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Abstract 

Quantum dot (QD) blinking is characterized by switching between an on-state and an off-state, 

and a power law distribution of on- and off-times with exponents from 1.0 to 2.0.  The origin of 

blinking behavior in QDs, however, has remained a mystery.  Here we describe an energy - band 

diagram model for QDs that captures the full range of blinking behavior reported in the literature 

and provides new insight into features such as the grey state, the power law distribution of on- 

and off-times, and the power law exponents.   
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Semiconductor quantum dots (QDs) represent one of many systems that exhibit intermittent 

fluorescence, or blinking, characterized by switching between an on-state and an off-state.  The 

on- and off-times have a broad range of decades, typically from milliseconds to minutes, and 

exhibit power law behavior (f = Bτ-α) with exponents (α) between 1.0 and 2.0.  In some cases, 

switching may occur between an on-state and a low-intensity or “grey” state.  The origin of the 

blinking behavior in QDs, however, has “remained a mystery” [1].  

 In 1997 Efros and Rosen [2] proposed the most cited model for QD blinking [3].  In this four 

state model based on semiconductor physics, a QD (state 1) can absorb a photon generating an 

electron - hole pair (state 2).  Radiative band-to-band recombination results in emission of a 

photon (and return to state 1) whereas absorption of a second photon, before recombination of 

the electron-hole pair, leads to the creation of two electron-hole pairs (state 3).  There are two 

possible pathways from this state: (1) radiative band-to-band recombination (return to state 2), 

and (2) non-radiative Auger recombination with simultaneous excitation of an electron to a trap 

state, resulting in a valence band hole and a trapped electron (state 4).  The trapped electron is 

assumed to have very slow detrapping kinetics resulting in the off-state.  Auger recombination is 

an intra-QD energy transfer interaction in which the excess energy from a band-to-band 

recombination event is transferred to a spectator charge carrier rather than emitted as a photon.   

   While various modifications have been suggested to the Efros - Rosen model, and other 

statistical models have been proposed to explain the power law behavior [1, 4-6], the physics of 

the blinking behavior remains unresolved [1, 7, 8].  Here we describe an energy - band diagram 

model for QDs that captures the range of blinking behavior reported in the literature and 

provides insight into features such as the grey state, the power law distribution of on- and off-

times, and the power law exponents.  
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Model implementation 

Intensity – time curves 

Figure 1 shows energy - band diagrams for the various states in our model, along with the 

associated rate constants. Our model is implemented using standard kinetic Monte Carlo 

methods (KMC)[9] and is based on the physics of QDs[10-12] combined with descriptions for 

recombination and trapping processes widely used in device physics (Table 1).  We denote each 

state in the QD as (ij), where i is the total number of free electrons (holes) in the QD, and j is the 

number of trapped charge carriers.  Without losing any generality, we assume that only electrons 

can be trapped according to s0 + e(CB) ↔ s-.  From examination of Figure 1 it is evident that p = 

i, n = i - j, and s- = j, where n is the number of free electrons, p is the number of holes, and s- is 

the number of occupied trap states.   

 For each state (ij) there are several possible transitions to adjacent states, and these 

transitions have corresponding rates r1, r2, … rn.  The time that a QD will remain in a certain state 

is given by ∆t = -lnR/∑ri, where R is a random number between 0 and 1.  The probability that a 

QD will move to a particular state is given by ri/∑ri. A QD with no electrons or holes is 

designated as in the (00) state (n = 0, p = 0, s- = 0).  Absorption of a photon and the generation of 

an e - h pair results in a transition to the (10) state (n = 1, p = 1, s- = 0).  From the (10) state, there 

are three possible transitions, indicated by the arrows in Figure 1:  (1) radiative recombination (kr) 

returns the QD to the (00) state with the emission of a photon, (2) trapping of the electron (kt) 

results in a transition to the (11) state (n = 0, p = 1, s- = 1), and (3) absorption of another photon 

(g) results in a transition to the (20) state (n = 2, p = 2, s- = 0).  
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 The transition from the (10) state is determined from the sum of all possible rates (rr + rt + g), 

as described above.  For the (10) state, the residence time is given by ∆t = -lnR/(rr + rt + g).  We 

then subdivide the range from 0 to 1 into three parts, each with a length the same as the 

probability of each transition.  For example, the probability of the transition from the (10) state to 

the (00) state is determined by rr/(rr + rt + g).  The transition is then selected by generating 

another random number between 0 and 1.  Since kr is typically much larger than g and kt, there is 

a high probability that the QD will relax from the (10) state to the (00) state.  Oscillation between 

the (00) and (10) states represents sequential absorption and emission in the QD.  Population of 

the (20) state gives rise to the possibility of Auger recombination, which is usually considered to 

be faster than radiative recombination.  For all transitions between (i0) states, the QD is 

considered to be in the on-state and no blinking is observed.  Even though Auger recombination 

(kA) may dominate in (i0) states with i ≥ 2, we consider these configurations as on-states as they 

return to the (00) state with high probability. 

