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We propose a new approach toward excitons in carbon nanotubes whereby the matrix elements of
the electron-hole Coulomb interaction are expanded into a series over the nanotube’s one-dimensional
reciprocal lattice vectors. We show that only a few terms of this expansion give a non-vanishing
contribution to the Coulomb matrix elements. The proposed approach allows one to single out
Fourier components of the Coulomb potential responsible for the intervalley coupling and formation

of the exciton fine structure for each particular nanotube chirality.
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Optical properties of single-walled carbon nanotubes (CNTs) are known to be dominated by the excitonic effects! 19.
The high spin and subband (valley) degeneracy of the electron-hole (e-h) pair ground state in the absence of the
Coulomb interaction leads to a fine structure of excitonic levels when this interaction is taken into account. It has
been realized! that both the long-range and the short-range parts of the e-h Coulomb interaction are essential for a
description of the exciton fine structure in CNTs. It is believed® ¢ that the best way to account for the short-range
part of the Coulomb interaction in CNTs within the tight-binding method is to replace the Coulomb potential between
the m-electrons of CNTs by the phenomenological Ohno potential of the form V(r) = \/ﬁw, where U is the
energy cost to place two electrons on a single site. However, approaches based on the Ohno potential*® systematically
over-estimate the experimentally measured energy splittings between the exciton singlet dark and bright states” '°.

In this paper we show that the e-h Coulomb interaction in CNTs can be treated per se thus allowing one to avoid
uncontrollable approximations. We present an approach whereby the matrix elements of the Coulomb potential are
expanded into a series over CN'T’s one-dimensional reciprocal lattice vectors, g, = 2wn/|T|, where T is the CNT

translational vector!!.

In this formulation the long-range part of the Coulomb potential is accounted for by the
term with n = 0 while the rest of the expansion corresponds to the short-range part of the Coulomb interaction.
We show that, in order to make a non-vanishing contribution to this expansion, the reciprocal lattice vector g,
must satisfy the condition |n| < N'/M, where N/ and M are the chirality-specific integers relating the chiral, Cy,
symmetry, R, and translational, T, vectors of the CNT [shown in Fig. 1 for a (4,2) CNT] by NR = Cp, + M T!!
(N has the meaning of the number of hexagons within the CNT unit cell). We obtain analytical expressions for the
Coulomb matrix elements which provide an insight into exciton physics which cannot be gained using a formalism
based upon the phenomenological Ohno potential. In particular, for each CNT chirality it is possible to single out
Fourier components of the e-h Coulomb interaction responsible for the intervalley coupling and lifting of the subband
degeneracy leading to the formation of the exciton fine structure.

While the formalism based on the Ohno potential originates from the description of organic 7-conjugated polymer

systems*, here we put the problem of the exciton in CNTs into the context of the solid state physics and adopt the



FIG. 1: (Color online) The chiral, Cy, translational, T, and symmetry, R, vectors of a (4,2) CNT. The vectors are related by
NR=Ch+ MT with N =28 M = 6. For a (10,5) CNT T and R are the same while Cp, N, and M should be multiplied
by a factor of 2.5.

concepts widely used in the theory of semiconductors'?.

We will first formulate our approach for a CNT of arbitrary chirality and then consider an example of the (10,5)

CNT as one featured in most experimental studies”®.

Although our numerical calculation also overestimates the
experimentally observed energy splitting between the exciton singlet dark and bright states, the calculated value is
only 2 to 8 times larger than the experimental ones.

