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Calculations of formation energies and charge transition levels of defects routinely rely on density
functional theory (DFT) for describing the electronic structure. Since bulk band gaps of semi-
conductors and insulators are not well described in semilocal approximations to DFT, band-gap
correction schemes or advanced theoretical models which properly describe band gaps need to be
employed. However, it has become apparent that different methods that reproduce the experimental
band gap can yield substantially different results regarding charge transition levels of point defects.
We investigate this problem in the case of the (+2/0) charge transition level of the O vacancy in
ZnO, which has attracted considerable attention as a benchmark case. For this purpose, we first
perform calculations based on non-screened hybrid density functionals, and then compare our results
with those of other methods. While our results agree very well with those obtained with screened
hybrid functionals, they are strikingly different compared to those obtained with other band-gap-
corrected schemes. Nevertheless, we show that all the different methods agree well with each other
and with our calculations when a suitable alignment procedure is adopted. The proposed procedure
consists in aligning the electron band structure through an external potential, such as the vacuum
level. When the electron densities are well reproduced, this procedure is equivalent to an alignment
through the average electrostatic potential in a calculation subject to periodic boundary conditions.
We stress that, in order to give accurate defect levels, a theoretical scheme is required to yield not
only band gaps in agreement with experiment, but also band edges correctly positioned with respect
to such a reference potential.

PACS numbers: 71.15.Nc, 71.55.-i, 71.55.Gs

I. INTRODUCTION

Point defects can affect the properties of solids in a
dramatic way.1 They determine, for example, the con-
ductivity of semiconductors, the color of natural crys-
tals, and the mechanical properties of materials. Equally
important, defects influence or govern the performance
and the long-term stability of a wide range of semicon-
ductor devices, such as metal-oxide-semiconductor field-
effect transistors, photovoltaic cells, solid fuel cells, to
name a few. The theoretical characterization of de-
fects, especially in wide band-gap materials, has be-
come increasingly important in the attempt to under-
stand and control the performance of these devices.2,3

In the last decades, density functional theory (DFT)
has grown into the standard theoretical model to de-
scribe the electronic and atomic structure of solids. The
common approximations to DFT, viz. the local density
approximation (LDA) and the generalized gradient ap-
proximation (GGA), systematically underestimate band
gaps of semiconductors and insulators. Since the band
gap is the relevant energy scale in the study of defects,
this so-called “band-gap problem” of LDA and GGA
severely affects the predictive power of these approxi-
mations when applied to defect levels. Recently there
have been lots of efforts to assess the importance of band
gap corrections2–7 and to use theoretical models giving
a much more appropriate description of the bulk band
structure. The choice of methods is large and includes the

LDA+U method,8–11 approximate self-interaction cor-
rection schemes,12 hybrid density functionals,13–21 the
use of modified pseudopotentials,22 empirical schemes,23

and more advanced theoretical tools, such as the many-
body perturbation theory within the GW and higher
approximations.24–29

It appears evident to assume that a good theoretical
model must at least satisfy two conditions, namely (i)
give an accurate electron density of the defect system and
(ii) yield a good band gap of the host material. While
these two requirements form a necessary prerequisite to
obtain reliable results concerning defect formation ener-
gies and associated charge transition levels,2,4 it has re-
cently become apparent that it is by no means sufficient.
This is best exemplified in the case of defect energy levels
in ZnO.4,8–11,17,21,30–34 This is a particularly severe case,
because the LDA and the GGA yield a bulk band-gap
of 0.6-0.8 eV, severely underestimating the experimen-
tal value of 3.44 eV. For the case of the (+2/0) charge
transition level of the oxygen vacancy (VO) theoretical
models yield levels either as low as 0.6 eV above the va-
lence band maximum (VBM) or as high as 2.4 eV above
VBM. These results differ significantly despite the fact
that in all these theoretical models the “band-gap prob-
lem” was accounted for. In addition, other critical issues,
such as finite-size effects associated to the supercell treat-
ment, were presumably under control in these studies.
Furthermore, the first condition concerning the accuracy
of the electron density was clearly also fulfilled since the
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involved electronic state corresponds to the fully sym-
metric a1 state which is already correctly described via
a semilocal functional. The second condition concerning
the band gap was fulfilled by construction.

Recently, Lany and Zunger provided a very detailed
overview of the way various theoretical and computa-
tional approximations affect the determination of defect
formation energies and charge transition levels.4 They
concluded that, in addition to the two requirements dis-
cussed above, a reliable theoretical model should cor-
rectly describe the relative positions of all relevant elec-
tronic states. For ZnO, this condition mainly concerns
the position of the Zn 3d states with respect to the
conduction and valence band edges. The importance
of this requirement becomes evident when considering
shallow defects, the wavefunctions of which can be al-
ways thought as arising from a linear combination of bulk
bands.

In this work, we show that that there is yet another
crucial requirement that the theoretical model must ful-
fill. In order to yield an appropriate description of defect
formation energies and associated charge transition lev-
els, the positions of the VBM and the conduction band
minimum (CBM) with respect to a suitably defined ref-
erence potential should also be accurately described. To
demonstrate this, we first calculate the (+2/0) charge
transition level of the VO in ZnO and compare our result
with those available in the literature. Our study adds
to a series of studies,4,9–11,26,32,34 in which conflicting re-
sults were found. However, we show that these seem-
ingly incompatible findings agree reasonably with each
other when an alternative alignment scheme is used. We
provide theoretical arguments to rationalize this finding.
Similar results are expected for other atomically localized
defects and for other materials in which the “band-gap
problem” of semilocal calculations is particularly severe.
Our investigation thus leads to a deeper understanding of
the “band-edge problem” in the theoretical study of de-
fect levels and provides a requirement for the theoretical
model in addition to the conditions mentioned above.