 The population of states with trapped carriers (j ≥ 1) results in off-states.  For example, 

consider the (21) state (n = 1, p = 2, s- = 1) for which there are six possible transitions: (1) return 

to the (20) state by detrapping (kd), (2) transition to the (10) state by non-radiative recombination 

involving the trap state (knrt), (3) transition to the (31) state by absorption of a photon and 

generation of an e - h pair (g), (4) transition to the (11) state by radiative recombination and 

generation of a photon (kr), (5) transition to the (11) state by Auger recombination (kA), and (6) 

transition to the (22) state by trapping the conduction band electron (kt).    

 From Figure 1 it is evident that if kA > kr (and kA > kt, kd, knrt) then the QD will remain in the 

off-state since e - h pair generation will most likely be followed by a return to the same state 

through non-radiative Auger recombination (kA).  Detrapping (kd) and non-radiative 



 5

recombination via trap states (knrt) both return the QD to the on-state.  Switching between the on- 

and off-states that leads to blinking is controlled by kt, kd, and knrt which are generally much 

slower than g, kr, and kA.  The intensity - time curves are obtained by counting the number of 

photons emitted in each bin (integration) time. 

 

On-time fraction (Pon) 

To characterize the blinking behavior for a given set of rate constants, we first write the system 

of rate equations corresponding to the processes indicated in Figure 1.  We denote the probability 

of finding a QD in a given state by Pij.  For example, the (00) state can be accessed from the (10) 

state by radiative recombination (kr), or from the (11) state by non-radiative recombination via 

trap states (knrt).  In addition, the (00) state can transition to the (11) state by generation of an e - 

h pair (g) which would decrease the probability of finding a QD in the (00) state.  Thus, the time 

dependent probability for the (00) state is given by:  

 
0011nrt10r

00 gP-Pk+Pk=
dt

dP

 (1) 

As an example, the system of equations for a maximum of 2 e - h pairs is: 

 
0011nrt10r

00 gP-Pk+Pk=
dt

dP

 (2) 

   
dP10
dt

= gP00 + kdP11 +1⋅ 2knrtP21 + (2⋅ 2kr + 2⋅ 22kA)P20 - (kr + skt + g)P10
 (3) 

   
dP20
dt

= gP10 + kdP21 - (2⋅ 2kr + 2⋅ 22kA + 2skt + g)P20
 (4) 

   
dP11
dt

= sktP10 + 2⋅ 2knrtP22 + (1⋅ 2kr +1⋅ 22kA)P21 - (kd + knrt + g)P11
 (5) 
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dP21
dt

= 2sktP20 + gP11 + 2kdP22 - (kd + 2knrt + 2kr +1⋅ 22kA +1⋅ (s -1)kt + g)P21
 (6) 

   
dP22
dt

=1⋅ (s -1)ktP21 - 2⋅ 2knrtP22 -  2kdP22
 (7) 

 The equations can be solved for different values of the rate constants by recognizing that in 

steady state dPij/dt = 0 and that ΣPij = 1.  The on-time fraction Pon is given by: 

 
Pon = Pi0∑

 (8) 

The off-time fraction Poff is given by: 

 
Poff = Pij

j≥1
∑

 (9) 

Experimentally, Pon is usually obtained by defining a threshold (Ith) between the on- and off-

intensities (Ion and Ioff).  This procedure may introduce artifacts, however, as long as the on- and 

off-intensities are well separated then Pon is the same for both methods. 