Taking into account the cylindrical geometry of the CNT the Coulomb matrix element between a conduction-band

and a valence-band electrons can be written as'1?
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where the indices ps, g, enumerate subbands within the band s = ¢, v and the one-dimensional wave vectors g, .

from the interval | ) enumerate the electron one-particle states within these subbands; & is the static dielectric

_mm

[T]” |T]
constant describing the screening effect of the core states, o-bands and polarization of the surrounding material; K, (z)
and Ip,(z) are the modified Bessel functions; R is the nanotube radius; and z and ¢ are the longitudinal and the

azimuthal cylindrical coérdinates. The matrix elements in the right-hand side of Eq. (1) are calculated on the wave



functions
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where r = (p,2), N is the number of unit cells of graphene in the structure, the index b = A, B accounts for

the two atoms within the unit cell of graphene, Ry = (¢, 25) is a position of an atomic site, ®p(r — Ry) is the
p.-atomic orbital forming the m-bond. The coefficients Ca(c, i1, q) = =D /\/2 Cy(v, i, q) = —e» (9 /\/2,

14 are obtained by diagonalization of the nearest-

Cg(c,pt,q) = Cp(v, u,q) = 1/v/2 with the phases ¢;(y1,q) given in
neighbor tight-binding Hamiltonian for graphene'. wg,. .. (r) is the periodic in z (with the period |T|) Bloch
amplitude. Due to this periodicity the product uj, . . (r) ts,u,q(r) can be expanded into a Fourier series over the

one-dimensional reciprocal lattice vectors g, = 27wn/|T|, and we obtain
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where L is the length of the CNT. The coefficients of this expansion are given by
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Overlapping of the atomic orbitals makes the integral different from zero only for Ry = Ry. Next, because eild ~a)z
is a slow function of z, one can replace elld—0)z _ ild' —)z

Now consider the symmetry vector, R, of a CNT with the codrdinates'! R, = 7 = MWIT—I, R, = ¢ = 3. The
condition that e?™¢ varies slowly [and, therefore, one can replace ¥ — ¢™™#* under the integral in Eq. (3)] reads

|miy| < 27 or
Im| < N . (4)

Similarly, the condition that e~%"* varies slowly and one can replace e~ %97* — e~%7* under the integral in Eq. (3)

reads |g,7| < 27 or

In| < % (5)

Otherwise, fast oscillations cause the integral J(Ry, Ry/) to vanish.

Provided that Eqgs. (4), (5) are satisfied, we get
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It is a standard procedure to make a transformation from the electron-electron to the e-h representation!'?. Intro-
ducing the electron (o) and hole (o,) spin indices and changing the variables of the electron, ¢., and hole, g5, wave
vectors to those of the exciton center of mass, Q = g. + gp, and relative motion, ¢ = (¢. — ¢ )/2, we obtain the direct
and exchange matrix elements for the e-h Coulomb interaction in a CNT:
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The spin structure of the exchange matrix element can be expressed as (1 — o.0)/2 in terms of the electron, ., and
the hole, o, Pauli matrices. This term is different from zero only for the singlet state (with the zero total spin).
Note that K, (z) Im (z) = 1/2z for = > |m|. Therefore, some restriction on n is absolutely necessary, as otherwise
one would obtain a logarithmically divergent series for either of the Coulomb matrix elements. On the other hand,
the exact form of this restriction might vary with chirality and be different from Eq. (5). The same refers to Eq. (4),
as K, (|z|) I (Jz]) = 1/2|m| for |m| > |z|.
The screening of the direct Coulomb interaction by the m-electrons can be calculated in the static limit within the

random phase approximation (r.p.a.)}%. At zero temperature one obtains
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is obtained by evaluating the irreducible polarization bubble in r.p.a.!5, and E.(u,q) describes electron energy dis-
persion in the p-th subband of the conduction band.

The single-particle self-energy correction to the electron energy within the r.p.a. is described by an exchange
graph'®. It takes the form
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where s = ¢, v.
The above results should be plugged into the two-particle Schrédinger equation in the momentum space'? (which

it is more convenient to write down in the variables q., gp):
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where the direct Coulomb interaction (7) should be further screened with the static dielectric constant (9) and
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Solution of Eq. (12) yields the exciton energy levels.