This paper is organized as follows. In Sec. II, we sum-
marize our computational approach for calculating defect
formation energies and charge transition levels. The ob-
tained results are discussed and compared to other cal-
culations in Sec. III. An alignment scheme with respect
to the average electrostatic potential is introduced and
found to bring all the calculated results in good agree-
ment with each other. The significance of this alignment
of bulk band structures is discussed in more detail in Sec.
IV. To understand our findings about defect charge tran-
sition levels, fundamental differences between localized
and extended states in approximate DFT formulations
are discussed in Sec. V. In Sec. VI, two different theo-
ries reproducing the experimental band gap but differing
in the positions of the bulk band edges with respect to
the vacuum level are taken under consideration to com-
plete our rationale. We summarize our work and draw
conclusions in Sec. VII.

II. COMPUTATIONAL METHODS

In the present calculations, the electronic structure was
treated using two different functionals. First, we em-
ployed the GGA functional proposed by Perdew, Burke,
and Ernherhof (PBE).35 For comparison with previous
calculations in the literature, we obtained for bulk ZnO
a band gap of 0.83 eV, to be compared with the exper-
imental value of 3.44 eV. To obtain an improved band
gap, we used a hybrid density functional36 defined by a
single parameter a corresponding to the fraction of non-
local Fock exchange admixed to the GGA exchange:

Ehybrid
x = aEFock

x + (1 − a)EGGA
x . (1)

A hybrid functional with a = 0.25 and with the PBE
for the GGA part37 is referred to as PBE0, PBEh, or
PBE1PBE. For ZnO, we obtained a band gap of 2.82 eV
using this functional. The experimental band gap is re-
produced with a = 0.32. In the following, we refer to
this functional as to PBEh-32. While this adjustment of
a is empirical, it can be justified to a certain extent.38–41

It can be shown that the optimal value of aopt, i.e. the
one which reproduces the experimental band gap, is ap-
proximately given by aopt ∼ 1/ε∞. Here, ε∞ is the elec-
tronic part of the static dielectric constant. For a large
number of materials this relationship is approximately
fulfilled.40,41 The adjustment of a can also be justified
in some cases by comparison with more accurate GW
calculations.38

The main quantity that needs to be calculated is the
formation energy of the oxygen vacancy in a charge state
q, which is given as:2

Eq
f = Eq

tot − Etot,bulk + µO + q(εV + εF). (2)

Here Eq
tot is the total energy of the defect system con-

taining a single O vacancy in the supercell, Etot,bulk is
the total energy of the host material without any defect,
µO is the atomic chemical potential of oxygen, and εF is
the electron chemical potential. The latter is referred to
the VBM εV. Except for semiconductors with degener-
ate doping, εF varies between zero and the band gap of
the material Eg.
The atomic chemical potentials µO and µZn are bound

by the condition that ZnO is in thermal equilibrium with
the reservoir of O and Zn atoms, i.e. µZn + µO = µZnO.
Oxygen-rich conditions are defined by the onset of spon-
taneous formation of O2 molecules, i.e. by µO = 1

2
EO2

tot .
Oxygen-poor (Zn-rich) conditions are correspondingly
defined by the onset of spontaneous formation of bulk
Zn crystallites, i.e. via µZn = µZn,bulk. The formation of
oxygen vacancies in ZnO is hindered in O-rich conditions,
and facilitated in O-poor conditions. The calculation of
the O chemical potential in O-poor conditions poses some
difficulties when hybrid density functionals are used, be-
cause this involves the calculation of the total energy of
bulk Zn. In Hartree-Fock theory the description of metals
leads to divergences, and the same problem is also found
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with hybrid functionals. To overcome this problem, we
assume that the cohesive energy of bulk Zn, which is
well described in the GGA, does not change significantly
in the hybrid functional calculation.42 Alternatively, one
could define the O chemical potential in O-poor condi-
tions by assuming that the separation between the O-rich
and O-poor chemical potentials in GGA is preserved in
the hybrid functional calculation; this condition corre-
sponds to assuming equal formation energies for ZnO in
GGA and in the hybrid functional scheme. These two
ways of determining the O chemical potential in O-poor
conditions lead to formation energies differing by about
0.4 eV.
Charge transition levels correspond to the specific

value of the electron chemical potential for which two
charge states have equal formation energies. The (+2/0)
charge transition level is thus given by:

ε(+2/0) =
E0

tot − E+2
tot

2
− εV. (3)

Charge transition levels do not depend on atomic chem-
ical potentials.
The calculations were performed within a plane-

wave pseudopotential formulation. Soft norm-conserving
pseudopotentials43 were generated at the PBE level and
used in all subsequent calculations. The plane-wave
kinetic energy cutoff, determined by the much harder
O pseudopotential, was set to 80 Ry. The calcula-
tions in the present paper were performed with the code
cpmd.44–47 We explicitly treated the singularity in the
nonlocal exchange potential.47

We used the experimental lattice parameters for bulk
ZnO, since these were found to be very close to theoreti-
cal lattice parameters obtained with hybrid functionals.17

We also used experimental lattice constants in our GGA
calculations, finding results which did not differ in any
significant way from GGA calculations performed with
theoretical lattice parameters.10 Upon defect formation,
geometry relaxations were performed with both the GGA
and the PBEh-32 functionals. The defect structures
achieved in the two cases were found to be very similar: in
PBEh-32, for example, PBE-optimized defect structures
are only 0.08 eV higher in energy than those optimized
consistently at the PBEh-32 level. Hence, geometry op-
timization at the PBEh-32 level has no effect on the po-
sition of the (+2/0) charge transition level [Eq. (3)].
For the defect structures we used the supercell ap-

proach. This gives rise to finite-size effects which need
to be accounted for. First, as suggested by Van de Walle
and Neugebauer,2 the total energies of charged defects
were corrected by q∆V , ∆V being the shift needed to
align the local potential of the neutral system far from
the defect to that of a separate unperturbed bulk calcu-
lation, which was used to determine εV. This term was
found to be quite small for the supercells employed in
our calculations. Second, the total energies of charged
defect states are subject to spurious electrostatic contri-
butions associated to the periodic boundary conditions
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FIG. 1: (Color online) Charge transition level ε(+2/0) vs
inverse number of atoms contained in the supercell Nat, (a)
for the PBE calculation (1×1×1 and 2×2×2 k-point meshes)
and (b) for the PBEh-32 calculation (1×1×1 mesh). ε(+2/0)
is referred to the respective VBM.