 

Distribution of on- and off-times 

Intensity distributions were obtained from intensity - time curves.  To obtain the on- and off-

times, we first determined the threshold intensity Ith from the intensity distribution.  Gaussians 

were fit to the on- and off- peaks and Ith was obtained from intersection point between the two 

peaks.  The QD was considered to be “on” when In ≥ Ith, and “off” when In < Ith.  If In remains 

above or below Ith for n sequential time bins, then τon/off = nτbin.   The intensity time curve is thus 

converted to a sequence of on- and off-times.  We then create a histogram describing the number 

of occurrences Ni of each duration τi (1 ≤ i ≤ M).  The shortest duration (τ1) is limited by the bin 

time (τbin), while the longest duration (τM) is limited by the total time (τtotal).  Total number of 

occurrences of on- or off-times is: 
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Ntotal = Ni

1≤i≤M
∑

 (10) 

The distribution of on- and off-times, or formally the probability density (s-1) Pi, is given by:  

 2/)]τ-τ(+)τ-τ[(
N/N

=P
1-iii1+i

total
ii

i
 (11) 

where 2 ≤ i ≤ M - 1.  At the limits (i = 1 and i = M) we set τ0 = τ1 and τM+1 = τM.  The power-law 

exponents (αon/off) or exponential times (τ0,on/off) are determined from a least-squares fit the 

log(Pi,on/off) versus log(τi,on/off) curves. 

 

Quantum yield 

The on- and off-quantum yields were calculated by averaging all the intensities above or below 

the threshold over time divided by the number of photogenerated electron – hole pairs: 

  (12) 

  (13) 

 Experimentally, evaluation of QYon and QYoff requires careful analysis of the distribution of 

intensities from intensity – time curves.  If the intensities associated with the on- and off-states 

are well separated then it is trivial to set an appropriate threshold.  However, if the distributions 

of on- and off-intensities overlap, then distinguishing between on- and off-states is more difficult.  

This can often be accomplished by fitting two Gaussians to the distribution, one representing the 

on-state and one representing the off-state.  

 

QYon =
In

I n >I th

∑

gn∑

QYoff =
In

I n <I th

∑

gn∑
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Generation 

The generation rate g (ms-1) in a spherical QD with absorption coefficient α (cm-1) is given by: 

 
g =

I0πd2

4hν
1 − 2

1 − 1+ αd( )e−αd

αd( )2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  (14) 

where I0 is the incident power density (W cm-2), hν is the photon energy, and d is the QD 

diameter.  We assume that the absorption coefficient for a nanoparticle is the same as for a bulk 

material. 

 Absorption can also be defined in terms of the absorption cross-section σ:  

 
σ =

πd2

4
1 − 2

1 − 1+ αd( )e−αd

αd( )2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥  (15) 

such that g = I0σ/hν. 

 For a 5 nm diameter CdSe QD, taking an absorption coefficient α = 105 cm-1 at λ = 400 nm 

[13] and an incident power density of 0.1 - 1000 W cm-2 [14-16] the generation rate g is typically 

in the range 1 - 104 ms-1.   

 The generation rate is linearly dependent on incident power density, QD volume, and 

absorption coefficient [3].  The bulk absorption coefficient for most semiconductors of interest is 

in the range from 105 - 106 cm-1.  The QD diameter is typically 3 nm - 10 nm, corresponding to 

an order of magnitude range of volume.  Although the range of power density may be quite large, 

experimentally, the power density is adjusted so that the emission from the QD does not saturate 

the detector using an exposure time of around 10 ms. 
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Trapping and Detrapping 

Radiative band-to-band recombination is expected to be fast with a rate constant kr = 103 - 106 

ms-1 (Table 2) [17-21].  If there are more than two free carriers in a QD, Auger recombination 

(Fig. 1b) is expected to be dominant with a rate constant kA = 105 - 108 ms-1 [22-27].  For 

convenience we refer to the different configurations in Figure 1 as (ij) where i represents the 

number of e - h pairs and j represents the number of trapped electrons.  

 It is evident from examination of an energy - band diagram (Fig. 1) that trapping/detrapping 

and Auger recombination are essential to create configurations where blinking is observed.  In 

configurations where trap states are occupied (j ≥ 1), electron - hole pairs are eliminated 

primarily by Auger recombination (kA > kr) and the QD is predominantly in an off-state.  

Conversely, configurations where j = 0 can easily reach the (10) state where radiative 

recombination dominates.   Thus configurations in the top row (j = 0) represent the on-state of a 

QD, and configurations below the top row (j ≥ 1) correspond to the off-state.  

