∫

−L/2

dz eimϕ e−ignz ei(q
′−q)zΦ∗

b′(r−Rb′)Φb(r−Rb) . (3)

Overlapping of the atomic orbitals makes the integral different from zero only for Rb = Rb′ . Next, because ei(q
′−q)z

is a slow function of z, one can replace ei(q
′−q)z → ei(q

′−q)zb .

Now consider the symmetry vector, R, of a CNT with the coördinates11 Rz ≡ τ = M|T|
N , Rϕ ≡ ψ = 2π

N . The

condition that eimϕ varies slowly [and, therefore, one can replace eimϕ → eimϕb under the integral in Eq. (3)] reads

|mψ| < 2π or

|m| < N . (4)

Similarly, the condition that e−ignz varies slowly and one can replace e−ignz → e−ignzb under the integral in Eq. (3)

reads |gnτ | < 2π or

|n| < N
M . (5)

Otherwise, fast oscillations cause the integral J(Rb,Rb′) to vanish.

Provided that Eqs. (4), (5) are satisfied, we get

〈s′, µ′, q′|Bn(m)|s, µ, q〉 = 1

NL

∑

b

C∗
b (s

′, µ′, q′)Cb(s, µ, q)
∑

Rb

e−ignzb eiϕb(m−µ′+µ) . (6)
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It is a standard procedure to make a transformation from the electron-electron to the e-h representation12. Intro-

ducing the electron (σc) and hole (σh) spin indices and changing the variables of the electron, qc, and hole, qh, wave

vectors to those of the exciton center of mass, Q = qc + qh, and relative motion, q = (qc − qh)/2, we obtain the direct

and exchange matrix elements for the e-h Coulomb interaction in a CNT:

〈c, µ′
c, σ

′
c; v, µ

′
v, σ

′
h;Q

′, q′|Vdir |c, µc, σc; v, µv, σh;Q, q〉 = −2
e2

κ
δσ′

c
,σc
δσ′

h
,σh

L δQ′,Q (7)

×
∑

n

∑

m

Km(|q′ − q − gn|R) Im(|q′ − q − gn|R)

×〈c, µ′
c, Q/2 + q′|Bn(m)|c, µc, Q/2 + q〉 〈v, µv, q −Q/2|B−n(−m)|v, µ′

v, q
′ −Q/2〉 ,

〈c, µ′
c, σ

′
c; v, µ

′
v, σ

′
h;Q

′, q′|Vexch|c, µc, σc; v, µv, σh;Q, q〉 (8)

= 2
e2

κ
(−1)1+σ′

c
+σc δσ′

c
+σ′

h
,0 δσc+σh,0 L δQ′,Q

∑

n

∑

m

Km(|Q− gn|R) Im(|Q − gn|R)

×〈c, µ′
c, Q/2 + q′|Bn(m)|v, µ′

v,−Q/2 + q′〉 〈v, µv, q −Q/2|B−n(−m)|c, µc, q +Q/2〉 .

The spin structure of the exchange matrix element can be expressed as (1−σeσh)/2 in terms of the electron, σe, and

the hole, σh, Pauli matrices. This term is different from zero only for the singlet state (with the zero total spin).

Note that Km(x) Im(x) ≈ 1/2x for x≫ |m|. Therefore, some restriction on n is absolutely necessary, as otherwise

one would obtain a logarithmically divergent series for either of the Coulomb matrix elements. On the other hand,

the exact form of this restriction might vary with chirality and be different from Eq. (5). The same refers to Eq. (4),

as Km(|x|) Im(|x|) ≈ 1/2|m| for |m| ≫ |x|.
The screening of the direct Coulomb interaction by the π-electrons can be calculated in the static limit within the

random phase approximation (r.p.a.)1,6. At zero temperature one obtains

ε(m, k, ω) = 1− 2 e2

κL
Km(|k|R) Im(|k|R)P0(m, k, ω) , (9)

where

P0 (m, k, 0) = −4L2
∑

µ,µ′,q,n

〈v, µ′, q − k + gn|Bn(−m)|c, µ, q〉 〈c, µ, q|B−n(m)|v, µ′, q − k + gn〉
Ec(µ, q) + Ec(µ′, q − k + gn)

(10)

is obtained by evaluating the irreducible polarization bubble in r.p.a.15, and Ec(µ, q) describes electron energy dis-

persion in the µ-th subband of the conduction band.

The single-particle self-energy correction to the electron energy within the r.p.a. is described by an exchange

graph15. It takes the form

Σs(ν, p, ω) = −2
e2

κ
L

∑

µ,q,n,m

Km(|q − p− gn|R) Im(|q − p− gn|R) (11)
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×〈v, µ, q|Bn(m)|s, ν, p〉 〈s, ν, p|B−n(−m)|v, µ, q〉 1

ε(m, p− q + gn, ω)
,

where s = c, v.