and to the compensating background charge in our su-
percell calculations. To evaluate these effects, we used
an extrapolation scheme based on supercell calculations
of increasing size, containing 96, 192, and 384 atoms, as
shown in Fig. 1. When using the PBE functional, the
convergence of formation energies and charge transition
levels is accelerated when using the 2× 2× 2 Monkhorst-
Pack mesh instead of a sampling at the sole Γ point [Fig.
1(a)]. Hence, finite-size corrections are sizeable for the
PBE calculation and a careful extrapolation of the re-
sults is needed, as previously shown by Oba et al.17 At
variance, a denser k-point mesh turned out to be unneces-
sary for a calculation with the hybrid functional PBEh-32
[Fig. 1(b)]. Indeed, in the latter case, the bulk band gap
is substantially larger and the dispersion of the defect
state is already negligible for the smallest supercells con-
sidered. This behavior is in line with observations in a
previous study on defects in ZnO.42 A notable difference
between finite size effects in PBE and PBEh-32 calcula-
tions suggests that unphysical defect-defect interactions
mediated by bulk bands could be operative in the former
case.4 For the largest supercell considered here, we ob-
tain a conservative estimate of 0.20 eV for the residual
finite-size error by considering the monopole correction
proposed by Makov and Payne.48

III. OXYGEN VACANCY IN ZnO

For the neutral oxygen vacancy, we obtained, at the
PBE level, formation energies of 3.17 eV in O-rich condi-
tions and of 0.50 eV in O-poor conditions. In the PBEh-
32 calculation, the corresponding value is 3.57 eV in O-
rich conditions. In O-poor conditions, we found 0.50 and
0.90 eV depending on whether the cohesive energy of Zn
or the formation energy of ZnO is taken from the GGA,
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FIG. 2: (Color online) Formation energy of oxygen vacancy
in ZnO vs electron chemical potential, as obtained with the
PBEh-32 functional. O-poor conditions are assumed.

respectively. Our values agree well with the value of 0.8
eV found in Ref. 9 and that of 0.9-1.0 eV in Ref. 17.
Thus, our results confirm that the formation energy of
the O vacancy in O-poor conditions is small enough to
lead to a noticeable concentration of these defects.

At variance with these results, Janotti and Van de
Walle reported much higher formation energies for the
neutral VO.

10 They used an extrapolation procedure
based on LDA+Ud and an additional assumption about
the behavior of the formation energy of the charged va-
cancy upon the band-gap correction. While the former
extrapolation has been criticized due to the unphysical
values to which the Ud parameter extrapolates to,4 we
argue here that it is the latter assumption that is incon-
sistent with the hybrid functional calculations. Indeed,
the extrapolation procedure adopted in Ref. 10 leads to
charge transition levels that agree well with those ob-
tained with hybrid functionals.

The dependence of the formation energy on the elec-
tron chemical potential is shown Fig. 2 for oxygen-poor
conditions. For simplicity, the oxygen chemical poten-
tial was set to the average value derived from the two
definition schemes described above. The (+2/0) charge
transition level occurs at εV+2.38 eV. This result agrees
well with other calculations based on hybrid function-
als. Oba et al. found the (+2/0) charge transition level
at εV + 2.23 eV,17 using the Heyd-Scuseria-Ernzerhof
(HSE) hybrid functional based on screened exchange49

in which the fraction of non-local exchange was set to
0.375 (HSE-37.5). Using the same functional but with a
set to 0.40 (HSE-40), Clark et al. obtained the transition
level at εV + 2.34 eV.21 Thus, it appears that when a in
either PBEh or HSE functionals is tuned to reproduce
the experimental band gap, one consistently obtains the
(+2/0) charge transition level at 2.23−2.38 eV from the
VBM. The occurrence of such an agreement has recently
been rationalized in general terms.50 Janotti and Van de
Walle,10 who adopted an extrapolation method based on
LDA+Ud, found this charge transition level at 2.17 eV, in
a fair agreement with the hybrid functional calculations.

As already noted in the literature,4,11,21 the charge
transition level at εV + 2.2-2.4 eV is in stark disagree-
ment with calculations based on other methods for cor-

recting the band gap. For example, adopting a LDA+Ud

scheme,51 Lany and Zunger obtained the charge transi-
tion level at εV + 1.3 eV.9 In the LDA+Ud method, the
Hubbard Ud term acts on the Zn 3d states and the band-
gap problem is not fully corrected. When one tunes the
Ud parameter so that the position of Zn 3d states are cor-
rectly positioned with respect to the VBM, one obtains a
band gap of 1.5 eV, considerably smaller than the experi-
mental one. The remaining band-gap error was corrected
by an upward shift of the CBM.9

In another study, Paudel and Lambrecht adopted a
LDA+Us/d scheme, in which the Hubbard U term was

applied to both Zn 3d and Zn 4s states.11 While this
scheme brings the theoretical band gap in agreement with
experiment, the (+2/0) charge transition level is found at
εV+0.8 eV. Some of the results obtained in Ref. 11 have
recently been reviewed and improved by Boonchun and
Lambrecht.34 We here mainly elaborate on the original
results, but the conclusions that we draw are independent
of this choice. Using a similar method as that of Paudel
and Lambrecht, Lany and Zunger have obtained a level
at εV + 0.6 eV.4

The charge transition levels obtained with different
methods are compared in Fig. 3(a). We note that the
observed differences do not stem from different electron
densities of the defect state, as the oxygen vacancy is
characterized by a fully symmetric state of a1 symme-
try which is well described in all schemes. The origin
of this apparent disagreement between various methods
has lately been discussed to some extent.4 However, it
remains unclear whether the observed differences origi-
nate from failures of some specific methods or whether
they point to a more fundamental problem common to
all approximate electronic structure methods.