We choose the origin (u = 0, ¢ = 0) at the I'-point in the k-space of graphene'!. Then, for semiconductor
CNTs, the lowest conduction subband and the uppermost valence subband have extrema at pu; = [N/3], ¢ ~ 0
and po = [2N/3] = N — u1, g2 ~ 0, where the square brackets denote rounding to the nearest integer. The e-h
pairs at these extrema are degenerate because of the valley degeneracy in graphene (which is due to the time-reversal
symmetry). Thus far, from our formulation it is not evident how this degeneracy is lifted. Indeed, our expansion
of the Coulomb matrix elements is over longitudinal reciprocal lattice vectors and it is not clear how it affects the
azimuthal motion. All the information about it is hidden inside the chirality-dependent coefficients (6). Fortunately,
for every particular chirality one can obtain analytical expressions for these coefficients. Below we will consider an
example of the (10,5) CNT.

We will limit our consideration by the A-excitons® which are formed by e-h pairs with both the electron and the
hole from the same valley [or vicinity of one of the points (u;,q;), ¢ = 1,2]. Due to (i) the time-reversal symmetry
between the states originating from the two different valleys of graphene and (ii) the mirror-like symmetry between
the conduction and valence bands in our model of CNTs (the particle-hole symmetry), the eigenstates of the exciton
Hamiltonian corresponding to a given exciton wave vector @ are either bonding (Az) or anti-bonding (A;) combinations
of the states originating from the different valleys!:®. Then a simple consideration® leads to the conclusion that, for
Aj-excitons, the spin singlet and triplet states are degenerate. We will be interested in excitons optically excited by
light polarized parallel to the CNT axis. For such excitons A" (g, qn) o 01,0,

For (10,5) CNT N = 70, M = 15 (see Fig. 1). Therefore, u; = 23, us = 47 while Eq. (5) takes the form |n| < 4.
Eq. (6) yields (after a summation over the CNT unit cell)
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If n — 5!l mod 14 = 0 then I; ,, = 14. Otherwise, if 3n — ! mod 14 = 0 then I; , = —1. In other words, I; , peaks when
n — 5l mod 14 = 0.

Let us consider the matrix element (13) between the subbands ' = 1 = 23 and p = pe = 47. The condition that
it does not vanish is m — ' + p = m+ 24 = 5. The smallest |m| satisfying this condition is obtained for m = 1 which
gives [ = 5. I, peaks for n — 5l = n — 25 mod 14 = 0 which yields n = —3. Thus, we have not only demonstrated
that there is an intervalley coupling due to the short-range part of the e-h Coulomb interaction in a (10,5) CNT but
determined that the coupling is dominated by the Fourier component with m = £1, n = F3. Similarly, one can
determine higher values of |m| which give substantial contributions to the intervalley coupling (e.g. m = +6, n = £2;
m=F9, n = =+1; etc.).

The above discussion affects only the direct Coulomb interaction. To emphasize the difference between the direct
and exchange matrix elements we give the expressions for the coefficients entering Eqgs. (7), (8) for @ = 0. As we
are only interested in excitons optically excited in parallel polarization, we set u., = pl, = @/, pe = py = p. As our
model implies a mirror-like symmetry between the conduction and valence-band states of CNTs, one can also set

we(ty, q) = 0oty q) = @(pt, q). Then for the coefficients entering Eq. (7) we have
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while for the coefficients entering Eq. (8) one obtains
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One can see that the latter matrix element is independent of p, p’. Therefore, for the spin singlet states, all the

matrix elements of the exciton Hamiltonian have an exchange contribution of the form
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The strength of optical transitions is determined by the matrix element of the spacially homogeneous part of the

probability current density
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TABLE I: Calculated energies and optical transition strengths for A-excitons in a (10,5) CNT for the spectral region of the

F11 optical transition.