 The rate of trapping is given by rt = ktns0 where n is the number of electrons in the QD and s0 

is the number of empty trap states. The detrapping rate is given by rd = kds- where s- is the 

number of occupied trap states.  For all results reported here, we arbitrarily choose 10 trap states 

(s = 10), although as we show later, the steady state number of trapped electrons is typically less 

than 3.  For convenience we assume that trapping and detrapping involve only conduction band 

electrons.   

 Blinking requires switching between an on-state (i0) and an off-state (ij) where i, j ≥ 1.  The 

overall trapping/detrapping rates for a single QD, taking into account all configurations, can be 

described in terms of effective trapping and detrapping rates: 

 
rt,eff =

rt,i0Pi0∑
Pi0∑

=
skt Pi0∑

Pi0∑  (16) 
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rd,eff =

rd,il + rnrt,i1( )Pi1∑

Pij
j≥1
∑

=
kd Pi1 + knrt iPi1∑∑

Pij
j≥1
∑  (17) 

 

where Pij is the probability of state (ij). The blinking behavior can then be described in terms of 

the on-time fraction Pon, as a function of rt,eff and rd,eff:  

 
Pon =

rd,eff
rt,eff + rd,eff  (18) 

where Pon = 1 for a QD that is always on and Pon < 1 for blinking.  To achieve the on- and off-

times observed experimentally, typically in the range from 1 ms to 100 s, the effective trapping 

and detrapping rates should be on the order of 10-5 - 100 ms-1. 

 

Results and Discussion 

Intensity - time curves from the model are able to reproduce the full range of behavior observed 

experimentally.  Figure 2a shows a typical non-blinking luminescence curve.  For an integration 

(bin) time of 10 ms, the distribution of on-intensities shows a peak at around 100 photons, 

corresponding to a quantum yield of 1.0.  Increasing rt,eff/rd,eff to 10-1 by changing kt, results in 

blinking with Pon = 0.91 (Fig. 2b).  The average on-intensity (Ion) remains 100 photons per bin 

(QYon = 1.0) with a maximum frequency of 91% of the value for the corresponding non-blinking 

curve (Fig. 2a).  The off-intensity distribution is much narrower than the on-intensity distribution, 

and would only be observed experimentally if the fluctuations are larger than the noise of the 

photodetector.  Increasing rt,eff/rd,eff to 100 decreases Pon to 0.5 (Fig. 2c), and increasing rt,eff/rd,eff 

further to 101, decreases Pon to 0.09 (Fig. 2d).  These results show that the blinking behavior is 

controlled by rt,eff/rd,eff.   
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 Figure 2e shows that the blinking regime occurs over a range of rt,eff/rd,eff = from 10-2 to 102.  

To illustrate the relative importance of the parameters in the model, we consider a simple case 

involving the (00), (10), (11), (21) states.  These are the four states most frequently occupied at 

low generation rates.  Taking into account the relevant rate constants, it is straightforward to 

show that:  

  (19) 

  (20) 

 

In most cases of experimental interest, kr > g and hence rt,eff → sktg/kr.  Similarly, it is also 

expected that kr + 2kA > g, so that rd,eff → kd + knrt and hence Pon is independent of kA (at constant 

s, kt, and kd + knrt).  Deviations from these approximations are observed at higher generation 

rates. 

 From eq. (19) it is seen that increasing the generation rate results in an increase in rt,eff and 

hence is expected to decrease Pon.  The generation rate is dependent on several parameters, 

however, for a given system it is very difficult to vary the generation rate over a wide range: the 

generation rate must be high enough so that the signal on the detector allows the on- and off-

states to be clearly distinguished, but not too high to result in saturation.  

 The trapping and detrapping processes are controlled by kt and kd + knrt.  kt and kd can be 

described by two possible mechanisms [28].  (1) Trapping and detrapping involve delocalized 

electrons and states at the core/shell interface.  Energetically, the trap states are expected to be 

located in the band gap so that trapping is downhill and detrapping is thermally activated.  (2) 

Trapping and detrapping occur by tunneling between delocalized electrons in the core to states in 

rt,eff =
sktg

g + kr

rd,eff =
(kd +knrt)(kr +2kA)

g+kr +2kA
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the shell or at the surface of the shell if it is sufficiently thin.  Non-radiative recombination via 

trap states knrt contributes to blinking in the same way as kd even though they represent different 

physical processes [22].  The expressions for kt , kd and knrt are dependent on the mechanism but 

do not influence the results reported here. 