A clue to the understanding why different methods
seemingly differ so much is provided by the realization
that the band edges of bulk ZnO calculation undergo
drastically different shifts when going from LDA/GGA
calculations52 to band-gap corrected schemes. Such shifts
between two different electronic structure calculations
are properly defined through the alignment of the av-
erage electrostatic potential. For example, the LDA+Ud

method of Ref. 9 yields a shift in the VBM, ∆εV = −0.7
eV. The LDA+Us/d method of Ref. 11 gives a shift of
+0.1 eV, while our calculations yield −1.8 eV.

In Fig. 3(b) we show the comparison of the (2+/0)
charge transition level obtained with various methods,
when the VBMs in the LDA/GGA calculations are
aligned. This is equivalent to aligning the electrostatic
potential of all calculations (see Sec. IV). With this align-
ment, the various methods yield charge transition levels
differing by at most 0.4 eV. This is to be contrasted to
the variation of up to 1.8 eV achieved when the elec-
tronic structures are aligned via their respective VBM
[Fig. 3(a)]. Thus, these theoretical calculations do not in
fact differ as much as has been previously claimed. Our
conclusion is that, when a suitably defined common ref-
erence level is adopted, the charge transition levels are



5

Paudel & Lambrecht '08

Lany & Zunger '08

(LDA+ )

(LDA+ )

U

U

s/d

s/d

Lany & Zunger '07
(LDA+ & CBM shift)U

d

Janotti & Van de Walle '07
,

Oba '08,

this work

(LDA+ & extrapolation)

(HSE-37.5, HSE-40)

(PBEh-32)

et al. Clark . '10et al

U
d

VBM in LDA/GGA

(a) final VBM are aligned

(b) VBM in LDA/GGA are aligned

Paudel & Lambrecht '08 Lany & Zunger '07 This work

final VBM

0.6-0.8

1.3

2.2-2.4

D~0.4 eV

VBM

CBM

FIG. 3: (Color online) Calculated positions of the (+2/0)
charge transition level of the oxygen vacancy in ZnO through
different band-gap correction methods: (a) the various calcu-
lations are aligned via the VBM after the band gap correc-
tion are applied; (b) all the calculations are aligned through
the VBM prior to shifts of the band edges required for the
band gap correction. The illustrated results are taken from:
“Paudel & Lambrecht ’08” - Ref. 11, “Lany & Zunger ’08” -
Ref. 4, “Lany & Zunger ’07” - Ref. 9, “Janotti & Van de Walle
’07” - Ref. 10, “Oba et al. ’08” - Ref. 17, “Clark et al. ’10” -
Ref. 21. The theoretical method is indicated in parentheses.

more accurately described than the bulk band edges.5 In
Secs. V and VI below, we give a detailed explanation of
this behavior and address its general consequences for
theoretical studies of defects.

IV. ALIGNMENT OF BULK BAND

STRUCTURES

The previous discussion relied on the assumption that
the bulk band structures of two theoretical calculations
can be aligned with respect to each other, as done in Fig.
3(b). This alignment allows one to determine the shifts in
the valence band ∆εV and in the conduction band ∆εC
for a given theoretical scheme with respect to another
one. In this section, we discuss the meaning of such an
alignment.5,40

The alignment between the electronic structures of the
same bulk material within different theoretical schemes
could in principle be achieved through the identification

of a common reference potential. For instance, the vac-
uum level could serve this purpose, requiring the explicit
consideration of the surface between the considered ma-
terial and vacuum within both theoretical schemes. Since
the surface dipole depends on the specific crystal surface
which is considered, the same orientation has to be cho-
sen for both theoretical schemes. In this way, properly
defined bulk levels in the two schemes, such as εV and εC,
can be positioned with respect to the vacuum level and
thus aligned. By constructon, the alignment achieved in
this way is not an intrinsic bulk property of the two the-
oretical schemes. Indeed, differences between the surface
dipoles in the two surface calculations directly affect the
alignment.

While such a procedure can always be carried out,
we note that the alignment between different electronic
structures for the same bulk material is a meaningful con-
cept only as long as their associated electron densities
are identical (or very close). Indeed, different electron
densities at surfaces of the material could yield different
surface dipoles and thus the achieved alignment would
depend on the particular surface adopted and give rise
to ambiguity. Moreover, different surface dipoles could
result from different electron densities in the bulk, for in-
stance because of different theoretical equilibrium lattice
parameters. In such a case, the alignment with respect
to the vacuum level would again be surface dependent.
When comparing electronic structures of bulk materials
as achieved within different theoretical schemes, we will
thus additionally assume that their electron densities do
not differ essentially. In practical calculations involving
semilocal and hybrid density functionals, this condition
is close to being satisfied. Indeed, surface and interface
dipoles in a variety of cases were found to differ by at
most a few tenths of an eV.38,50,53–55

Under the assumption of yielding close electron densi-
ties, two different theoretical schemes can be expected to
give similar surface dipoles. This implies that an align-
ment to the vacuum level is equivalent to an alignment
to the average electrostatic potentials within the bulk of
the materials.40 This consequence is particularly conve-
nient and allows us to compare different bulk calculations
without the necessity of performing surface calculations.5

Note, however, that it is implicitly understood that align-
ment shifts resulting from slight differences in the elec-
tron density are negligible when compared to the shifts
undergone by the band edges.