The above results should be plugged into the two-particle Schrödinger equation in the momentum space12 (which

it is more convenient to write down in the variables qc, qh):

∑

µc,µv ,qc,qh,σc,σh

〈c, µ′
c, q

′
c, σ

′
c; v, µ

′
v, q

′
h, σ

′
h|H0 + Vdir + Vexch|c, µc, qc, σc; v, µv, qh, σh〉Aeh

µc,σc;µv ,σh
(qc, qh)

= EAeh
µ′

c
,σ′

c
;µ′

v
,σ′

h

(q′c, q
′
h) , (12)

where the direct Coulomb interaction (7) should be further screened with the static dielectric constant (9) and

〈c, µ′
c, q

′
c, σ

′
c; v, µ

′
v, q

′
h, σ

′
h|H0|c, µc, qc, σc; v, µv, qh, σh〉

= [Ec(µ
′
c, q

′
c) + Σc(µ

′
c, q

′
c, 0) + Ec(µ

′
v,−q′h)− Σv(µ

′
v,−q′h, 0)] δµcµ′

c
δµvµ′

v
δqcq′c δqhq′h δσcσ′

c
δσhσ′

h

.

Solution of Eq. (12) yields the exciton energy levels.

We choose the origin (µ = 0, q = 0) at the Γ-point in the k-space of graphene11. Then, for semiconductor

CNTs, the lowest conduction subband and the uppermost valence subband have extrema at µ1 = [N/3], q1 ≈ 0

and µ2 = [2N/3] = N − µ1, q2 ≈ 0, where the square brackets denote rounding to the nearest integer. The e-h

pairs at these extrema are degenerate because of the valley degeneracy in graphene (which is due to the time-reversal

symmetry). Thus far, from our formulation it is not evident how this degeneracy is lifted. Indeed, our expansion

of the Coulomb matrix elements is over longitudinal reciprocal lattice vectors and it is not clear how it affects the

azimuthal motion. All the information about it is hidden inside the chirality-dependent coefficients (6). Fortunately,

for every particular chirality one can obtain analytical expressions for these coefficients. Below we will consider an

example of the (10, 5) CNT.

We will limit our consideration by the A-excitons6 which are formed by e-h pairs with both the electron and the

hole from the same valley [or vicinity of one of the points (µi, qi), i = 1, 2]. Due to (i) the time-reversal symmetry

between the states originating from the two different valleys of graphene and (ii) the mirror-like symmetry between

the conduction and valence bands in our model of CNTs (the particle-hole symmetry), the eigenstates of the exciton

Hamiltonian corresponding to a given exciton wave vectorQ are either bonding (A2) or anti-bonding (A1) combinations

of the states originating from the different valleys1,6. Then a simple consideration6 leads to the conclusion that, for

A1-excitons, the spin singlet and triplet states are degenerate. We will be interested in excitons optically excited by

light polarized parallel to the CNT axis. For such excitons Aeh
µc,σc;µv ,σh

(qc, qh) ∝ δµc,µv

14.

For (10, 5) CNT N = 70, M = 15 (see Fig. 1). Therefore, µ1 = 23, µ2 = 47 while Eq. (5) takes the form |n| ≤ 4.

Eq. (6) yields (after a summation over the CNT unit cell)

〈s′, µ′, q′|Bn(m)|s, µ, q〉 =
∑

l

[

C∗
A(s

′, µ′, q′)CA(s, µ, q) + C∗
B(s

′, µ′, q′)CB(s, µ, q) e
− 4πin

21 e
2πil

7

]
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× Il,n
14L

δm−µ′+µ,5l , (13)

where

Il,n =
(−1)n+l sin 5π(3n−l)

14 sin 3π(n−5l)
14

sin π(3n−l)
14 sin π(n−5l)

14

− 1 . (14)

If n− 5l mod 14 = 0 then Il,n = 14. Otherwise, if 3n− l mod 14 = 0 then Il,n = −1. In other words, Il,n peaks when

n− 5l mod 14 = 0.

Let us consider the matrix element (13) between the subbands µ′ = µ1 = 23 and µ = µ2 = 47. The condition that

it does not vanish is m−µ′+µ = m+24 = 5l. The smallest |m| satisfying this condition is obtained for m = 1 which

gives l = 5. Il,n peaks for n − 5l = n− 25 mod 14 = 0 which yields n = −3. Thus, we have not only demonstrated

that there is an intervalley coupling due to the short-range part of the e-h Coulomb interaction in a (10,5) CNT but

determined that the coupling is dominated by the Fourier component with m = ±1, n = ∓3. Similarly, one can

determine higher values of |m| which give substantial contributions to the intervalley coupling (e.g. m = ±6, n = ±2;

m = ∓9, n = ±1; etc.).