 

Binning Time and Total Time    

The binning time, which is usually set by the minimum camera exposure time necessary to 

distinguish the QD from the background (typically in the range from 200 μs to 100 ms, but 

usually around 10 ms) [15, 29, 30], plays a key role in determining the blinking characteristics.  

If the effective trapping and detrapping rates, rt,eff and rd,eff are faster than 1/τbin, then switching is 

likely to occur in each frame and the QD will appear always on with an average intensity I = 

Imax·Pon, where Imax = g·τbin.  Conversely, if rt,eff and rd,eff are slower than 1/τtotal (where τtotal is 

typically up to 1000 s), then there will be very few switching events in intensity - time curves.  

Thus for blinking to occur, rt,eff and rd,eff must be greater than 1/τbin and less than 1/τtotal.  

Practically, this corresponds to a range from about 10 ms to about 100 s.   

 

Grey state   

Experimentally, intensity - time curves for QDs sometimes show an off-state that is above the 

background signal of the detector, the so-called grey state [14, 25, 31].  Figure 3a shows an 

intensity - time curve where the parameters are the same as for Figure 2c except that kA is 

decreased from 107 ms-1 to 106 ms-1.  The intensity distribution (Fig. 3a) shows the emergence of 

a grey state where the off-state distribution is shifted above zero.  
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 The grey state is dependent primarily on kA, kr, and g.  Figure 3b shows the magnitude of on- 

and off-intensities, as well as the amplitude of their fluctuations, plotted versus kA/kr (kr = 105 

ms-1).  For a bin time of 10 ms, the on-intensity is about 100 photons/bin with fluctuations of 

about 10 photons/bin, independent of kA/kr.  In the off-state, the radiative and Auger 

recombination pathways operate in parallel, and hence we have: 

 
QYoff =

1
1+ 2kA /kr  (21) 

Thus as kA → kr, the QY of the off-state increases and reaches a value of 0.33 when kA = kr.  

Also note that when QYon = 1 then QYoff = Ioff/Ion. 

 When kA/kr is large, Ioff/Ion → 0, and the off-state in an experiment would coincide with the 

background signal of the detector.  In contrast, as kA → kr, Ioff/Ion becomes significant so that the 

off-state can be resolved above the background signal of the detector.  In all cases, the on- and 

off-intensities and their fluctuations are not significantly influenced by the trapping and 

detrapping rate constants.  

 The influence of g and kr on the on- and off-quantum yields for a typical grey state is shown 

in Figure 3c.  The ratio kA/kr is maintained constant and the trapping rate constant is tuned so that 

the on-time fraction is always around 0.5 (see Fig. 2).  As described above, kt and kd only affect 

the on-time fraction.  As the generation rate increases, QYoff remains approximately constant at 

around 0.05.  In contrast, QYon decreases above a characteristic value of g due to the presence of 

multiple e - h pairs (see below) and the increasing contribution of Auger recombination [24, 26, 

32 ].  When g → kr, the probability of creating more than one e - h pairs increases (see Fig. 1), 

and hence the contribution from Auger recombination results in a decrease in QYon.  For 

example, for g = 103 ms-1, QYon decreases from 0.98 when kr  = 105 ms-1, to 0.5 when kr  = 103 

ms-1.  
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 We next analyzed the number of electron - hole pairs in a QD under steady state conditions.  

Figure 3d shows the probability of finding single or multiple e - h pairs for different generation 

rates.  For low generation rates (≤ 1 ms-1), radiative recombination is dominant and the 

probability of finding an e - h pair is low.  As the generation rate increases, the probability of 

finding multiple e - h pairs increases progressively and QYon decreases (see Fig. 3c).  This effect 

was reported by Kraus et al. [26] who showed that the PL intensity did not increase 

proportionally with increasing generation rate for CdSe/ZnS QDs.  