To produce Fig. 3(b), we relied on shifts ∆εV and ∆εC
calculated in the respective papers. Indeed, the position
of the VBM and the CBM in the more advanced theory
were generally given with respect to the (semi-)local den-
sity functional calculation (LDA or GGA) for an align-
ment with respect to the average electrostatic potential.
For instance, the LDA+Us/d and LDA band structures
obtained in Ref. 11, corresponding to the left column in
Fig. 3(b), were aligned through the average electrostatic
potential in the bulk. In Refs. 4,9, corresponding to the
results in the middle column in Fig. 3(b), the authors
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determined the shifts of the bulk bands in the LDA+Ud

with respect to the LDA by referring the energies to O
2s states which do not directly couple to the d states on
which the Hubbard correction was applied. This is again
equivalent to the alignment to the average electrostatic
potential in the bulk. In our own calculations, presented
in the right column in Fig. 3(b), we aligned the two band
structures through the average electrostatic potential in
the bulk. Unfortunately, the reported data did not allow
us to establish the relative alignment for all the studies
referred to in Fig. 3(a). However, we can assume that
similar theories yield close ∆εV and ∆εC. For instance,
the LDA+Us/d calculations of Lany and Zunger4 are ex-
pected to yield similar shifts as those found by Paudel
and Lambrecht11 [Fig. 3(a)]. As far as the screened hy-
brid functionals are concerned [Fig. 3(a)], a recent study
has shown that these functionals yield very similar shifts
as the unscreened functionals used in our calculations,
as long as the fraction of nonlocal exchange is tuned
to reproduce the experimental band gap.50 Hence, al-
though the results in Fig. 3(b) are restricted to those
studies which explicitly give the shifts in the band edges,
the present considerations are expected to carry a much
broader validity and to equally hold for all other calcu-
lations reported in Fig. 3(a).

V. LOCALIZED AND DELOCALIZED STATES

IN APPROXIMATE DENSITY FUNCTIONAL

SCHEMES

We showed above that different theoretical models give
quite consistent results concerning the description of the
(+2/0) charge transition level of the O vacancy in ZnO
provided they are aligned through the average electro-
static potential, taken as a common reference level. To
understand why this happens, we first discuss funda-
mental differences between localized (atomic-like) and
extended (bulk-like) states in approximate density func-
tional schemes.
For (approximate) density functionals Janak’s

theorem56 applies:

∂Etot

∂fi
= εi(fi), (4)

i.e. the derivative of the total energy with respect to the
change of occupation number fi of the highest-occupied
state i is equal to the single-particle eigenvalue of this
state εi, when the latter is referred to the average local
potential.57

The integral form of Janak’s theorem is

EN
tot − EN−1

tot =

∫ 1

0

εN (f)df, (5)

where EN
tot is the total energy of the system with N elec-

trons. In the above expressions, we suppressed the spin

variable. While in the original derivation of Janak’s theo-
rem the functionals were implicitly assumed to be contin-
uous, Eq. (4) equally applies to functionals which possess
a discontinuity58,59 at integer number of electrons. In this
case one has to distinguish between left and right deriva-
tives and the corresponding single particle eigenvalues.
The integral form of Janak’s theorem, Eq. (5), applies to
discontinuous functionals without modifications.
In the case of localized states, such as, e.g., in

molecules and atoms, the single particle eigenvalue in ap-
proximate density functional schemes depends sensitively
on the fractional occupation. Accordingly, total energy
differences pertaining to the change of number of elec-
trons are given by Eq. (5). In particular, the ionization
potential (IP) of a system is given by

IP = EN−1
tot − EN

tot = −

∫ 1

0

εN (f)df, (6)

where εN is the highest occupied orbital of theN -electron
system. Similarly, the electron affinity (EA) can be ex-
pressed as

EA = EN
tot − EN+1

tot = −

∫ 1

0

εN+1(f)df, (7)

where εN+1 is the lowest unoccupied state of the N -
electron system.
It has been known for some time that total energy

differences pertaining to the change of charge state of
a localized state are quite accurately described in ap-
proximate density functional schemes, both in semilo-
cal and hybrid ones. For example, Curtiss et al. cal-
culated IPs and EAs for a large set of molecules using
GGA and hybrid functionals.62 They calculated these
quantities via total energy differences (∆SCF method),
yielding an average deviation with respect to experiment
lower than 0.2-0.3 eV for both GGA (BLYP) and hybrid
(B3LYP) functionals. This accuracy is achieved despite
the fact that the single-particle eigenvalues of the highest-
occupied molecular orbital (HOMO) εHOMO and of the
lowest-unoccupied molecular orbital (LUMO) εLUMO are
substantially different in the GGA and in hybrid func-
tional schemes. A similar agreement with experiment
also holds for screened hybrid functionals.63 However,
plain LDA yields slightly larger errors, of the order of
0.5-0.6 eV for the same quantities.62

We illustrate this property in the case of the pentacene
(C22H12) molecule in Fig. 4.64 Pentacene is a convenient
example because, unlike several smaller acenes, it pos-
sesses a positive electron affinity. The single-particle
HOMO and LUMO levels, calculated with the semilocal
PBE functional (left, solid lines), do not agree well with
the negative of the experimental IP and EA (right). In
particular, the single-particle gap EKS

g = εLUMO−εHOMO

of 1.12 eV is severely underestimated with respect to the
experimental gap Eg = IP − EA of 5.29 eV. The use of
the hybrid PBE0 (i.e. PBEh-25) functional (left, dashed
lines) gives some improvement, but the calculated single-
particle HOMO-LUMO gap of 2.34 eV remains much
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FIG. 4: (Color online) Frontier-orbital diagram of the pen-
tacene molecule. Left panel: HOMO and LUMO single-
particle eigenvalues as obtained with the semilocal PBE func-
tional (dashed, blue) and with the hybrid PBE0 functional
(solid, red). Middle panel: Ionization potentials and electron
affinities calculated with the same functionals. Right panel:
Experimental values for the electron affinity and the ioniza-
tion potential.

smaller than the experimental one. At variance, when
calculated via total energy differences, the IPs and EAs
in both PBE and PBE0 are much closer to their corre-
sponding experimental values, 6.64 eV65 and 1.35 eV,66

respectively. The two theoretical values (Fig. 4) differ
by less than 0.10 eV, with the hybrid functional calcula-
tion in slightly better agreement with the experimental
results. The residual differences between calculated and
measured values (∼0.45 eV for the IP and ∼0.25 eV for
the EA) can be accounted for by the quite large elec-
tron correlation effects in the pentacene molecule.67 In
any case, the present result shows that these theoretical
schemes yield total energy differences in good agreement
with experiment and with each other, while the single-
particle levels in the two schemes are very different. This
is consistent with the general trend found by Curtiss et
al. for a large set of smaller molecules.62