The above discussion affects only the direct Coulomb interaction. To emphasize the difference between the direct

and exchange matrix elements we give the expressions for the coefficients entering Eqs. (7), (8) for Q = 0. As we

are only interested in excitons optically excited in parallel polarization, we set µ′
c = µ′

v = µ′, µc = µv = µ. As our

model implies a mirror-like symmetry between the conduction and valence-band states of CNTs, one can also set

ϕc(µ, q) = ϕv(µ, q) = ϕ(µ, q). Then for the coefficients entering Eq. (7) we have

〈c, µ′, q′|Bn(m)|c, µ, q〉 〈v, µ, q|B−n(−m)|v, µ′, q′〉 (15)

=
1

196L2

∑

l

cos2
[

ϕ(µ, q)− ϕ(µ′, q′)

2
− π(3l − 2n)

21

]

I2l,n δm−µ′+µ,5l ,

while for the coefficients entering Eq. (8) one obtains

〈c, µ′, q′|Bn(m)|v, µ′, q′〉 〈v, µ, q|B−n(−m)|c, µ, q〉 (16)

=
1

196L2

∑

l

sin2
π(3l − 2n)

21
I2l,n δm,5l .

One can see that the latter matrix element is independent of µ, µ′. Therefore, for the spin singlet states, all the

matrix elements of the exciton Hamiltonian have an exchange contribution of the form

∆exch =
e2

49 κL

4
∑

n=−4

13
∑

l=−13

K5l(|gn|R) I5l(|gn|R) sin2
π(3l − 2n)

21
I2l,n . (17)

The strength of optical transitions is determined by the matrix element of the spacially homogeneous part of the

probability current density

〈0|̂j0|exc〉 =
∑

µ,q,σ

Aeh
µ,σ;µ,−σ(q,−q) 〈v, µ, q|v|c, µ, q〉 , (18)
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TABLE I: Calculated energies and optical transition strengths for A-excitons in a (10,5) CNT for the spectral region of the

E11 optical transition.
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where the interband velocity matrix elements, 〈v, µ, q|v|c, µ, q〉 are given in14. Eq. (18) shows that only the spin singlet

exciton states with Q = 0 are optically active.

We have solved numerically the eigenvalue problem associated with Eq. (12) for the A-excitons with Q = 0 in a

(10,5) CNT. Although our formalism leaves some freedom in choosing a particular form of Eqs. (4), (5), once this

choice has been made, there is only one adjustable parameter, the dielectric constant κ. We followed Ando1 and varied

κ in the range from 2 to 7. For the (10, 5) CNT the best result was achieved for κ = 6. For our numerical calculations

we used the values of the nearest-neighbor transfer integral γ0 = 3 eV and graphene lattice constant a = 2.46 Å1

and took the CNT length L = 30 |T|. In Table I are shown the calculated energies of exciton states in the spectral

region of the E11 optical transition. The calculated splitting between the exciton singlet dark and bright states is
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TABLE II: Calculated energies and optical transition strengths for A-excitons in a (10,5) CNT for the spectral region of the

E22 optical transition.

./01234

353/67

893:;

<056234

353/67

893:;

./=5>040?5

>4/3564@

8=/AB

C504>;

D>>0659354 E?99354 FG13/09354=2

H=2C3

IJKL MNOPQ RS

INJT MLOLLPQ RI

INJT LOLJ RI

INJU LOVV RS

INNL MLOIJQ RS

INNJ MLOLLLLSQ RI

INNJ LOLIK RI

INNK SOS RS

INKU MVOPQ RS

IKIS MLOLLLSQ RI

IKIS LOLLI RI

IKSV KOT RS WSS IKTT XYZ MIPQ

IKVN MLOLLLJQ RI

IKVP LOI RI

IKVP MLOLLIQ RI

IKVT LOIU RI

IKUJ MLOKQ RS

IPIK MLOLLKQ RI

IPIK LOLN RI

IPIT IOS RS

IPIU MIOTQ RS

IPSK LOLU RI

IPST MLOLKQ RI

IPJIOT MLOTQ RI

IPJIOT LOVU RI

IPJIOU LOLP RI

IPJSOI MLOSNQ RI

IPJJOI LOSP RI

IPJJOV MLOSUQ RI

IPJPOT LOLJ RI

IPJUOU MLOSQ RI

IPNN LOK RS

IPTLOK MLOVQ RS

IPTVOV LOLLN RI

IPTVOU MLOLIQ RI

IPVLOL LOLI RI

IPVLOI MLOLLIQ RI

IPVLOK LOLI RI

IPVLOP MLOLLIQ RI

IPVN LOU RS
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∆ = 13 meV, which is only 2 to 8 times larger than the experimental values between 1.7 and 6 meV9. Although

the spin triplet exciton states are optically inactive, the magnitude analogous to the square of the absolute value of

Eq. (18) is useful in determining the bonding versus anti-bonding character of the triplet states. For this reason the

corresponding values are listed in Table I in square brackets. In Table II we give the energies of excitonic levels in

the spectral region of the E22 optical transition. Our numerical results are in a surprisingly good agreement with the

available experimental data. This suggests that the accurate treatment of the e-h Coulomb interaction in CNTs is

more important for exciton physics than the details of the CNT band structure.

To summarize, we have proposed a new approach toward excitons in CNTs whereby the matrix elements of the

e-h Coulomb interaction are expanded into a series over CNT’s one-dimensional reciprocal lattice vectors. We have

shown that only a few terms of this expansion give a non-vanishing contribution to the Coulomb matrix elements.

Our treatment allows one to single out Fourier components of the Coulomb potential responsible for the intervalley

coupling and formation of the exciton fine structure for each particular CNT chirality.
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