 

Pulsed Laser Excitation 

Experimentally, intensity - time curves are usually obtained under continuous excitation where 

kr > g.  However, in some cases pulsed laser excitation is used to study blinking [15, 16, 26].  In 

these experiments, the laser pulse is typically on the order of picoseconds or less, much faster 

than other processes such as radiative recombination and Auger recombination, and the 

repetition time is typically on the order of microseconds.  In these experiments, multiple e - h 

pairs can be generated in each pulse before any relaxation process can occur.  The generation of 

multiple e - h pairs in a single pulse (Np ≥ 2) results in the instantaneous population of states 

where Auger recombination is significant.  As long as kA >> kr, all additional electron - hole 

pairs in a pulse will recombine very quickly, and the quantum yield in the on-state is decreased, 

however, the blinking behavior is unchanged.  When kA ≈ kr, the additional e - h pairs can 

undergo radiative recombination and hence the on-intensity will be higher than for continuous 

excitation with the same repetition time, even though the quantum yield for the pulsed 

experiment will be lower.   
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Distribution of on- and off-times  

With fixed values of kt and kd, the distributions of on- and off-times are exponential (f = Aexp(-

τ/τ0)).  For example, Figure 4b shows an intensity - time curve and the distributions of on- and 

off-times for kt = 100 ms-1 and kd = 10-3 ms-1.  The distributions are exponential with τ0,on  = 1.14 

± 0.04 s and τ0,off =1.17 ± 0.08 s (Pon =0.49 ± 0.01).  

 An exponential distribution of on- and off-times is expected for constant trapping and 

detrapping rates [33], as pointed out by Efros and Rosen [2], and has been observed 

experimentally for quantum jumps in atomic systems [34].  In practice, the distribution of on- 

and off-times obtained from analysis of intensity - time curves for QDs, usually exhibit power 

law behavior (f = Bτ-α), with exponents α typically between 1.0 and 2.0 [29, 30, 35, 36]. 

 Figure 4c shows the distribution of on- and off-times for a linear distribution of kt and kd [3], 

where kt varies from 10-2 to 102 ms-1 and kd varies from 10-5 to 10-1 ms-1 (see Fig. 4a).  For each 

trapping/detrapping event the trapping/detrapping rate constant is selected randomly over the 

given range, where all rate constants have equal probability.  The distributions show power law 

behavior with αon = 1.86 ± 0.06 and αoff = 1.86 ± 0.03 (Pon  = 0.52 ± 0.05).  

 The power law exponent is dependent on the function that describes the distribution of 

trapping and detrapping rate constants.  For example, a parabolic distribution (Fig. 4d) of kt and 

kd (over the same range), results in power law distributions with αon = 1.37 ± 0.06 and αoff = 1.35 

± 0.06 (Pon = 0.42 ± 0.14) .  An exponential distribution (Fig. 4e) of kt and kd results in power 

law distributions with αon = 0.98 ± 0.06 and αoff = 1.02 ± 0.06 (Pon  = 0.52 ± 0.15).    

 To describe the influence of variable trapping and detrapping rate constants on the 

distribution of on- and off-times, it is convenient to refer to the effective trapping and detrapping 

rates (rt,eff and rd,eff).  The range of trapping and detrapping rate constants gives rise to a range of 
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rt,eff and rd,eff.  Power law behavior is only observed when there is a distribution of effective 

trapping and detrapping rates where τt,eff (1/rt,eff) and τd,eff (1/rd,eff) span a range from τbin to about 

0.1τtotal.  For a typical bin time of 10 ms and a typical total time of 1000 s, this corresponds to a 

range of about 4 orders of magnitude.  The influence of the distribution of trapping and 

detrapping rate constants on the power law exponent is simply related to the distribution of 

trapping events.  For example, a parabolic distribution has more events at longer times than a 

linear distribution which results in more probability density at longer times and hence a smaller 

slope.  Thus the range of power law exponents observed experimentally can be obtained simply 

by tuning the function that described the range of trapping/detrapping rate constants. 

 Physically, a distribution in values of kt and kd is easily justified.  For example, if trapping 

involves tunneling to trap states in the shell, then a distribution of distances from the QD core 

would be expected to give rise to a distribution in trapping and detrapping rates.  Similarly, a 

distribution in the energy of traps at the core/shell interface would be expected to give a 

distribution of trapping and detrapping rates.   
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Figure Captions 

Figure 1.  Energy band diagrams illustrating the dynamics of electron - hole pairs in blinking 

quantum dots. (a) Physical processes in quantum dot blinking: g - generation rate, kr, 

recombination rate constant, kA - rate constant for Auger recombination, kt - trapping rate 

constant, kd - detrapping rate constant, knrt - rate constant for non-radiative recombination. (b) 

Auger recombination in quantum dots.  Band-to-band recombination is coupled with excitation 

of a charge carrier (in this case a hole) that quickly relaxes (on the order of picoseconds) back to 

the band edge.   