Thus, we conclude that total energy differences per-
taining to the change of charge state of localized states
are accurately described with approximate density func-
tionals. Approximating the integrals appearing in Eqs.
(6) and (7) through the trapezoidal rule, we arrive at the
following expressions for the IP and the EA:

IP = EN−1
tot − EN

tot ≈ −εN
(
1
2

)
(8)

and

EA = EN
tot − EN+1

tot ≈ −εN+1

(
1
2

)
. (9)

Here, εN = εHOMO and εN+1 = εLUMO. Electronic states
at half-filling correspond to Slater-transition states.68

Since Eqs. (8) and (9) apply equally well to various
semilocal and hybrid functionals, the generally good
agreement with experiment implies that the respective
eigenvalues ε(f) defined as a function of filling all ap-
proximately cross at half-filling. This has indeed already
been observed.69

The reason for this good performance of approximate
density functionals should be ascribed to the fact that
such functionals fulfill several exact constraints of the
many-body fermionic system.70 In particular, the most
relevant in this context is the generalized sum-rule of
the exchange-correlation hole. This rule holds for sys-
tems with an integer number of electrons, i.e. for closed
systems in which no exchange of electrons with the en-
vironment occurs.71 This condition is enforced for most
approximate functionals, including the LDA and various
GGAs. Furthermore, since this constraint is naturally
fulfilled in the Hartree-Fock theory, it also holds for any
hybrid functional with an exchange energy of the type
given in Eq. (1).
The situation is very different in the case of infinitely

extended bulk-like states. Indeed the band-gap problem
pertaining to (generalized) Kohn-Sham eigenvalues can-
not be overcome by considering total-energy differences.
When a fraction f of an electron or even a full electron
is added to or removed from an extended state, the total
electron density changes negligibly. Thus, the local po-
tential, both the Hartree and the approximate exchange-
correlation potential remain unaffected. As a result, the
single-particle eigenvalues do not depend on the filling f
of this state. Using the integral form of Janak’s theorem
given in Eq. (5), we get for the valence band maximum:

εV = EN
tot − EN−1

tot , (10)

and for the conduction band minimum:

εC = EN+1
tot − EN

tot. (11)

To illustrate this property, we show in Fig. 5 the VBM
and CBM of α-quartz calculated via total energy differ-
ences as a function of the supercell size. The consid-
ered cells contain 72, 144, 288, and 576 atoms, and their
Brillouin zones are sampled at the sole Γ point. The
semilocal PBE functional was used. In the case of α-
quartz, total energy differences are very close to single
particle eigenvalues already for the smallest cells. For
the 72-atom cell, the difference is 0.015 eV for the VBM
and 0.035 eV for the CBM, while for the 576 cell these
are 0.003 eV and 0.004 eV, respectively. The particular
case of hybrid functionals has been addressed in detail in
Ref. 47. Hence, unlike for the localized states in Fig. 4,
the consideration of total-energy differences in the case
of extended states is not useful to improve the compar-
ison with experiment and the same limitations pertain-
ing to the single-particle eigenvalues (band-gap problem)
are encountered.60,61 A similar comparison involving ex-
tended states of GaAs and localized states of the F atom
can be found in Ref. 4.
The above discussion highlights an important differ-

ence between localized and extended states as described
within approximate density functional schemes. While
the band-gap problem associated to single particle eigen-
values can be circumvented by considering total-energy
differences for localized states, such a solution does not



8

1/72
1/144

1/288
1/576

0

2

4

6

E

1/Nat

EV

EC

FIG. 5: (Color online) Band edges of crystalline SiO2 (α-
quartz) calculated via total energy differences as a function of
1/Nat, whereNat is the total number of atoms in the supercell.
Calculations have been performed with the semilocal PBE
functional.

apply to extended states for which the band-gap problem
remains a fundamental obstacle. Recently, a clear expla-
nation has been put forward for justifying this different
behavior.72,73 The inaccurate total energies for large sys-
tems with integer number of electrons stems from the
failure of approximate density functionals in describing
small systems with fractional charges.72,73 Indeed, ap-
proximate functionals generally do not reproduce the
property of the exact density functional by which the to-
tal energy depends linearly on the number of electrons.
There is at present an on-going effort to achieve improved
descriptions on the basis of these ideas.74–76 The degree
of localization required for achieving an accurate descrip-
tion with current density functionals is still to a large
extent an open question. We refer the reader to the in-
teresting debate on this issue in Refs. 77.

VI. “THE BAND-EDGE PROBLEM”

Having stressed the different properties of localized and
extended states with respect to a change in electron oc-
cupation, we return in this section to the discussion of
charge transition levels. For the sake of simplicity, let us
consider the (+/0) transition of a point defect character-
ized by an atomically localized wave function. Using Eq.
(10), we write the charge transition level ε(+/0) as the
difference between two terms, each of them correspond-
ing to a total-energy difference:

ε(+/0) = E0
tot − E+

tot − εV

=
(
E0

tot − E+
tot

)

︸ ︷︷ ︸

localized state

−

(

E0
tot, bulk − E+

tot,bulk

)

︸ ︷︷ ︸

delocalized state

.

(12)

The second term clearly describes the total energy dif-
ference pertaining to a delocalized bulk state, while the

first term can to a very good approximation be related
to the total energy difference pertaining to a localized
state. Formally, the first term describes the total energy
of the whole manifold of states involving both defect and
bulk states, but can be related to the localized defect
state through the Slater transition-state approximation.5

For atomically localized defect states, this is a very good
approximation.78 In view of the following discussion, it
is convenient to rewrite Eq. (12) as

ε(+/0) =
(
E0

tot − E+
tot − φ

)
− (εV − φ)

= ε̄(+/0)− ε̄V, (13)

where the charge transition level ε̄(+/0) and the VBM
ε̄v are referred to the average electrostatic potential φ of
the unperturbed bulk material.