Triplet
energy
(meV)

809
972

1055

1056

1062

1073

1114

1139

1146

1148

1226

1270

1274

1276

Singlet
energy
(meV)

972

985

1055

1056

1073

1075

1139

1142

1146

1149

1269

1273

1274

1279

Transition
strength
(arb.
units)

[9.4]
[0.00009]
0.019

7.9
[0.00005]
0.0003
[0.0002]
0.0002
[0.05]
0.13
[0.0002]
0.86
[0.02]
[0.000004]
0.013
1.52
[0.00008]
0.18
[0.00006]
0.6

[0.2]
0.12
[0.0006]
0.76
[0.0002]
0.48
[0.003]
1.28

Assignment

A2
Al
Al

A2
Al
Al
Al
Al
A2
Al
Al
A2
A2
Al
Al
A2
Al
Al
Al
Al
A2
Al
Al
A2
Al
Al
A2
A2

Comment | Experimental

value
A=13 1.7 +6 meV [9]
meV
E11 992 meV [16]

where the interband velocity matrix elements, (v, i, q|v|c, u1, ¢) are given in'*. Eq. (18) shows that only the spin singlet

exciton states with @@ = 0 are optically active.

We have solved numerically the eigenvalue problem associated with Eq. (12) for the A-excitons with @ = 0 in a

(10,5) CNT. Although our formalism leaves some freedom in choosing a particular form of Eqs. (4), (5), once this

choice has been made, there is only one adjustable parameter, the dielectric constant «. We followed Ando! and varied

k in the range from 2 to 7. For the (10,5) CNT the best result was achieved for k = 6. For our numerical calculations

we used the values of the nearest-neighbor transfer integral 79 = 3 eV and graphene lattice constant a = 2.46 A

and took the CNT length L = 30|T|. In Table I are shown the calculated energies of exciton states in the spectral

region of the Fj; optical transition. The calculated splitting between the exciton singlet dark and bright states is



TABLE II: Calculated energies and optical transition strengths for A-excitons in a (10,5) CNT for the spectral region of the

FEs optical transition.

Triplet
energy

(meV)

1350
1437

1440
1443

1459

1512

1584

1586

1593

1615

1619

1627

1631.7

1632.1

1633.8

1639.9

1670.5

1678.9

1680.1

1680.6

Singlet
energy

(meV)

1437
1439

1443
1445

1512

1528

1586

1587

1615

1617

1625

1631.7

1631.9

1633.1

1636.7

1644

1678.8

1680.0

1680.5

1684

Transition | Assignment | Comment A Experimental

strength
(arb.
units)
[4.6]
[0.006]
0.03
0.88
[0.13]
[0.00002]
0.015
2.2
[8.6]
[0.0002]
0.001
5.7
[0.0003]
0.1
[0.001]
0.19
[0.5]
[0.005]
0.04
1.2
[1.7]
0.09
[0.05]
[0.7]
0.89
0.06
[0.24]
0.26
[0.29]
0.03
[0.2]
0.5
[0.8]
0.004
[0.01]
0.01
[0.001]
0.01
[0.001]
0.9

A2
Al
Al
A2
A2
Al
Al
A2
A2
Al
Al
A2
Al
Al
Al
Al
A2
Al
Al
A2
A2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
A2
A2
Al
Al
Al
Al
Al
Al
A2

value

E22 1577 meV [16]



A = 13 meV, which is only 2 to 8 times larger than the experimental values between 1.7 and 6 meV®. Although
the spin triplet exciton states are optically inactive, the magnitude analogous to the square of the absolute value of
Eq. (18) is useful in determining the bonding versus anti-bonding character of the triplet states. For this reason the
corresponding values are listed in Table I in square brackets. In Table II we give the energies of excitonic levels in
the spectral region of the Eao optical transition. Our numerical results are in a surprisingly good agreement with the
available experimental data. This suggests that the accurate treatment of the e-h Coulomb interaction in CNTs is
more important for exciton physics than the details of the CNT band structure.

To summarize, we have proposed a new approach toward excitons in CNTs whereby the matrix elements of the
e-h Coulomb interaction are expanded into a series over CN'T’s one-dimensional reciprocal lattice vectors. We have
shown that only a few terms of this expansion give a non-vanishing contribution to the Coulomb matrix elements.
Our treatment allows one to single out Fourier components of the Coulomb potential responsible for the intervalley
coupling and formation of the exciton fine structure for each particular CNT chirality.
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