 

Figure 2.  Simulated intensity - time curves, and intensity distributions as a function of effective 

trapping/detrapping ratio rt,eff/rd,eff with kd = 10-3 ms-1, knrt = 0 ms-1, s = 10, kr = 105 ms-1, kA = 107 

ms-1, g = 10 ms-1.  (a) rt,eff/rd,eff = 10-4 (kt = 10-4 ms-1), (b) rt,eff/rd,eff = 10-1 (kt = 10-1 ms-1), (c) 

rt,eff/rd,eff = 100 (kt = 100 ms-1), and (d) rt,eff/rd,eff = 10 (kt = 10 ms-1).  In all cases the integration 

(bin) time was 10 ms.   

  

Figure 3. Influence of important rate constants on on- and off-intensities.  (a) Intensity - time 

curve (photons / 10 ms) and intensity distribution illustrating the grey state.  The parameters are 

the same as for Figure 2c except that except that kA is decreased from 107 ms-1 to 106 ms-1.  Other 

parameters are: kr = 105 ms-1, g = 10 ms-1, kt = 100 ms-1, kd = 10-3 ms-1, knrt = 0 ms-1, and s = 10 

with rt,eff/rd,eff = 1.  (b) On and off intensities and their fluctuations versus kA/kr (1 - 103).  Other 

parameters are the same as (a).  (c) Quantum yield for on- and off-states versus generation rate g 

(1 - 103 ms-1) at different radiative recombination rates (kr = 103 - 106 ms-1) with kA/kr  = 10.  

Other parameters are: s = 10, kd = 10-3 ms-1, knrt = 0 ms-1, kt chosen such that rt,eff/rd,eff = 100 and 

Pon = 0.5.  (d) Probability of the steady state number of electron - hole pairs versus generation 

rate (g = 1 - 103 ms-1), with other parameters the same as in (a).  

 

Figure 4.  Simulated intensity - time curves, intensity distributions, and distributions of on- and 

off-times for QD excitation for constant and variable trapping/detrapping rate constants (kt and 

kd) with knrt = 0 ms-1, s = 10, kr = 105 ms-1, kA = 107 ms-1, and g = 10 ms-1.  (a) The range and 

distribution of trapping/detrapping rate constants.  (b) Constant trapping/detrapping rate 

constants: kt = 100 ms-1, kd = 10-3 ms-1.  (c) Linear distribution of trapping/detrapping rate 
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constants: kt = 10-2 - 102 ms-1,  kd = 10-5 - 10-1 ms-1.  (d) Parabolic distribution of 

trapping/detrapping rate constants:  kt = 10-2 - 102 ms-1,  kd = 10-5 - 10-1 ms-1.  (e) Exponential 

distribution of trapping/detrapping rate constants:  kt = 10-2 - 102 ms-1,  kd = 10-5 - 10-1 ms-1. For 

details of the variable trapping and detrapping rates, see Supplementary Information. 
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Process Rate Equation 
radiative recombination rr = kr·n·p kr - rate constant for radiative recombination 
   n - number of electrons 
   p - number of holes 
 
Auger recombination rA = kA· n·p2 kA - rate constant for Auger recombination 
 
trapping rt = kt·n·s0 kt - rate constant for trapping 
   s - total number of traps (s = s0 + s-) 
   s0 - number of empty traps 
   s- - number of occupied traps (s0 + e(CB) ↔ s-) 
   note: we arbitrarily choose s = s-+ s0 = 10 
 
detrapping rd = kd·s- kd - rate constant for detrapping 
    
 
non-radiative recombination rnrt = knrt·s-·p knrt - rate constant for non-radiative recombination 
 

Table 1.  Summary of processes included in the model and the corresponding rate equations.   

 
 
 
 
 
 
 Parameter Typical values (ms-1)  

 kr 103 - 106 
 kA 105 - 108  
 g 1 - 103 

Constant trapping/detrapping rates  
 kt 10-4 - 102 

 kd + knrt 10-3 - 10-2 
Variable trapping/detrapping rates  
 kt 10-2 - 102 
 kd + knrt 10-5 - 10-1 
 rt,eff 10-5 - 10-1 
 rd,eff 10-5 - 10-1 

 

Table 2.  Typical values of parameters used in the model.   

 

 

 