A. “Band-gap” problem of defect energy levels

Let us assume that we study the (+/0) charge transi-
tion level of the same defect using two different theories:
theory I and theory II. The first theory severely underes-
timates the band gap, while the second one gives a band
gap in a much closer agreement with experiment. The
two theories differ only by the exchange-correlation po-
tential. According to Eq. (13), the corresponding charge
transition levels referred to the respective valence band
maxima are:

εI(+/0) = ε̄I(+/0)− ε̄IV, (14)

and

εII(+/0) = ε̄II(+/0)− ε̄IIV. (15)

We further assume that the two theories produce a suffi-
ciently accurate representation of the electron density so
that it is justified to align the two bulk band structures
through the average electrostatic potential φ in the two
theories, as discussed in Sec. IV. Under the assumption
that the defect wave function ψd differs very little in the
two theories, we can express the difference between the
two charge transition levels ε̄(+/0) making use of the
Slater transition state:5

ε̄II(+/0)− ε̄I(+/0) ≈
〈

ψd

∣
∣
∣V̂ II

xc − V̂ I
xc

∣
∣
∣ψd

〉

, (16)

where the exchange-correlation potentials are evaluated
with the defect state at half occupation. Only the dif-
ference in the exchange-correlation potentials enters the
expression in Eq. (16). Indeed, if the electron density
and the single-particle wave functions are very similar in
the two calculations, the interaction between the defect
and the ionic cores, the long-range electrostatic electron-
electron interaction, and the kinetic energy are the same
in the two theories and cancel.
To understand the behavior of defect levels, it is con-

venient to focus first on defects with extremely localized
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FIG. 6: (Color online) Schematic illustration of energy lev-
els of various type of defect states differing by the extent of
their wave function: (a) defect level with an atomically lo-
calized wave function, (b) an intermediate case, and (c) an
effective-mass-like defect. The results of two electronic struc-
ture theories (theory I and theory II) giving different band
gaps are compared to illustrate the band-gap problem. The
alignment is made through the average electrostatic potential.

wave functions. Hence, according to Eq. (16), the differ-
ence ε̄II(+/0)− ε̄II(+/0) can then be expressed in terms
of an expectation value involving the sole localized defect
state.5 However, we know from Sec. V that total energy
differences pertaining to localized states, or, equivalently,
Slater transition-state eigenvalues of localized states, are
almost the same, independent of the functional. Thus,
we get:

ε̄II(+/0)− ε̄I(+/0) ≈ 0. (17)

This means that charge transition levels for such defects
are almost equal in the two theories, when the energy
scales are aligned through the average electrostatic po-
tential φ. At variance, the charge transition levels are
substantially different when the energy scales in the two
theories are aligned through the respective valence band
maxima, i.e. through ε̄V in Eqs. (14) and (15), because
of the different positions of the bulk band edges with re-
spect to the potential φ. This scenario pertaining to a
defect with an extremely localized wave function is illus-
trated in Fig. 6 by the defect state a. The validity of
the ideal alignment illustrated by this type of defect has
been demonstrated for a wide class of defects encompass-
ing various host materials.5,50,55,79–81

Figure 6 also illustrates the shifts of other type of de-
fects. In the opposite limit, defect c corresponds to an
effective-mass-like defect with a spatially extended wave
function. In this case, the defect level is anchored to the
bulk band to which it pertains and rigidly follows the
band edge upon the opening of the band gap in theory
II. Defect b has an intermediate extension compared to
defects a and c, and is partially affected by the shift of
the band edges. The relation between the departure from
ideal alignment and the spatial extension of the defect
wave functions has been documented for various defects
and host materials in Ref. 5. However, the detailed be-
havior of such defects is intrinsically system-dependent,
and no universal considerations can be made.
In this section, we limited the discussion to defects

states occurring in the band gap for both theories. More
complex situations occur when defect states are resonant

VBM

CBM

theory I theory II

a b

c

a
b

c

Dev

FIG. 7: (Color online) Schematic illustration of energy lev-
els of various type of defect states differing by the extent of
their wave function: (a) a deep defect level with an atomi-
cally localized wave function, (b) an intermediate case, and
(c) an effective-mass-like defect. The results of two electronic
structure theories (theory I and theory II) giving the same
band gap but different band edge positions are compared to
illustrate the “band-edge problem”. The alignment is made
through the average electrostatic potential.

with the band states for one of the theories.4 However,
the physical description of the defect state is altered in
such cases. The main motivation of the present work is
to understand the effect of the band gap opening under
the assumption that the defect wave function remains
essentially unmodified.

B. “Band-edge” problem for defect energy levels

In the previous section, we compared defect charge
transition levels as obtained within two different theories
giving different band gaps. We found that the energy
levels of defects states described by atomically localized
wave functions are already well described in theories with
a pronounced “band-gap problem”, provided those levels
are referred to a relevant reference level. For such de-
fects, the problem of finding the defect level is essentially
decoupled from that of finding the band edges.
Let us thus consider two different theories, theory I and

theory II, yielding this time the same band gap (taken
to coincide with the experimental one), but giving differ-
ent positions of the VBM and the CBM with respect to
the average electrostatic potential φ of the bulk. We as-
sume that the two theories are sufficently accurate yield-
ing in particular close electron densities, so that the en-
ergy scales of the two theories can be aligned through φ,
as discussed in Sec. IV. For instance, theory I could be
LDA+U in which the remaining band-gap underestima-
tion is corrected by a rigid shift of the conduction band,
while theory II could be a hybrid functional scheme in
which the fraction of Fock exchange is tuned to reproduce
the experimental band gap. For an atomically localized
defect, the same argument holds as in the previous sec-
tion and the charge transition levels obtained within the
two theories are expected to fall very close to each other,
as illustrated in Fig. 7 for defect a. In Fig. 7, a departure
from the ideal alignment is seen for defects b and c, cor-
responding to defect wave functions of intermediate and
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effective-mass-like extensions, respectively.
Figure 7 summarizes the principal finding of the

present work. In a condensed form, the following state-
ment can be formulated concerning the comparison of
charge transition levels of atomically localized defects.
Despite the good description of the experimental band
gap in both theories, the defect levels differ when re-
ferred to their respective VBM, because the band edges
in the two theories are located differently with respect
to the common electrostatic potential φ. This occurs
even when the defect wave function is almost identical in
the two theories. This alignment property deteriorates
with the extension of the defect wave function. Thus, the
correct description of band edges relative to the average
electrostatic potential is a crucial prerequisite for an ac-
curate location of charge transition levels within the band
gap. We refer to this issue as to the “band-edge prob-
lem” for the calculation of defect levels. In other words,
there is not only a “band gap problem” related to the
underestimation of the band gap but also a “band-edge
problem” related to the position of the band edges with
respect to the average electrostatic potential, ultimately
corresponding to an absolute alignment with respect to
an external vacuum level.
As far as the determination of the (+2/0) charge

transition level of the oxygen vacancy in ZnO is con-
cerned, the present considerations appear confirmed [cf.
Fig. 3(b)]. This defect level behaves like the defect state
b in Fig. 7, showing a shift which does not depart in
a significant way from the case of ideal alignment (de-
fect state a). Indeed, when referred to a common ref-
erence level, all previous calculations yield the (+2/0)
level within 0.4 eV,4,8–11,17,21 which corresponds to just
one ninth of the band gap of bulk ZnO. Hence, contrary
to previous claims, we find that all previous defect cal-
culations agree quite well with each other. In fact, these
calculations differ in the positions of the bulk band edges
with respect to the average electrostatic potential.

C. Which band edge shifts are the right ones?

These considerations lead to the question about which
theoretical description should be adopted for position-
ing the band edges. This corresponds to determining
the shift ∆εV of the valence band and the shift ∆εC of
the conduction band, when taking the LDA or the GGA
as a starting point. A direct comparison between the-
ory and experiment is in principle possible. The bulk
band structure can for instance be referred to the vac-
uum level through a surface calculation. The VBM and
the CBM determined in this way could then be com-
pared with ionization potentials and electron affinities, as
obtained by means of photoelectron and inverse photo-
electron spectroscopy. However, such measurements are
often shrouded by very pronounced effects associated to
charged native defects and impurities which influence the
electrostatics and alter the alignment. More practically,

the validity of a given theoretical scheme can be exam-
ined addressing band offsets at interfaces.82 Band offsets
are well-defined quantities and can generally be measured
through a large set of experimental techniques. The com-
parison between theoretical and experimental band off-
sets then allows one to determine the overall accuracy
with which such shifts are obtained within various theo-
retical schemes.38,50,54,83–86

In the absence of experimental data, the validity of the
shifts ∆εV and ∆εC could also be assessed by comparing
with electronic structure calculations of higher accuracy,
such as those based on many-body perturbation theory
(MBPT) in the GW approximation or beyond.38,83,87 In-
deed, such calculations not only provide improved rela-
tive positions of bulk bands, but also shifts of those bands
with respect to theoretical schemes of lower level. How-
ever, recent work has shown that the shifts of the band
edges with respect to the average electrostatic potential
are more difficult to converge than relative positions of
bands.83 Furthermore, such shifts are sensitive to various
levels of approximation, such as, e.g., the use of different
models for the plasmon pole to describe the frequency de-
pendence of the dielectric function, the inclusion of ver-
tex corrections Γ, and various levels of self-consistency
on G, W , Γ, and the electron wave functions.83,88,89 To
illustrate this point, we quote a recent work,83 in which
the relative shift of the valence band with respect to the
overall band gap correction, i.e. ∆εV/∆Eg, was found to
range from −0.68 to −0.42 in the case of SiO2, depending
on the level of approximation in the GW scheme. Even
for a material as simple as Si the value of ∆εV/∆Eg as
predicted by different GW schemes ranges from −0.75
to +0.17.83 Thus, clearly more work is needed to clarify
these issues. A systematic study of the effects of differ-
ent levels of approximation in MBPT on the shifts in the
band edges is thus vital for the study of defect levels.

VII. CONCLUSIONS

In this work, we carried out a theoretical analysis
of the (+2/0) charge transition level of the oxygen va-
cancy in ZnO. In recent years, this defect has grown
into a benchmark case to assess the quality of various
advanced electronic-structure theories. Indeed, common
approximations to density functional theory, such as the
LDA and the various GGAs, severely underestimate the
band gap of bulk ZnO, and the treatment at a more ad-
vanced level thus becomes crucial even for drawing qual-
itative conclusions. However, different advanced theoret-
ical methods applied hitherto yielded conflicting results
regarding the position of the defect level in the band gap.
We here showed that apparently conflicting theoret-

ical results are in a much better agreement with each
other when the charge transition levels are aligned with
respect to the average electrostatic potential rather than
to the respective valence band maximum. We showed
that the former alignment is equivalent to the choice of
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a common external potential such as the vacuum level,
provided the electron densities are sufficiently accurately
described. We have rationalized our finding by consid-
ering fundamental differences between the ways approx-
imate density functionals describe localized and delocal-
ized states. For localized states, the “band-gap problem”
can generally be overcome through the consideration of
total energy differences. On the other hand, such a solu-
tion is not applicable to delocalized states, for which the
“band-gap problem” remains an intrinsic shortcoming.
In particular, the present study highlights a specific

criterion that needs to be fulfilled in order to properly
describe charge transition level and formation energies of
defects. We clearly demonstrated that the band struc-
ture of the host material needs to be correctly positioned
with respect to an external potential, such as the vacuum
level. When the electron density is accurately described,
this alignment condition can equivalently be replaced by
the alignment with respect to the average electrostatic
potential in the bulk. This condition is additional with
respect to the accurate reproduction of the band gap.
Our analysis of the oxygen vacancy in ZnO shows that
conflicting theoretical results arise for theories yielding an
accurate band gap, but differing positions for the band
edges.
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